skia2/samplecode/SampleCCPRGeometry.cpp
Chris Dalton 1a325d25b9 Coverage counting path renderer
Initial implementation of a GPU path renderer that draws antialiased
paths by counting coverage in an offscreen buffer.

Initially disabled until it has had time to soak.

Bug: skia:
Change-Id: I003d8cfdf8dc62641581b5ea2dc4f0aa00108df6
Reviewed-on: https://skia-review.googlesource.com/21541
Commit-Queue: Chris Dalton <csmartdalton@google.com>
Reviewed-by: Greg Daniel <egdaniel@google.com>
Reviewed-by: Brian Salomon <bsalomon@google.com>
Reviewed-by: Robert Phillips <robertphillips@google.com>
2017-07-14 21:45:35 +00:00

343 lines
11 KiB
C++

/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTypes.h"
#if SK_SUPPORT_GPU
#include "GrContextPriv.h"
#include "GrRenderTargetContext.h"
#include "GrRenderTargetContextPriv.h"
#include "GrResourceProvider.h"
#include "SampleCode.h"
#include "SkCanvas.h"
#include "SkGeometry.h"
#include "SkMakeUnique.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkView.h"
#include "ccpr/GrCCPRCoverageProcessor.h"
#include "gl/GrGLGpu.cpp"
#include "ops/GrDrawOp.h"
using PrimitiveInstance = GrCCPRCoverageProcessor::PrimitiveInstance;
using Mode = GrCCPRCoverageProcessor::Mode;
static int num_points(Mode mode) {
return mode >= GrCCPRCoverageProcessor::Mode::kSerpentineInsets ? 4 : 3;
}
static int is_curve(Mode mode) {
return mode >= GrCCPRCoverageProcessor::Mode::kQuadraticHulls;
}
/**
* This sample visualizes the AA bloat geometry generated by the ccpr geometry shaders. It
* increases the AA bloat by 50x and outputs color instead of coverage (coverage=+1 -> green,
* coverage=0 -> black, coverage=-1 -> red). Use the keys 1-7 to cycle through the different
* geometry processors.
*/
class CCPRGeometryView : public SampleView {
public:
CCPRGeometryView() { this->updateGpuData(); }
void onDrawContent(SkCanvas*) override;
SkView::Click* onFindClickHandler(SkScalar x, SkScalar y, unsigned) override;
bool onClick(SampleView::Click*) override;
bool onQuery(SkEvent* evt) override;
private:
class Click;
class Op;
void updateAndInval() {
this->updateGpuData();
this->inval(nullptr);
}
void updateGpuData();
Mode fMode = Mode::kTriangleHulls;
SkPoint fPoints[4] = {
{100.05f, 100.05f},
{100.05f, 300.95f},
{400.75f, 300.95f},
{400.75f, 100.05f}
};
SkSTArray<16, SkPoint> fGpuPoints;
SkSTArray<3, PrimitiveInstance> fGpuInstances;
typedef SampleView INHERITED;
};
class CCPRGeometryView::Op : public GrDrawOp {
DEFINE_OP_CLASS_ID
public:
Op(CCPRGeometryView* view)
: INHERITED(ClassID())
, fView(view) {
this->setBounds(SkRect::MakeLargest(), GrOp::HasAABloat::kNo, GrOp::IsZeroArea::kNo);
}
const char* name() const override { return "[Testing/Sample code] CCPRGeometryView::Op"; }
private:
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
RequiresDstTexture finalize(const GrCaps&, const GrAppliedClip*) override {
return RequiresDstTexture::kNo;
}
bool onCombineIfPossible(GrOp* other, const GrCaps& caps) override { return false; }
void onPrepare(GrOpFlushState*) override {}
void onExecute(GrOpFlushState*) override;
CCPRGeometryView* fView;
typedef GrDrawOp INHERITED;
};
void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
SkAutoCanvasRestore acr(canvas, true);
canvas->setMatrix(SkMatrix::I());
SkPath outline;
outline.moveTo(fPoints[0]);
if (4 == num_points(fMode)) {
outline.cubicTo(fPoints[1], fPoints[2], fPoints[3]);
} else if (is_curve(fMode)) {
outline.quadTo(fPoints[1], fPoints[3]);
} else {
outline.lineTo(fPoints[1]);
outline.lineTo(fPoints[3]);
}
outline.close();
SkPaint outlinePaint;
outlinePaint.setColor(0x30000000);
outlinePaint.setStyle(SkPaint::kStroke_Style);
outlinePaint.setStrokeWidth(0);
outlinePaint.setAntiAlias(true);
canvas->drawPath(outline, outlinePaint);
const char* caption = "Use GPU backend to visualize geometry.";
if (GrRenderTargetContext* rtc =
canvas->internal_private_accessTopLayerRenderTargetContext()) {
rtc->priv().testingOnly_addDrawOp(skstd::make_unique<Op>(this));
caption = GrCCPRCoverageProcessor::GetProcessorName(fMode);
}
SkPaint pointsPaint;
pointsPaint.setColor(SK_ColorBLUE);
pointsPaint.setStrokeWidth(8);
pointsPaint.setAntiAlias(true);
if (4 == num_points(fMode)) {
canvas->drawPoints(SkCanvas::kPoints_PointMode, 4, fPoints, pointsPaint);
} else {
canvas->drawPoints(SkCanvas::kPoints_PointMode, 2, fPoints, pointsPaint);
canvas->drawPoints(SkCanvas::kPoints_PointMode, 1, fPoints + 3, pointsPaint);
}
SkPaint captionPaint;
captionPaint.setTextSize(20);
captionPaint.setColor(SK_ColorBLACK);
captionPaint.setAntiAlias(true);
canvas->drawText(caption, strlen(caption), 10, 30, captionPaint);
}
void CCPRGeometryView::updateGpuData() {
int vertexCount = num_points(fMode);
int instanceCount = 1;
fGpuPoints.reset();
fGpuInstances.reset();
if (4 == vertexCount) {
double t[2], s[2];
SkCubicType type = SkClassifyCubic(fPoints, t, s);
SkSTArray<2, float> chops;
for (int i = 0; i < 2; ++i) {
float chop = t[i] / s[i];
if (chop > 0 && chop < 1) {
chops.push_back(chop);
}
}
instanceCount = chops.count() + 1;
SkPoint chopped[10];
SkChopCubicAt(fPoints, chopped, chops.begin(), chops.count());
// Endpoints first, then control points.
for (int i = 0; i <= instanceCount; ++i) {
fGpuPoints.push_back(chopped[3*i]);
}
if (3 == instanceCount && SkCubicType::kLoop == type) {
fGpuPoints[2] = fGpuPoints[1]; // Account for floating point error.
}
for (int i = 0; i < instanceCount; ++i) {
fGpuPoints.push_back(chopped[3*i + 1]);
fGpuPoints.push_back(chopped[3*i + 2]);
// FIXME: we don't bother to send down the correct KLM t,s roots.
fGpuPoints.push_back({0, 0});
fGpuPoints.push_back({0, 0});
}
if (fMode < Mode::kLoopInsets && SkCubicType::kLoop == type) {
fMode = (Mode) ((int) fMode + 2);
}
if (fMode >= Mode::kLoopInsets && SkCubicType::kLoop != type) {
fMode = (Mode) ((int) fMode - 2);
}
} else {
// Endpoints.
fGpuPoints.push_back(fPoints[0]);
fGpuPoints.push_back(fPoints[3]);
// Control points.
fGpuPoints.push_back(fPoints[1]);
}
if (4 == vertexCount) {
int controlPointsIdx = instanceCount + 1;
for (int i = 0; i < instanceCount; ++i) {
fGpuInstances.push_back().fCubicData = {controlPointsIdx + i * 4, i};
}
} else if (is_curve(fMode)) {
fGpuInstances.push_back().fQuadraticData = {2, 0};
} else {
fGpuInstances.push_back().fTriangleData = {0, 2, 1}; // Texel buffer has endpoints first.
}
for (PrimitiveInstance& instance : fGpuInstances) {
instance.fPackedAtlasOffset = 0;
}
}
void CCPRGeometryView::Op::onExecute(GrOpFlushState* state) {
GrResourceProvider* rp = state->resourceProvider();
GrContext* context = state->gpu()->getContext();
GrGLGpu* glGpu = kOpenGL_GrBackend == context->contextPriv().getBackend() ?
static_cast<GrGLGpu*>(state->gpu()) : nullptr;
int vertexCount = num_points(fView->fMode);
sk_sp<GrBuffer> pointsBuffer(rp->createBuffer(fView->fGpuPoints.count() * sizeof(SkPoint),
kTexel_GrBufferType, kDynamic_GrAccessPattern,
GrResourceProvider::kNoPendingIO_Flag |
GrResourceProvider::kRequireGpuMemory_Flag,
fView->fGpuPoints.begin()));
if (!pointsBuffer) {
return;
}
sk_sp<GrBuffer> instanceBuffer(rp->createBuffer(fView->fGpuInstances.count() * 4 * sizeof(int),
kVertex_GrBufferType, kDynamic_GrAccessPattern,
GrResourceProvider::kNoPendingIO_Flag |
GrResourceProvider::kRequireGpuMemory_Flag,
fView->fGpuInstances.begin()));
if (!instanceBuffer) {
return;
}
GrPipeline pipeline(state->drawOpArgs().fRenderTarget, GrPipeline::ScissorState::kDisabled,
SkBlendMode::kSrcOver);
GrCCPRCoverageProcessor ccprProc(fView->fMode, pointsBuffer.get());
SkDEBUGCODE(ccprProc.enableDebugVisualizations();)
GrMesh mesh(4 == vertexCount ? GrPrimitiveType::kLinesAdjacency : GrPrimitiveType::kTriangles);
mesh.setInstanced(instanceBuffer.get(), fView->fGpuInstances.count(), 0, vertexCount);
if (glGpu) {
glGpu->handleDirtyContext();
GR_GL_CALL(glGpu->glInterface(), PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE));
GR_GL_CALL(glGpu->glInterface(), Enable(GR_GL_LINE_SMOOTH));
}
state->commandBuffer()->draw(pipeline, ccprProc, &mesh, nullptr, 1, this->bounds());
if (glGpu) {
context->resetContext(kMisc_GrGLBackendState);
}
}
class CCPRGeometryView::Click : public SampleView::Click {
public:
Click(SkView* target, int ptIdx) : SampleView::Click(target), fPtIdx(ptIdx) {}
void doClick(SkPoint points[]) {
if (fPtIdx >= 0) {
this->dragPoint(points, fPtIdx);
} else {
for (int i = 0; i < 4; ++i) {
this->dragPoint(points, i);
}
}
}
private:
void dragPoint(SkPoint points[], int idx) {
SkIPoint delta = fICurr - fIPrev;
points[idx] += SkPoint::Make(delta.x(), delta.y());
}
int fPtIdx;
};
SkView::Click* CCPRGeometryView::onFindClickHandler(SkScalar x, SkScalar y, unsigned) {
for (int i = 0; i < 4; ++i) {
if (4 != num_points(fMode) && 2 == i) {
continue;
}
if (fabs(x - fPoints[i].x()) < 20 && fabsf(y - fPoints[i].y()) < 20) {
return new Click(this, i);
}
}
return new Click(this, -1);
}
bool CCPRGeometryView::onClick(SampleView::Click* click) {
Click* myClick = (Click*) click;
myClick->doClick(fPoints);
this->updateAndInval();
return true;
}
bool CCPRGeometryView::onQuery(SkEvent* evt) {
if (SampleCode::TitleQ(*evt)) {
SampleCode::TitleR(evt, "CCPRGeometry");
return true;
}
SkUnichar unichar;
if (SampleCode::CharQ(*evt, &unichar)) {
if (unichar >= '1' && unichar <= '7') {
fMode = Mode(unichar - '1');
if (fMode >= Mode::kCombinedTriangleHullsAndEdges) {
fMode = Mode(int(fMode) + 1);
}
this->updateAndInval();
return true;
}
if (unichar == 'D') {
SkDebugf(" SkPoint fPoints[4] = {\n");
SkDebugf(" {%f, %f},\n", fPoints[0].x(), fPoints[0].y());
SkDebugf(" {%f, %f},\n", fPoints[1].x(), fPoints[1].y());
SkDebugf(" {%f, %f},\n", fPoints[2].x(), fPoints[2].y());
SkDebugf(" {%f, %f}\n", fPoints[3].x(), fPoints[3].y());
SkDebugf(" };\n");
return true;
}
}
return this->INHERITED::onQuery(evt);
}
DEF_SAMPLE( return new CCPRGeometryView; )
#endif // SK_SUPPORT_GPU