11e5b972a9
Current numbers: N4: running bench [640 480] math_fastIsqrt NONRENDERING: cmsecs = 3.12 running bench [640 480] math_slowIsqrt NONRENDERING: cmsecs = 4.82 running bench [640 480] math_sk_float_rsqrt NONRENDERING: cmsecs = 1.99 Desktop: running bench [640 480] math_fastIsqrt NONRENDERING: cmsecs = 0.89 running bench [640 480] math_slowIsqrt NONRENDERING: cmsecs = 0.94 running bench [640 480] math_sk_float_rsqrt NONRENDERING: cmsecs = 0.09 Haven't found any other benches where this is a significant effect yet. BUG= R=reed@google.com Author: mtklein@google.com Review URL: https://codereview.chromium.org/60083014 git-svn-id: http://skia.googlecode.com/svn/trunk@12203 2bbb7eff-a529-9590-31e7-b0007b416f81
141 lines
5.0 KiB
C++
141 lines
5.0 KiB
C++
|
|
/*
|
|
* Copyright 2006 The Android Open Source Project
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
|
|
#ifndef SkFloatingPoint_DEFINED
|
|
#define SkFloatingPoint_DEFINED
|
|
|
|
#include "SkTypes.h"
|
|
|
|
#include <math.h>
|
|
#include <float.h>
|
|
#include "SkFloatBits.h"
|
|
|
|
// C++98 cmath std::pow seems to be the earliest portable way to get float pow.
|
|
// However, on Linux including cmath undefines isfinite.
|
|
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608
|
|
static inline float sk_float_pow(float base, float exp) {
|
|
return powf(base, exp);
|
|
}
|
|
|
|
static inline float sk_float_copysign(float x, float y) {
|
|
int32_t xbits = SkFloat2Bits(x);
|
|
int32_t ybits = SkFloat2Bits(y);
|
|
return SkBits2Float((xbits & 0x7FFFFFFF) | (ybits & 0x80000000));
|
|
}
|
|
|
|
#ifdef SK_BUILD_FOR_WINCE
|
|
#define sk_float_sqrt(x) (float)::sqrt(x)
|
|
#define sk_float_sin(x) (float)::sin(x)
|
|
#define sk_float_cos(x) (float)::cos(x)
|
|
#define sk_float_tan(x) (float)::tan(x)
|
|
#define sk_float_acos(x) (float)::acos(x)
|
|
#define sk_float_asin(x) (float)::asin(x)
|
|
#define sk_float_atan2(y,x) (float)::atan2(y,x)
|
|
#define sk_float_abs(x) (float)::fabs(x)
|
|
#define sk_float_mod(x,y) (float)::fmod(x,y)
|
|
#define sk_float_exp(x) (float)::exp(x)
|
|
#define sk_float_log(x) (float)::log(x)
|
|
#define sk_float_floor(x) (float)::floor(x)
|
|
#define sk_float_ceil(x) (float)::ceil(x)
|
|
#else
|
|
#define sk_float_sqrt(x) sqrtf(x)
|
|
#define sk_float_sin(x) sinf(x)
|
|
#define sk_float_cos(x) cosf(x)
|
|
#define sk_float_tan(x) tanf(x)
|
|
#define sk_float_floor(x) floorf(x)
|
|
#define sk_float_ceil(x) ceilf(x)
|
|
#ifdef SK_BUILD_FOR_MAC
|
|
#define sk_float_acos(x) static_cast<float>(acos(x))
|
|
#define sk_float_asin(x) static_cast<float>(asin(x))
|
|
#else
|
|
#define sk_float_acos(x) acosf(x)
|
|
#define sk_float_asin(x) asinf(x)
|
|
#endif
|
|
#define sk_float_atan2(y,x) atan2f(y,x)
|
|
#define sk_float_abs(x) fabsf(x)
|
|
#define sk_float_mod(x,y) fmodf(x,y)
|
|
#define sk_float_exp(x) expf(x)
|
|
#define sk_float_log(x) logf(x)
|
|
#endif
|
|
|
|
#ifdef SK_BUILD_FOR_WIN
|
|
#define sk_float_isfinite(x) _finite(x)
|
|
#define sk_float_isnan(x) _isnan(x)
|
|
static inline int sk_float_isinf(float x) {
|
|
int32_t bits = SkFloat2Bits(x);
|
|
return (bits << 1) == (0xFF << 24);
|
|
}
|
|
#else
|
|
#define sk_float_isfinite(x) isfinite(x)
|
|
#define sk_float_isnan(x) isnan(x)
|
|
#define sk_float_isinf(x) isinf(x)
|
|
#endif
|
|
|
|
#define sk_double_isnan(a) sk_float_isnan(a)
|
|
|
|
#ifdef SK_USE_FLOATBITS
|
|
#define sk_float_floor2int(x) SkFloatToIntFloor(x)
|
|
#define sk_float_round2int(x) SkFloatToIntRound(x)
|
|
#define sk_float_ceil2int(x) SkFloatToIntCeil(x)
|
|
#else
|
|
#define sk_float_floor2int(x) (int)sk_float_floor(x)
|
|
#define sk_float_round2int(x) (int)sk_float_floor((x) + 0.5f)
|
|
#define sk_float_ceil2int(x) (int)sk_float_ceil(x)
|
|
#endif
|
|
|
|
extern const uint32_t gIEEENotANumber;
|
|
extern const uint32_t gIEEEInfinity;
|
|
extern const uint32_t gIEEENegativeInfinity;
|
|
|
|
#define SK_FloatNaN (*SkTCast<const float*>(&gIEEENotANumber))
|
|
#define SK_FloatInfinity (*SkTCast<const float*>(&gIEEEInfinity))
|
|
#define SK_FloatNegativeInfinity (*SkTCast<const float*>(&gIEEENegativeInfinity))
|
|
|
|
#if defined(__SSE__)
|
|
#include <xmmintrin.h>
|
|
#elif defined(__ARM_NEON__)
|
|
#include <arm_neon.h>
|
|
#endif
|
|
|
|
// Fast, approximate inverse square root.
|
|
// Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON.
|
|
static inline float sk_float_rsqrt(const float x) {
|
|
// We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got
|
|
// it at compile time. This is going to be too fast to productively hide behind a function pointer.
|
|
//
|
|
// We do one step of Newton's method to refine the estimates in the NEON and null paths. No
|
|
// refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt.
|
|
#if defined(__SSE__)
|
|
float result;
|
|
_mm_store_ss(&result, _mm_rsqrt_ss(_mm_set_ss(x)));
|
|
return result;
|
|
#elif defined(__ARM_NEON__)
|
|
// Get initial estimate.
|
|
const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x.
|
|
float32x2_t estimate = vrsqrte_f32(xx);
|
|
|
|
// One step of Newton's method to refine.
|
|
const float32x2_t estimate_sq = vmul_f32(estimate, estimate);
|
|
estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq));
|
|
return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places.
|
|
#else
|
|
// Get initial estimate.
|
|
int i = *SkTCast<int*>(&x);
|
|
i = 0x5f3759df - (i>>1);
|
|
float estimate = *SkTCast<float*>(&i);
|
|
|
|
// One step of Newton's method to refine.
|
|
const float estimate_sq = estimate*estimate;
|
|
estimate *= (1.5f-0.5f*x*estimate_sq);
|
|
return estimate;
|
|
#endif
|
|
}
|
|
|
|
#endif
|