skia2/include/core/SkShader.h

499 lines
19 KiB
C++

/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkShader_DEFINED
#define SkShader_DEFINED
#include "SkBitmap.h"
#include "SkFlattenable.h"
#include "SkImageInfo.h"
#include "SkMask.h"
#include "SkMatrix.h"
#include "SkPaint.h"
#include "../gpu/GrColor.h"
class SkColorFilter;
class SkPath;
class SkPicture;
class SkXfermode;
class GrContext;
class GrFragmentProcessor;
/** \class SkShader
*
* Shaders specify the source color(s) for what is being drawn. If a paint
* has no shader, then the paint's color is used. If the paint has a
* shader, then the shader's color(s) are use instead, but they are
* modulated by the paint's alpha. This makes it easy to create a shader
* once (e.g. bitmap tiling or gradient) and then change its transparency
* w/o having to modify the original shader... only the paint's alpha needs
* to be modified.
*/
class SK_API SkShader : public SkFlattenable {
public:
SkShader(const SkMatrix* localMatrix = NULL);
virtual ~SkShader();
/**
* Returns the local matrix.
*
* FIXME: This can be incorrect for a Shader with its own local matrix
* that is also wrapped via CreateLocalMatrixShader.
*/
const SkMatrix& getLocalMatrix() const { return fLocalMatrix; }
enum TileMode {
/** replicate the edge color if the shader draws outside of its
* original bounds
*/
kClamp_TileMode,
/** repeat the shader's image horizontally and vertically */
kRepeat_TileMode,
/** repeat the shader's image horizontally and vertically, alternating
* mirror images so that adjacent images always seam
*/
kMirror_TileMode,
#if 0
/** only draw within the original domain, return 0 everywhere else */
kDecal_TileMode,
#endif
};
enum {
kTileModeCount = kMirror_TileMode + 1
};
// override these in your subclass
enum Flags {
//!< set if all of the colors will be opaque
kOpaqueAlpha_Flag = 1 << 0,
/** set if the spans only vary in X (const in Y).
e.g. an Nx1 bitmap that is being tiled in Y, or a linear-gradient
that varies from left-to-right. This flag specifies this for
shadeSpan().
*/
kConstInY32_Flag = 1 << 1,
/** hint for the blitter that 4f is the preferred shading mode.
*/
kPrefers4f_Flag = 1 << 2,
};
/**
* Returns true if the shader is guaranteed to produce only opaque
* colors, subject to the SkPaint using the shader to apply an opaque
* alpha value. Subclasses should override this to allow some
* optimizations.
*/
virtual bool isOpaque() const { return false; }
/**
* ContextRec acts as a parameter bundle for creating Contexts.
*/
struct ContextRec {
enum DstType {
kPMColor_DstType, // clients prefer shading into PMColor dest
kPM4f_DstType, // clients prefer shading into PM4f dest
};
ContextRec(const SkPaint& paint, const SkMatrix& matrix, const SkMatrix* localM,
DstType dstType)
: fPaint(&paint)
, fMatrix(&matrix)
, fLocalMatrix(localM)
, fPreferredDstType(dstType) {}
const SkPaint* fPaint; // the current paint associated with the draw
const SkMatrix* fMatrix; // the current matrix in the canvas
const SkMatrix* fLocalMatrix; // optional local matrix
const DstType fPreferredDstType; // the "natural" client dest type
};
class Context : public ::SkNoncopyable {
public:
Context(const SkShader& shader, const ContextRec&);
virtual ~Context();
/**
* Called sometimes before drawing with this shader. Return the type of
* alpha your shader will return. The default implementation returns 0.
* Your subclass should override if it can (even sometimes) report a
* non-zero value, since that will enable various blitters to perform
* faster.
*/
virtual uint32_t getFlags() const { return 0; }
/**
* Called for each span of the object being drawn. Your subclass should
* set the appropriate colors (with premultiplied alpha) that correspond
* to the specified device coordinates.
*/
virtual void shadeSpan(int x, int y, SkPMColor[], int count) = 0;
virtual void shadeSpan4f(int x, int y, SkPM4f[], int count);
struct BlitState;
typedef void (*BlitBW)(BlitState*,
int x, int y, const SkPixmap&, int count);
typedef void (*BlitAA)(BlitState*,
int x, int y, const SkPixmap&, int count, const SkAlpha[]);
struct BlitState {
// inputs
Context* fCtx;
SkXfermode* fXfer;
// outputs
enum { N = 2 };
void* fStorage[N];
BlitBW fBlitBW;
BlitAA fBlitAA;
};
// Returns true if one or more of the blitprocs are set in the BlitState
bool chooseBlitProcs(const SkImageInfo& info, BlitState* state) {
state->fBlitBW = nullptr;
state->fBlitAA = nullptr;
if (this->onChooseBlitProcs(info, state)) {
SkASSERT(state->fBlitBW || state->fBlitAA);
return true;
}
return false;
}
/**
* The const void* ctx is only const because all the implementations are const.
* This can be changed to non-const if a new shade proc needs to change the ctx.
*/
typedef void (*ShadeProc)(const void* ctx, int x, int y, SkPMColor[], int count);
virtual ShadeProc asAShadeProc(void** ctx);
/**
* Similar to shadeSpan, but only returns the alpha-channel for a span.
* The default implementation calls shadeSpan() and then extracts the alpha
* values from the returned colors.
*/
virtual void shadeSpanAlpha(int x, int y, uint8_t alpha[], int count);
// Notification from blitter::blitMask in case we need to see the non-alpha channels
virtual void set3DMask(const SkMask*) {}
protected:
// Reference to shader, so we don't have to dupe information.
const SkShader& fShader;
enum MatrixClass {
kLinear_MatrixClass, // no perspective
kFixedStepInX_MatrixClass, // fast perspective, need to call fixedStepInX() each
// scanline
kPerspective_MatrixClass // slow perspective, need to mappoints each pixel
};
static MatrixClass ComputeMatrixClass(const SkMatrix&);
uint8_t getPaintAlpha() const { return fPaintAlpha; }
const SkMatrix& getTotalInverse() const { return fTotalInverse; }
MatrixClass getInverseClass() const { return (MatrixClass)fTotalInverseClass; }
const SkMatrix& getCTM() const { return fCTM; }
virtual bool onChooseBlitProcs(const SkImageInfo&, BlitState*) { return false; }
private:
SkMatrix fCTM;
SkMatrix fTotalInverse;
uint8_t fPaintAlpha;
uint8_t fTotalInverseClass;
typedef SkNoncopyable INHERITED;
};
/**
* Create the actual object that does the shading.
* Size of storage must be >= contextSize.
*/
Context* createContext(const ContextRec&, void* storage) const;
/**
* Return the size of a Context returned by createContext.
*/
size_t contextSize(const ContextRec&) const;
/**
* Returns true if this shader is just a bitmap, and if not null, returns the bitmap,
* localMatrix, and tilemodes. If this is not a bitmap, returns false and ignores the
* out-parameters.
*/
bool isABitmap(SkBitmap* outTexture, SkMatrix* outMatrix, TileMode xy[2]) const {
return this->onIsABitmap(outTexture, outMatrix, xy);
}
bool isABitmap() const {
return this->isABitmap(nullptr, nullptr, nullptr);
}
/**
* If the shader subclass can be represented as a gradient, asAGradient
* returns the matching GradientType enum (or kNone_GradientType if it
* cannot). Also, if info is not null, asAGradient populates info with
* the relevant (see below) parameters for the gradient. fColorCount
* is both an input and output parameter. On input, it indicates how
* many entries in fColors and fColorOffsets can be used, if they are
* non-NULL. After asAGradient has run, fColorCount indicates how
* many color-offset pairs there are in the gradient. If there is
* insufficient space to store all of the color-offset pairs, fColors
* and fColorOffsets will not be altered. fColorOffsets specifies
* where on the range of 0 to 1 to transition to the given color.
* The meaning of fPoint and fRadius is dependant on the type of gradient.
*
* None:
* info is ignored.
* Color:
* fColorOffsets[0] is meaningless.
* Linear:
* fPoint[0] and fPoint[1] are the end-points of the gradient
* Radial:
* fPoint[0] and fRadius[0] are the center and radius
* Conical:
* fPoint[0] and fRadius[0] are the center and radius of the 1st circle
* fPoint[1] and fRadius[1] are the center and radius of the 2nd circle
* Sweep:
* fPoint[0] is the center of the sweep.
*/
enum GradientType {
kNone_GradientType,
kColor_GradientType,
kLinear_GradientType,
kRadial_GradientType,
kSweep_GradientType,
kConical_GradientType,
kLast_GradientType = kConical_GradientType
};
struct GradientInfo {
int fColorCount; //!< In-out parameter, specifies passed size
// of fColors/fColorOffsets on input, and
// actual number of colors/offsets on
// output.
SkColor* fColors; //!< The colors in the gradient.
SkScalar* fColorOffsets; //!< The unit offset for color transitions.
SkPoint fPoint[2]; //!< Type specific, see above.
SkScalar fRadius[2]; //!< Type specific, see above.
TileMode fTileMode; //!< The tile mode used.
uint32_t fGradientFlags; //!< see SkGradientShader::Flags
};
virtual GradientType asAGradient(GradientInfo* info) const;
/**
* If the shader subclass is composed of two shaders, return true, and if rec is not NULL,
* fill it out with info about the shader.
*
* These are bare pointers; the ownership and reference count are unchanged.
*/
struct ComposeRec {
const SkShader* fShaderA;
const SkShader* fShaderB;
const SkXfermode* fMode;
};
virtual bool asACompose(ComposeRec*) const { return false; }
/**
* Returns a GrFragmentProcessor that implements the shader for the GPU backend. NULL is
* returned if there is no GPU implementation.
*
* The GPU device does not call SkShader::createContext(), instead we pass the view matrix,
* local matrix, and filter quality directly.
*
* The GrContext may be used by the to create textures that are required by the returned
* processor.
*
* The returned GrFragmentProcessor should expect an unpremultiplied input color and
* produce a premultiplied output.
*/
virtual const GrFragmentProcessor* asFragmentProcessor(GrContext*,
const SkMatrix& viewMatrix,
const SkMatrix* localMatrix,
SkFilterQuality) const;
/**
* If the shader can represent its "average" luminance in a single color, return true and
* if color is not NULL, return that color. If it cannot, return false and ignore the color
* parameter.
*
* Note: if this returns true, the returned color will always be opaque, as only the RGB
* components are used to compute luminance.
*/
bool asLuminanceColor(SkColor*) const;
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
/**
* If the shader is a custom shader which has data the caller might want, call this function
* to get that data.
*/
virtual bool asACustomShader(void** /* customData */) const { return false; }
#endif
//////////////////////////////////////////////////////////////////////////
// Methods to create combinations or variants of shaders
/**
* Return a shader that will apply the specified localMatrix to this shader.
* The specified matrix will be applied before any matrix associated with this shader.
*/
sk_sp<SkShader> makeWithLocalMatrix(const SkMatrix&) const;
/**
* Create a new shader that produces the same colors as invoking this shader and then applying
* the colorfilter.
*/
sk_sp<SkShader> makeWithColorFilter(sk_sp<SkColorFilter>) const;
//////////////////////////////////////////////////////////////////////////
// Factory methods for stock shaders
/**
* Call this to create a new "empty" shader, that will not draw anything.
*/
static sk_sp<SkShader> MakeEmptyShader();
/**
* Call this to create a new shader that just draws the specified color. This should always
* draw the same as a paint with this color (and no shader).
*/
static sk_sp<SkShader> MakeColorShader(SkColor);
static sk_sp<SkShader> MakeComposeShader(sk_sp<SkShader> dst, sk_sp<SkShader> src,
SkXfermode::Mode);
#ifdef SK_SUPPORT_LEGACY_CREATESHADER_PTR
static SkShader* CreateEmptyShader() { return MakeEmptyShader().release(); }
static SkShader* CreateColorShader(SkColor c) { return MakeColorShader(c).release(); }
static SkShader* CreateBitmapShader(const SkBitmap& src, TileMode tmx, TileMode tmy,
const SkMatrix* localMatrix = nullptr) {
return MakeBitmapShader(src, tmx, tmy, localMatrix).release();
}
static SkShader* CreateComposeShader(SkShader* dst, SkShader* src, SkXfermode::Mode mode);
static SkShader* CreateComposeShader(SkShader* dst, SkShader* src, SkXfermode* xfer);
static SkShader* CreatePictureShader(const SkPicture* src, TileMode tmx, TileMode tmy,
const SkMatrix* localMatrix, const SkRect* tile);
SkShader* newWithLocalMatrix(const SkMatrix& matrix) const {
return this->makeWithLocalMatrix(matrix).release();
}
SkShader* newWithColorFilter(SkColorFilter* filter) const;
#endif
/**
* Create a new compose shader, given shaders dst, src, and a combining xfermode mode.
* The xfermode is called with the output of the two shaders, and its output is returned.
* If xfer is null, SkXfermode::kSrcOver_Mode is assumed.
*
* The caller is responsible for managing its reference-count for the xfer (if not null).
*/
static sk_sp<SkShader> MakeComposeShader(sk_sp<SkShader> dst, sk_sp<SkShader> src,
sk_sp<SkXfermode> xfer);
#ifdef SK_SUPPORT_LEGACY_XFERMODE_PTR
static sk_sp<SkShader> MakeComposeShader(sk_sp<SkShader> dst, sk_sp<SkShader> src,
SkXfermode* xfer);
#endif
/** Call this to create a new shader that will draw with the specified bitmap.
*
* If the bitmap cannot be used (e.g. has no pixels, or its dimensions
* exceed implementation limits (currently at 64K - 1)) then SkEmptyShader
* may be returned.
*
* If the src is kA8_Config then that mask will be colorized using the color on
* the paint.
*
* @param src The bitmap to use inside the shader
* @param tmx The tiling mode to use when sampling the bitmap in the x-direction.
* @param tmy The tiling mode to use when sampling the bitmap in the y-direction.
* @return Returns a new shader object. Note: this function never returns null.
*/
static sk_sp<SkShader> MakeBitmapShader(const SkBitmap& src, TileMode tmx, TileMode tmy,
const SkMatrix* localMatrix = nullptr);
// NOTE: You can create an SkImage Shader with SkImage::newShader().
/** Call this to create a new shader that will draw with the specified picture.
*
* @param src The picture to use inside the shader (if not NULL, its ref count
* is incremented). The SkPicture must not be changed after
* successfully creating a picture shader.
* @param tmx The tiling mode to use when sampling the bitmap in the x-direction.
* @param tmy The tiling mode to use when sampling the bitmap in the y-direction.
* @param tile The tile rectangle in picture coordinates: this represents the subset
* (or superset) of the picture used when building a tile. It is not
* affected by localMatrix and does not imply scaling (only translation
* and cropping). If null, the tile rect is considered equal to the picture
* bounds.
* @return Returns a new shader object. Note: this function never returns null.
*/
static sk_sp<SkShader> MakePictureShader(sk_sp<SkPicture> src, TileMode tmx, TileMode tmy,
const SkMatrix* localMatrix, const SkRect* tile);
/**
* If this shader can be represented by another shader + a localMatrix, return that shader
* and, if not NULL, the localMatrix. If not, return NULL and ignore the localMatrix parameter.
*
* Note: the returned shader (if not NULL) will have been ref'd, and it is the responsibility
* of the caller to balance that with unref() when they are done.
*/
virtual SkShader* refAsALocalMatrixShader(SkMatrix* localMatrix) const;
SK_TO_STRING_VIRT()
SK_DEFINE_FLATTENABLE_TYPE(SkShader)
protected:
void flatten(SkWriteBuffer&) const override;
bool computeTotalInverse(const ContextRec&, SkMatrix* totalInverse) const;
/**
* Your subclass must also override contextSize() if it overrides onCreateContext().
* Base class impl returns NULL.
*/
virtual Context* onCreateContext(const ContextRec&, void* storage) const;
/**
* Override this if your subclass overrides createContext, to return the correct size of
* your subclass' context.
*/
virtual size_t onContextSize(const ContextRec&) const;
virtual bool onAsLuminanceColor(SkColor*) const {
return false;
}
virtual bool onIsABitmap(SkBitmap*, SkMatrix*, TileMode[2]) const {
return false;
}
private:
// This is essentially const, but not officially so it can be modified in
// constructors.
SkMatrix fLocalMatrix;
// So the SkLocalMatrixShader can whack fLocalMatrix in its SkReadBuffer constructor.
friend class SkLocalMatrixShader;
friend class SkBitmapProcShader; // for computeTotalInverse()
typedef SkFlattenable INHERITED;
};
#endif