skia2/tools/sk_tool_utils.cpp
Mike Klein d46dce3de5 don't adapt any gray colors to 565
Adapting gray to 565 will add a noticeable purple/green tint.
I'd rather only the 565 images in Gold were tainted with that.

Change-Id: Ib09e92b2f78c6de086345124e9eefeb31bbb5fa8
Reviewed-on: https://skia-review.googlesource.com/147422
Commit-Queue: Mike Klein <mtklein@google.com>
Auto-Submit: Mike Klein <mtklein@google.com>
Reviewed-by: Brian Osman <brianosman@google.com>
2018-08-16 19:13:41 +00:00

638 lines
22 KiB
C++

/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmap.h"
#include "SkBlendMode.h"
#include "SkCanvas.h"
#include "SkColorData.h"
#include "SkColorPriv.h"
#include "SkFloatingPoint.h"
#include "SkImage.h"
#include "SkMatrix.h"
#include "SkPM4f.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkPixelRef.h"
#include "SkPixmap.h"
#include "SkPoint3.h"
#include "SkRRect.h"
#include "SkShader.h"
#include "SkSurface.h"
#include "SkTextBlob.h"
#include "sk_tool_utils.h"
#include <cmath>
#include <cstring>
#include <memory>
namespace sk_tool_utils {
const char* alphatype_name(SkAlphaType at) {
switch (at) {
case kUnknown_SkAlphaType: return "Unknown";
case kOpaque_SkAlphaType: return "Opaque";
case kPremul_SkAlphaType: return "Premul";
case kUnpremul_SkAlphaType: return "Unpremul";
}
SkASSERT(false);
return "unexpected alphatype";
}
const char* colortype_name(SkColorType ct) {
switch (ct) {
case kUnknown_SkColorType: return "Unknown";
case kAlpha_8_SkColorType: return "Alpha_8";
case kRGB_565_SkColorType: return "RGB_565";
case kARGB_4444_SkColorType: return "ARGB_4444";
case kRGBA_8888_SkColorType: return "RGBA_8888";
case kRGB_888x_SkColorType: return "RGB_888x";
case kBGRA_8888_SkColorType: return "BGRA_8888";
case kRGBA_1010102_SkColorType: return "RGBA_1010102";
case kRGB_101010x_SkColorType: return "RGB_101010x";
case kGray_8_SkColorType: return "Gray_8";
case kRGBA_F16_SkColorType: return "RGBA_F16";
case kRGBA_F32_SkColorType: return "RGBA_F32";
}
SkASSERT(false);
return "unexpected colortype";
}
SkColor color_to_565(SkColor color) {
// Not a good idea to use this function for greyscale colors...
// it will add an obvious purple or green tint.
SkASSERT(SkColorGetR(color) != SkColorGetG(color) ||
SkColorGetR(color) != SkColorGetB(color) ||
SkColorGetG(color) != SkColorGetB(color));
SkPMColor pmColor = SkPreMultiplyColor(color);
U16CPU color16 = SkPixel32ToPixel16(pmColor);
return SkPixel16ToColor(color16);
}
void write_pixels(SkCanvas* canvas, const SkBitmap& bitmap, int x, int y,
SkColorType colorType, SkAlphaType alphaType) {
SkBitmap tmp(bitmap);
const SkImageInfo info = SkImageInfo::Make(tmp.width(), tmp.height(), colorType, alphaType);
canvas->writePixels(info, tmp.getPixels(), tmp.rowBytes(), x, y);
}
void write_pixels(SkSurface* surface, const SkBitmap& src, int x, int y,
SkColorType colorType, SkAlphaType alphaType) {
const SkImageInfo info = SkImageInfo::Make(src.width(), src.height(), colorType, alphaType);
surface->writePixels({info, src.getPixels(), src.rowBytes()}, x, y);
}
sk_sp<SkShader> create_checkerboard_shader(SkColor c1, SkColor c2, int size) {
SkBitmap bm;
bm.allocPixels(SkImageInfo::MakeS32(2 * size, 2 * size, kPremul_SkAlphaType));
bm.eraseColor(c1);
bm.eraseArea(SkIRect::MakeLTRB(0, 0, size, size), c2);
bm.eraseArea(SkIRect::MakeLTRB(size, size, 2 * size, 2 * size), c2);
return SkShader::MakeBitmapShader(
bm, SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode);
}
SkBitmap create_checkerboard_bitmap(int w, int h, SkColor c1, SkColor c2, int checkSize) {
SkBitmap bitmap;
bitmap.allocPixels(SkImageInfo::MakeS32(w, h, kPremul_SkAlphaType));
SkCanvas canvas(bitmap);
sk_tool_utils::draw_checkerboard(&canvas, c1, c2, checkSize);
return bitmap;
}
void draw_checkerboard(SkCanvas* canvas, SkColor c1, SkColor c2, int size) {
SkPaint paint;
paint.setShader(create_checkerboard_shader(c1, c2, size));
paint.setBlendMode(SkBlendMode::kSrc);
canvas->drawPaint(paint);
}
SkBitmap create_string_bitmap(int w, int h, SkColor c, int x, int y,
int textSize, const char* str) {
SkBitmap bitmap;
bitmap.allocN32Pixels(w, h);
SkCanvas canvas(bitmap);
SkPaint paint;
paint.setAntiAlias(true);
sk_tool_utils::set_portable_typeface(&paint);
paint.setColor(c);
paint.setTextSize(SkIntToScalar(textSize));
canvas.clear(0x00000000);
canvas.drawString(str, SkIntToScalar(x), SkIntToScalar(y), paint);
// Tag data as sRGB (without doing any color space conversion). Color-space aware configs
// will process this correctly but legacy configs will render as if this returned N32.
SkBitmap result;
result.setInfo(SkImageInfo::MakeS32(w, h, kPremul_SkAlphaType));
result.setPixelRef(sk_ref_sp(bitmap.pixelRef()), 0, 0);
return result;
}
void add_to_text_blob_w_len(SkTextBlobBuilder* builder, const char* text, size_t len,
const SkPaint& origPaint, SkScalar x, SkScalar y) {
SkPaint paint(origPaint);
SkTDArray<uint16_t> glyphs;
glyphs.append(paint.textToGlyphs(text, len, nullptr));
paint.textToGlyphs(text, len, glyphs.begin());
paint.setTextEncoding(SkPaint::kGlyphID_TextEncoding);
const SkTextBlobBuilder::RunBuffer& run = builder->allocRun(paint, glyphs.count(), x, y,
nullptr);
memcpy(run.glyphs, glyphs.begin(), glyphs.count() * sizeof(uint16_t));
}
void add_to_text_blob(SkTextBlobBuilder* builder, const char* text,
const SkPaint& origPaint, SkScalar x, SkScalar y) {
add_to_text_blob_w_len(builder, text, strlen(text), origPaint, x, y);
}
SkPath make_star(const SkRect& bounds, int numPts, int step) {
SkPath path;
path.setFillType(SkPath::kEvenOdd_FillType);
path.moveTo(0,-1);
for (int i = 1; i < numPts; ++i) {
int idx = i*step;
SkScalar theta = idx * 2*SK_ScalarPI/numPts + SK_ScalarPI/2;
SkScalar x = SkScalarCos(theta);
SkScalar y = -SkScalarSin(theta);
path.lineTo(x, y);
}
path.transform(SkMatrix::MakeRectToRect(path.getBounds(), bounds, SkMatrix::kFill_ScaleToFit));
return path;
}
static inline void norm_to_rgb(SkBitmap* bm, int x, int y, const SkVector3& norm) {
SkASSERT(SkScalarNearlyEqual(norm.length(), 1.0f));
unsigned char r = static_cast<unsigned char>((0.5f * norm.fX + 0.5f) * 255);
unsigned char g = static_cast<unsigned char>((-0.5f * norm.fY + 0.5f) * 255);
unsigned char b = static_cast<unsigned char>((0.5f * norm.fZ + 0.5f) * 255);
*bm->getAddr32(x, y) = SkPackARGB32(0xFF, r, g, b);
}
void create_hemi_normal_map(SkBitmap* bm, const SkIRect& dst) {
const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f),
dst.fTop + (dst.height() / 2.0f));
const SkPoint halfSize = SkPoint::Make(dst.width() / 2.0f, dst.height() / 2.0f);
SkVector3 norm;
for (int y = dst.fTop; y < dst.fBottom; ++y) {
for (int x = dst.fLeft; x < dst.fRight; ++x) {
norm.fX = (x + 0.5f - center.fX) / halfSize.fX;
norm.fY = (y + 0.5f - center.fY) / halfSize.fY;
SkScalar tmp = norm.fX * norm.fX + norm.fY * norm.fY;
if (tmp >= 1.0f) {
norm.set(0.0f, 0.0f, 1.0f);
} else {
norm.fZ = sqrtf(1.0f - tmp);
}
norm_to_rgb(bm, x, y, norm);
}
}
}
void create_frustum_normal_map(SkBitmap* bm, const SkIRect& dst) {
const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f),
dst.fTop + (dst.height() / 2.0f));
SkIRect inner = dst;
inner.inset(dst.width()/4, dst.height()/4);
SkPoint3 norm;
const SkPoint3 left = SkPoint3::Make(-SK_ScalarRoot2Over2, 0.0f, SK_ScalarRoot2Over2);
const SkPoint3 up = SkPoint3::Make(0.0f, -SK_ScalarRoot2Over2, SK_ScalarRoot2Over2);
const SkPoint3 right = SkPoint3::Make(SK_ScalarRoot2Over2, 0.0f, SK_ScalarRoot2Over2);
const SkPoint3 down = SkPoint3::Make(0.0f, SK_ScalarRoot2Over2, SK_ScalarRoot2Over2);
for (int y = dst.fTop; y < dst.fBottom; ++y) {
for (int x = dst.fLeft; x < dst.fRight; ++x) {
if (inner.contains(x, y)) {
norm.set(0.0f, 0.0f, 1.0f);
} else {
SkScalar locX = x + 0.5f - center.fX;
SkScalar locY = y + 0.5f - center.fY;
if (locX >= 0.0f) {
if (locY > 0.0f) {
norm = locX >= locY ? right : down; // LR corner
} else {
norm = locX > -locY ? right : up; // UR corner
}
} else {
if (locY > 0.0f) {
norm = -locX > locY ? left : down; // LL corner
} else {
norm = locX > locY ? up : left; // UL corner
}
}
}
norm_to_rgb(bm, x, y, norm);
}
}
}
void create_tetra_normal_map(SkBitmap* bm, const SkIRect& dst) {
const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f),
dst.fTop + (dst.height() / 2.0f));
static const SkScalar k1OverRoot3 = 0.5773502692f;
SkPoint3 norm;
const SkPoint3 leftUp = SkPoint3::Make(-k1OverRoot3, -k1OverRoot3, k1OverRoot3);
const SkPoint3 rightUp = SkPoint3::Make(k1OverRoot3, -k1OverRoot3, k1OverRoot3);
const SkPoint3 down = SkPoint3::Make(0.0f, SK_ScalarRoot2Over2, SK_ScalarRoot2Over2);
for (int y = dst.fTop; y < dst.fBottom; ++y) {
for (int x = dst.fLeft; x < dst.fRight; ++x) {
SkScalar locX = x + 0.5f - center.fX;
SkScalar locY = y + 0.5f - center.fY;
if (locX >= 0.0f) {
if (locY > 0.0f) {
norm = locX >= locY ? rightUp : down; // LR corner
} else {
norm = rightUp;
}
} else {
if (locY > 0.0f) {
norm = -locX > locY ? leftUp : down; // LL corner
} else {
norm = leftUp;
}
}
norm_to_rgb(bm, x, y, norm);
}
}
}
#if !defined(__clang__) && defined(_MSC_VER)
// MSVC takes ~2 minutes to compile this function with optimization.
// We don't really care to wait that long for this function.
#pragma optimize("", off)
#endif
void make_big_path(SkPath& path) {
#include "BigPathBench.inc" // IWYU pragma: keep
}
static float gaussian2d_value(int x, int y, float sigma) {
// don't bother with the scale term since we're just going to normalize the
// kernel anyways
float temp = expf(-(x*x + y*y)/(2*sigma*sigma));
return temp;
}
static float* create_2d_kernel(float sigma, int* filterSize) {
// We will actually take 2*halfFilterSize+1 samples (i.e., our filter kernel
// sizes are always odd)
int halfFilterSize = SkScalarCeilToInt(6*sigma)/2;
int wh = *filterSize = 2*halfFilterSize + 1;
float* temp = new float[wh*wh];
float filterTot = 0.0f;
for (int yOff = 0; yOff < wh; ++yOff) {
for (int xOff = 0; xOff < wh; ++xOff) {
temp[yOff*wh+xOff] = gaussian2d_value(xOff-halfFilterSize, yOff-halfFilterSize, sigma);
filterTot += temp[yOff*wh+xOff];
}
}
// normalize the kernel
for (int yOff = 0; yOff < wh; ++yOff) {
for (int xOff = 0; xOff < wh; ++xOff) {
temp[yOff*wh+xOff] /= filterTot;
}
}
return temp;
}
static SkPMColor blur_pixel(const SkBitmap& bm, int x, int y, float* kernel, int wh) {
SkASSERT(wh & 0x1);
int halfFilterSize = (wh-1)/2;
float r = 0.0f, g = 0.0f, b = 0.0f;
for (int yOff = 0; yOff < wh; ++yOff) {
int ySamp = y + yOff - halfFilterSize;
if (ySamp < 0) {
ySamp = 0;
} else if (ySamp > bm.height()-1) {
ySamp = bm.height()-1;
}
for (int xOff = 0; xOff < wh; ++xOff) {
int xSamp = x + xOff - halfFilterSize;
if (xSamp < 0) {
xSamp = 0;
} else if (xSamp > bm.width()-1) {
xSamp = bm.width()-1;
}
float filter = kernel[yOff*wh + xOff];
SkPMColor c = *bm.getAddr32(xSamp, ySamp);
r += SkGetPackedR32(c) * filter;
g += SkGetPackedG32(c) * filter;
b += SkGetPackedB32(c) * filter;
}
}
U8CPU r8, g8, b8;
r8 = (U8CPU) (r+0.5f);
g8 = (U8CPU) (g+0.5f);
b8 = (U8CPU) (b+0.5f);
return SkPackARGB32(255, r8, g8, b8);
}
SkBitmap slow_blur(const SkBitmap& src, float sigma) {
SkBitmap dst;
dst.allocN32Pixels(src.width(), src.height(), true);
int wh;
std::unique_ptr<float[]> kernel(create_2d_kernel(sigma, &wh));
for (int y = 0; y < src.height(); ++y) {
for (int x = 0; x < src.width(); ++x) {
*dst.getAddr32(x, y) = blur_pixel(src, x, y, kernel.get(), wh);
}
}
return dst;
}
// compute the intersection point between the diagonal and the ellipse in the
// lower right corner
static SkPoint intersection(SkScalar w, SkScalar h) {
SkASSERT(w > 0.0f || h > 0.0f);
return SkPoint::Make(w / SK_ScalarSqrt2, h / SK_ScalarSqrt2);
}
// Use the intersection of the corners' diagonals with their ellipses to shrink
// the bounding rect
SkRect compute_central_occluder(const SkRRect& rr) {
const SkRect r = rr.getBounds();
SkScalar newL = r.fLeft, newT = r.fTop, newR = r.fRight, newB = r.fBottom;
SkVector radii = rr.radii(SkRRect::kUpperLeft_Corner);
if (!radii.isZero()) {
SkPoint p = intersection(radii.fX, radii.fY);
newL = SkTMax(newL, r.fLeft + radii.fX - p.fX);
newT = SkTMax(newT, r.fTop + radii.fY - p.fY);
}
radii = rr.radii(SkRRect::kUpperRight_Corner);
if (!radii.isZero()) {
SkPoint p = intersection(radii.fX, radii.fY);
newR = SkTMin(newR, r.fRight + p.fX - radii.fX);
newT = SkTMax(newT, r.fTop + radii.fY - p.fY);
}
radii = rr.radii(SkRRect::kLowerRight_Corner);
if (!radii.isZero()) {
SkPoint p = intersection(radii.fX, radii.fY);
newR = SkTMin(newR, r.fRight + p.fX - radii.fX);
newB = SkTMin(newB, r.fBottom - radii.fY + p.fY);
}
radii = rr.radii(SkRRect::kLowerLeft_Corner);
if (!radii.isZero()) {
SkPoint p = intersection(radii.fX, radii.fY);
newL = SkTMax(newL, r.fLeft + radii.fX - p.fX);
newB = SkTMin(newB, r.fBottom - radii.fY + p.fY);
}
return SkRect::MakeLTRB(newL, newT, newR, newB);
}
// The widest inset rect
SkRect compute_widest_occluder(const SkRRect& rr) {
const SkRect& r = rr.getBounds();
const SkVector& ul = rr.radii(SkRRect::kUpperLeft_Corner);
const SkVector& ur = rr.radii(SkRRect::kUpperRight_Corner);
const SkVector& lr = rr.radii(SkRRect::kLowerRight_Corner);
const SkVector& ll = rr.radii(SkRRect::kLowerLeft_Corner);
SkScalar maxT = SkTMax(ul.fY, ur.fY);
SkScalar maxB = SkTMax(ll.fY, lr.fY);
return SkRect::MakeLTRB(r.fLeft, r.fTop + maxT, r.fRight, r.fBottom - maxB);
}
// The tallest inset rect
SkRect compute_tallest_occluder(const SkRRect& rr) {
const SkRect& r = rr.getBounds();
const SkVector& ul = rr.radii(SkRRect::kUpperLeft_Corner);
const SkVector& ur = rr.radii(SkRRect::kUpperRight_Corner);
const SkVector& lr = rr.radii(SkRRect::kLowerRight_Corner);
const SkVector& ll = rr.radii(SkRRect::kLowerLeft_Corner);
SkScalar maxL = SkTMax(ul.fX, ll.fX);
SkScalar maxR = SkTMax(ur.fX, lr.fX);
return SkRect::MakeLTRB(r.fLeft + maxL, r.fTop, r.fRight - maxR, r.fBottom);
}
bool copy_to(SkBitmap* dst, SkColorType dstColorType, const SkBitmap& src) {
SkPixmap srcPM;
if (!src.peekPixels(&srcPM)) {
return false;
}
SkBitmap tmpDst;
SkImageInfo dstInfo = srcPM.info().makeColorType(dstColorType);
if (!tmpDst.setInfo(dstInfo)) {
return false;
}
if (!tmpDst.tryAllocPixels()) {
return false;
}
SkPixmap dstPM;
if (!tmpDst.peekPixels(&dstPM)) {
return false;
}
if (!srcPM.readPixels(dstPM)) {
return false;
}
dst->swap(tmpDst);
return true;
}
void copy_to_g8(SkBitmap* dst, const SkBitmap& src) {
SkASSERT(kBGRA_8888_SkColorType == src.colorType() ||
kRGBA_8888_SkColorType == src.colorType());
SkImageInfo grayInfo = src.info().makeColorType(kGray_8_SkColorType);
dst->allocPixels(grayInfo);
uint8_t* dst8 = (uint8_t*)dst->getPixels();
const uint32_t* src32 = (const uint32_t*)src.getPixels();
const int w = src.width();
const int h = src.height();
const bool isBGRA = (kBGRA_8888_SkColorType == src.colorType());
for (int y = 0; y < h; ++y) {
if (isBGRA) {
// BGRA
for (int x = 0; x < w; ++x) {
uint32_t s = src32[x];
dst8[x] = SkComputeLuminance((s >> 16) & 0xFF, (s >> 8) & 0xFF, s & 0xFF);
}
} else {
// RGBA
for (int x = 0; x < w; ++x) {
uint32_t s = src32[x];
dst8[x] = SkComputeLuminance(s & 0xFF, (s >> 8) & 0xFF, (s >> 16) & 0xFF);
}
}
src32 = (const uint32_t*)((const char*)src32 + src.rowBytes());
dst8 += dst->rowBytes();
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
static int scale255(float x) {
return sk_float_round2int(x * 255);
}
static unsigned diff(const SkColorType ct, const void* a, const void* b) {
int dr = 0,
dg = 0,
db = 0,
da = 0;
switch (ct) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType: {
SkPMColor c0 = *(const SkPMColor*)a;
SkPMColor c1 = *(const SkPMColor*)b;
dr = SkGetPackedR32(c0) - SkGetPackedR32(c1);
dg = SkGetPackedG32(c0) - SkGetPackedG32(c1);
db = SkGetPackedB32(c0) - SkGetPackedB32(c1);
da = SkGetPackedA32(c0) - SkGetPackedA32(c1);
} break;
case kRGB_565_SkColorType: {
uint16_t c0 = *(const uint16_t*)a;
uint16_t c1 = *(const uint16_t*)b;
dr = SkGetPackedR16(c0) - SkGetPackedR16(c1);
dg = SkGetPackedG16(c0) - SkGetPackedG16(c1);
db = SkGetPackedB16(c0) - SkGetPackedB16(c1);
} break;
case kARGB_4444_SkColorType: {
uint16_t c0 = *(const uint16_t*)a;
uint16_t c1 = *(const uint16_t*)b;
dr = SkGetPackedR4444(c0) - SkGetPackedR4444(c1);
dg = SkGetPackedG4444(c0) - SkGetPackedG4444(c1);
db = SkGetPackedB4444(c0) - SkGetPackedB4444(c1);
da = SkGetPackedA4444(c0) - SkGetPackedA4444(c1);
} break;
case kAlpha_8_SkColorType:
case kGray_8_SkColorType:
da = (const uint8_t*)a - (const uint8_t*)b;
break;
case kRGBA_F16_SkColorType: {
const SkPM4f* c0 = (const SkPM4f*)a;
const SkPM4f* c1 = (const SkPM4f*)b;
dr = scale255(c0->r() - c1->r());
dg = scale255(c0->g() - c1->g());
db = scale255(c0->b() - c1->b());
da = scale255(c0->a() - c1->a());
} break;
default:
return 0;
}
dr = SkAbs32(dr);
dg = SkAbs32(dg);
db = SkAbs32(db);
da = SkAbs32(da);
return SkMax32(dr, SkMax32(dg, SkMax32(db, da)));
}
bool equal_pixels(const SkPixmap& a, const SkPixmap& b, unsigned maxDiff,
bool respectColorSpace) {
if (a.width() != b.width() ||
a.height() != b.height() ||
a.colorType() != b.colorType() ||
(respectColorSpace && (a.colorSpace() != b.colorSpace())))
{
return false;
}
for (int y = 0; y < a.height(); ++y) {
const char* aptr = (const char*)a.addr(0, y);
const char* bptr = (const char*)b.addr(0, y);
if (memcmp(aptr, bptr, a.width() * a.info().bytesPerPixel())) {
for (int x = 0; x < a.width(); ++x) {
if (diff(a.colorType(), a.addr(x, y), b.addr(x, y)) > maxDiff) {
return false;
}
}
}
aptr += a.rowBytes();
bptr += b.rowBytes();
}
return true;
}
bool equal_pixels(const SkBitmap& bm0, const SkBitmap& bm1, unsigned maxDiff,
bool respectColorSpaces) {
SkPixmap pm0, pm1;
return bm0.peekPixels(&pm0) && bm1.peekPixels(&pm1) &&
equal_pixels(pm0, pm1, maxDiff, respectColorSpaces);
}
bool equal_pixels(const SkImage* a, const SkImage* b, unsigned maxDiff,
bool respectColorSpaces) {
// ensure that peekPixels will succeed
auto imga = a->makeRasterImage();
auto imgb = b->makeRasterImage();
a = imga.get();
b = imgb.get();
SkPixmap pm0, pm1;
return a->peekPixels(&pm0) && b->peekPixels(&pm1) &&
equal_pixels(pm0, pm1, maxDiff, respectColorSpaces);
}
sk_sp<SkSurface> makeSurface(SkCanvas* canvas, const SkImageInfo& info,
const SkSurfaceProps* props) {
auto surf = canvas->makeSurface(info, props);
if (!surf) {
surf = SkSurface::MakeRaster(info, props);
}
return surf;
}
} // namespace sk_tool_utils