1e7f5e708e
Most call-sites that used it just took its bounds, so it was trivial to convert them to get the bounds of the RasterClip. Two clients wanted the actual region: 1. layeriter for android 2. pdf Android already only has BW clips, so should be safe. PDF now overrides its clip methods to ensure that all clips are BW. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1925693002 Review URL: https://codereview.chromium.org/1925693002
870 lines
30 KiB
C++
870 lines
30 KiB
C++
/*
|
|
* Copyright 2006 The Android Open Source Project
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
|
|
#include "SkScalerContext.h"
|
|
#include "SkAutoPixmapStorage.h"
|
|
#include "SkColorPriv.h"
|
|
#include "SkDescriptor.h"
|
|
#include "SkDraw.h"
|
|
#include "SkGlyph.h"
|
|
#include "SkMaskFilter.h"
|
|
#include "SkMaskGamma.h"
|
|
#include "SkMatrix22.h"
|
|
#include "SkReadBuffer.h"
|
|
#include "SkWriteBuffer.h"
|
|
#include "SkPathEffect.h"
|
|
#include "SkRasterizer.h"
|
|
#include "SkRasterClip.h"
|
|
#include "SkStroke.h"
|
|
#include "SkStrokeRec.h"
|
|
|
|
#define ComputeBWRowBytes(width) (((unsigned)(width) + 7) >> 3)
|
|
|
|
void SkGlyph::toMask(SkMask* mask) const {
|
|
SkASSERT(mask);
|
|
|
|
mask->fImage = (uint8_t*)fImage;
|
|
mask->fBounds.set(fLeft, fTop, fLeft + fWidth, fTop + fHeight);
|
|
mask->fRowBytes = this->rowBytes();
|
|
mask->fFormat = static_cast<SkMask::Format>(fMaskFormat);
|
|
}
|
|
|
|
size_t SkGlyph::computeImageSize() const {
|
|
const size_t size = this->rowBytes() * fHeight;
|
|
|
|
switch (fMaskFormat) {
|
|
case SkMask::k3D_Format:
|
|
return 3 * size;
|
|
default:
|
|
return size;
|
|
}
|
|
}
|
|
|
|
void SkGlyph::zeroMetrics() {
|
|
fAdvanceX = 0;
|
|
fAdvanceY = 0;
|
|
fWidth = 0;
|
|
fHeight = 0;
|
|
fTop = 0;
|
|
fLeft = 0;
|
|
fRsbDelta = 0;
|
|
fLsbDelta = 0;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifdef SK_DEBUG
|
|
#define DUMP_RECx
|
|
#endif
|
|
|
|
SkScalerContext::SkScalerContext(SkTypeface* typeface, const SkScalerContextEffects& effects,
|
|
const SkDescriptor* desc)
|
|
: fRec(*static_cast<const Rec*>(desc->findEntry(kRec_SkDescriptorTag, nullptr)))
|
|
|
|
, fTypeface(sk_ref_sp(typeface))
|
|
, fPathEffect(sk_ref_sp(effects.fPathEffect))
|
|
, fMaskFilter(sk_ref_sp(effects.fMaskFilter))
|
|
, fRasterizer(sk_ref_sp(effects.fRasterizer))
|
|
// Initialize based on our settings. Subclasses can also force this.
|
|
, fGenerateImageFromPath(fRec.fFrameWidth > 0 || fPathEffect != nullptr || fRasterizer != nullptr)
|
|
|
|
, fPreBlend(fMaskFilter ? SkMaskGamma::PreBlend() : SkScalerContext::GetMaskPreBlend(fRec))
|
|
, fPreBlendForFilter(fMaskFilter ? SkScalerContext::GetMaskPreBlend(fRec)
|
|
: SkMaskGamma::PreBlend())
|
|
{
|
|
#ifdef DUMP_REC
|
|
desc->assertChecksum();
|
|
SkDebugf("SkScalerContext checksum %x count %d length %d\n",
|
|
desc->getChecksum(), desc->getCount(), desc->getLength());
|
|
SkDebugf(" textsize %g prescale %g preskew %g post [%g %g %g %g]\n",
|
|
rec->fTextSize, rec->fPreScaleX, rec->fPreSkewX, rec->fPost2x2[0][0],
|
|
rec->fPost2x2[0][1], rec->fPost2x2[1][0], rec->fPost2x2[1][1]);
|
|
SkDebugf(" frame %g miter %g hints %d framefill %d format %d join %d cap %d\n",
|
|
rec->fFrameWidth, rec->fMiterLimit, rec->fHints, rec->fFrameAndFill,
|
|
rec->fMaskFormat, rec->fStrokeJoin, rec->fStrokeCap);
|
|
SkDebugf(" pathEffect %x maskFilter %x\n",
|
|
desc->findEntry(kPathEffect_SkDescriptorTag, nullptr),
|
|
desc->findEntry(kMaskFilter_SkDescriptorTag, nullptr));
|
|
#endif
|
|
}
|
|
|
|
SkScalerContext::~SkScalerContext() {}
|
|
|
|
void SkScalerContext::getAdvance(SkGlyph* glyph) {
|
|
// mark us as just having a valid advance
|
|
glyph->fMaskFormat = MASK_FORMAT_JUST_ADVANCE;
|
|
// we mark the format before making the call, in case the impl
|
|
// internally ends up calling its generateMetrics, which is OK
|
|
// albeit slower than strictly necessary
|
|
generateAdvance(glyph);
|
|
}
|
|
|
|
void SkScalerContext::getMetrics(SkGlyph* glyph) {
|
|
generateMetrics(glyph);
|
|
|
|
// for now we have separate cache entries for devkerning on and off
|
|
// in the future we might share caches, but make our measure/draw
|
|
// code make the distinction. Thus we zap the values if the caller
|
|
// has not asked for them.
|
|
if ((fRec.fFlags & SkScalerContext::kDevKernText_Flag) == 0) {
|
|
// no devkern, so zap the fields
|
|
glyph->fLsbDelta = glyph->fRsbDelta = 0;
|
|
}
|
|
|
|
// if either dimension is empty, zap the image bounds of the glyph
|
|
if (0 == glyph->fWidth || 0 == glyph->fHeight) {
|
|
glyph->fWidth = 0;
|
|
glyph->fHeight = 0;
|
|
glyph->fTop = 0;
|
|
glyph->fLeft = 0;
|
|
glyph->fMaskFormat = 0;
|
|
return;
|
|
}
|
|
|
|
if (fGenerateImageFromPath) {
|
|
SkPath devPath, fillPath;
|
|
SkMatrix fillToDevMatrix;
|
|
|
|
this->internalGetPath(*glyph, &fillPath, &devPath, &fillToDevMatrix);
|
|
|
|
if (fRasterizer) {
|
|
SkMask mask;
|
|
|
|
if (fRasterizer->rasterize(fillPath, fillToDevMatrix, nullptr,
|
|
fMaskFilter.get(), &mask,
|
|
SkMask::kJustComputeBounds_CreateMode)) {
|
|
glyph->fLeft = mask.fBounds.fLeft;
|
|
glyph->fTop = mask.fBounds.fTop;
|
|
glyph->fWidth = SkToU16(mask.fBounds.width());
|
|
glyph->fHeight = SkToU16(mask.fBounds.height());
|
|
} else {
|
|
goto SK_ERROR;
|
|
}
|
|
} else {
|
|
// just use devPath
|
|
const SkIRect ir = devPath.getBounds().roundOut();
|
|
|
|
if (ir.isEmpty() || !ir.is16Bit()) {
|
|
goto SK_ERROR;
|
|
}
|
|
glyph->fLeft = ir.fLeft;
|
|
glyph->fTop = ir.fTop;
|
|
glyph->fWidth = SkToU16(ir.width());
|
|
glyph->fHeight = SkToU16(ir.height());
|
|
|
|
if (glyph->fWidth > 0) {
|
|
switch (fRec.fMaskFormat) {
|
|
case SkMask::kLCD16_Format:
|
|
glyph->fWidth += 2;
|
|
glyph->fLeft -= 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (SkMask::kARGB32_Format != glyph->fMaskFormat) {
|
|
glyph->fMaskFormat = fRec.fMaskFormat;
|
|
}
|
|
|
|
// If we are going to create the mask, then we cannot keep the color
|
|
if ((fGenerateImageFromPath || fMaskFilter) &&
|
|
SkMask::kARGB32_Format == glyph->fMaskFormat) {
|
|
glyph->fMaskFormat = SkMask::kA8_Format;
|
|
}
|
|
|
|
if (fMaskFilter) {
|
|
SkMask src, dst;
|
|
SkMatrix matrix;
|
|
|
|
glyph->toMask(&src);
|
|
fRec.getMatrixFrom2x2(&matrix);
|
|
|
|
src.fImage = nullptr; // only want the bounds from the filter
|
|
if (fMaskFilter->filterMask(&dst, src, matrix, nullptr)) {
|
|
if (dst.fBounds.isEmpty() || !dst.fBounds.is16Bit()) {
|
|
goto SK_ERROR;
|
|
}
|
|
SkASSERT(dst.fImage == nullptr);
|
|
glyph->fLeft = dst.fBounds.fLeft;
|
|
glyph->fTop = dst.fBounds.fTop;
|
|
glyph->fWidth = SkToU16(dst.fBounds.width());
|
|
glyph->fHeight = SkToU16(dst.fBounds.height());
|
|
glyph->fMaskFormat = dst.fFormat;
|
|
}
|
|
}
|
|
return;
|
|
|
|
SK_ERROR:
|
|
// draw nothing 'cause we failed
|
|
glyph->fLeft = 0;
|
|
glyph->fTop = 0;
|
|
glyph->fWidth = 0;
|
|
glyph->fHeight = 0;
|
|
// put a valid value here, in case it was earlier set to
|
|
// MASK_FORMAT_JUST_ADVANCE
|
|
glyph->fMaskFormat = fRec.fMaskFormat;
|
|
}
|
|
|
|
#define SK_SHOW_TEXT_BLIT_COVERAGE 0
|
|
|
|
static void applyLUTToA8Mask(const SkMask& mask, const uint8_t* lut) {
|
|
uint8_t* SK_RESTRICT dst = (uint8_t*)mask.fImage;
|
|
unsigned rowBytes = mask.fRowBytes;
|
|
|
|
for (int y = mask.fBounds.height() - 1; y >= 0; --y) {
|
|
for (int x = mask.fBounds.width() - 1; x >= 0; --x) {
|
|
dst[x] = lut[dst[x]];
|
|
}
|
|
dst += rowBytes;
|
|
}
|
|
}
|
|
|
|
template<bool APPLY_PREBLEND>
|
|
static void pack4xHToLCD16(const SkPixmap& src, const SkMask& dst,
|
|
const SkMaskGamma::PreBlend& maskPreBlend) {
|
|
#define SAMPLES_PER_PIXEL 4
|
|
#define LCD_PER_PIXEL 3
|
|
SkASSERT(kAlpha_8_SkColorType == src.colorType());
|
|
SkASSERT(SkMask::kLCD16_Format == dst.fFormat);
|
|
|
|
const int sample_width = src.width();
|
|
const int height = src.height();
|
|
|
|
uint16_t* dstP = (uint16_t*)dst.fImage;
|
|
size_t dstRB = dst.fRowBytes;
|
|
// An N tap FIR is defined by
|
|
// out[n] = coeff[0]*x[n] + coeff[1]*x[n-1] + ... + coeff[N]*x[n-N]
|
|
// or
|
|
// out[n] = sum(i, 0, N, coeff[i]*x[n-i])
|
|
|
|
// The strategy is to use one FIR (different coefficients) for each of r, g, and b.
|
|
// This means using every 4th FIR output value of each FIR and discarding the rest.
|
|
// The FIRs are aligned, and the coefficients reach 5 samples to each side of their 'center'.
|
|
// (For r and b this is technically incorrect, but the coeffs outside round to zero anyway.)
|
|
|
|
// These are in some fixed point repesentation.
|
|
// Adding up to more than one simulates ink spread.
|
|
// For implementation reasons, these should never add up to more than two.
|
|
|
|
// Coefficients determined by a gausian where 5 samples = 3 std deviations (0x110 'contrast').
|
|
// Calculated using tools/generate_fir_coeff.py
|
|
// With this one almost no fringing is ever seen, but it is imperceptibly blurry.
|
|
// The lcd smoothed text is almost imperceptibly different from gray,
|
|
// but is still sharper on small stems and small rounded corners than gray.
|
|
// This also seems to be about as wide as one can get and only have a three pixel kernel.
|
|
// TODO: caculate these at runtime so parameters can be adjusted (esp contrast).
|
|
static const unsigned int coefficients[LCD_PER_PIXEL][SAMPLES_PER_PIXEL*3] = {
|
|
//The red subpixel is centered inside the first sample (at 1/6 pixel), and is shifted.
|
|
{ 0x03, 0x0b, 0x1c, 0x33, 0x40, 0x39, 0x24, 0x10, 0x05, 0x01, 0x00, 0x00, },
|
|
//The green subpixel is centered between two samples (at 1/2 pixel), so is symetric
|
|
{ 0x00, 0x02, 0x08, 0x16, 0x2b, 0x3d, 0x3d, 0x2b, 0x16, 0x08, 0x02, 0x00, },
|
|
//The blue subpixel is centered inside the last sample (at 5/6 pixel), and is shifted.
|
|
{ 0x00, 0x00, 0x01, 0x05, 0x10, 0x24, 0x39, 0x40, 0x33, 0x1c, 0x0b, 0x03, },
|
|
};
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
const uint8_t* srcP = src.addr8(0, y);
|
|
|
|
// TODO: this fir filter implementation is straight forward, but slow.
|
|
// It should be possible to make it much faster.
|
|
for (int sample_x = -4, pixel_x = 0; sample_x < sample_width + 4; sample_x += 4, ++pixel_x) {
|
|
int fir[LCD_PER_PIXEL] = { 0 };
|
|
for (int sample_index = SkMax32(0, sample_x - 4), coeff_index = sample_index - (sample_x - 4)
|
|
; sample_index < SkMin32(sample_x + 8, sample_width)
|
|
; ++sample_index, ++coeff_index)
|
|
{
|
|
int sample_value = srcP[sample_index];
|
|
for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) {
|
|
fir[subpxl_index] += coefficients[subpxl_index][coeff_index] * sample_value;
|
|
}
|
|
}
|
|
for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) {
|
|
fir[subpxl_index] /= 0x100;
|
|
fir[subpxl_index] = SkMin32(fir[subpxl_index], 255);
|
|
}
|
|
|
|
U8CPU r = sk_apply_lut_if<APPLY_PREBLEND>(fir[0], maskPreBlend.fR);
|
|
U8CPU g = sk_apply_lut_if<APPLY_PREBLEND>(fir[1], maskPreBlend.fG);
|
|
U8CPU b = sk_apply_lut_if<APPLY_PREBLEND>(fir[2], maskPreBlend.fB);
|
|
#if SK_SHOW_TEXT_BLIT_COVERAGE
|
|
r = SkMax32(r, 10); g = SkMax32(g, 10); b = SkMax32(b, 10);
|
|
#endif
|
|
dstP[pixel_x] = SkPack888ToRGB16(r, g, b);
|
|
}
|
|
dstP = (uint16_t*)((char*)dstP + dstRB);
|
|
}
|
|
}
|
|
|
|
static inline int convert_8_to_1(unsigned byte) {
|
|
SkASSERT(byte <= 0xFF);
|
|
return byte >> 7;
|
|
}
|
|
|
|
static uint8_t pack_8_to_1(const uint8_t alpha[8]) {
|
|
unsigned bits = 0;
|
|
for (int i = 0; i < 8; ++i) {
|
|
bits <<= 1;
|
|
bits |= convert_8_to_1(alpha[i]);
|
|
}
|
|
return SkToU8(bits);
|
|
}
|
|
|
|
static void packA8ToA1(const SkMask& mask, const uint8_t* src, size_t srcRB) {
|
|
const int height = mask.fBounds.height();
|
|
const int width = mask.fBounds.width();
|
|
const int octs = width >> 3;
|
|
const int leftOverBits = width & 7;
|
|
|
|
uint8_t* dst = mask.fImage;
|
|
const int dstPad = mask.fRowBytes - SkAlign8(width)/8;
|
|
SkASSERT(dstPad >= 0);
|
|
|
|
SkASSERT(width >= 0);
|
|
SkASSERT(srcRB >= (size_t)width);
|
|
const size_t srcPad = srcRB - width;
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
for (int i = 0; i < octs; ++i) {
|
|
*dst++ = pack_8_to_1(src);
|
|
src += 8;
|
|
}
|
|
if (leftOverBits > 0) {
|
|
unsigned bits = 0;
|
|
int shift = 7;
|
|
for (int i = 0; i < leftOverBits; ++i, --shift) {
|
|
bits |= convert_8_to_1(*src++) << shift;
|
|
}
|
|
*dst++ = bits;
|
|
}
|
|
src += srcPad;
|
|
dst += dstPad;
|
|
}
|
|
}
|
|
|
|
static void generateMask(const SkMask& mask, const SkPath& path,
|
|
const SkMaskGamma::PreBlend& maskPreBlend) {
|
|
SkPaint paint;
|
|
|
|
int srcW = mask.fBounds.width();
|
|
int srcH = mask.fBounds.height();
|
|
int dstW = srcW;
|
|
int dstH = srcH;
|
|
int dstRB = mask.fRowBytes;
|
|
|
|
SkMatrix matrix;
|
|
matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft),
|
|
-SkIntToScalar(mask.fBounds.fTop));
|
|
|
|
paint.setAntiAlias(SkMask::kBW_Format != mask.fFormat);
|
|
switch (mask.fFormat) {
|
|
case SkMask::kBW_Format:
|
|
dstRB = 0; // signals we need a copy
|
|
break;
|
|
case SkMask::kA8_Format:
|
|
break;
|
|
case SkMask::kLCD16_Format:
|
|
// TODO: trigger off LCD orientation
|
|
dstW = 4*dstW - 8;
|
|
matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft + 1),
|
|
-SkIntToScalar(mask.fBounds.fTop));
|
|
matrix.postScale(SkIntToScalar(4), SK_Scalar1);
|
|
dstRB = 0; // signals we need a copy
|
|
break;
|
|
default:
|
|
SkDEBUGFAIL("unexpected mask format");
|
|
}
|
|
|
|
SkRasterClip clip;
|
|
clip.setRect(SkIRect::MakeWH(dstW, dstH));
|
|
|
|
const SkImageInfo info = SkImageInfo::MakeA8(dstW, dstH);
|
|
SkAutoPixmapStorage dst;
|
|
|
|
if (0 == dstRB) {
|
|
if (!dst.tryAlloc(info)) {
|
|
// can't allocate offscreen, so empty the mask and return
|
|
sk_bzero(mask.fImage, mask.computeImageSize());
|
|
return;
|
|
}
|
|
} else {
|
|
dst.reset(info, mask.fImage, dstRB);
|
|
}
|
|
sk_bzero(dst.writable_addr(), dst.getSafeSize());
|
|
|
|
SkDraw draw;
|
|
draw.fDst = dst;
|
|
draw.fRC = &clip;
|
|
draw.fMatrix = &matrix;
|
|
draw.drawPath(path, paint);
|
|
|
|
switch (mask.fFormat) {
|
|
case SkMask::kBW_Format:
|
|
packA8ToA1(mask, dst.addr8(0, 0), dst.rowBytes());
|
|
break;
|
|
case SkMask::kA8_Format:
|
|
if (maskPreBlend.isApplicable()) {
|
|
applyLUTToA8Mask(mask, maskPreBlend.fG);
|
|
}
|
|
break;
|
|
case SkMask::kLCD16_Format:
|
|
if (maskPreBlend.isApplicable()) {
|
|
pack4xHToLCD16<true>(dst, mask, maskPreBlend);
|
|
} else {
|
|
pack4xHToLCD16<false>(dst, mask, maskPreBlend);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void extract_alpha(const SkMask& dst,
|
|
const SkPMColor* srcRow, size_t srcRB) {
|
|
int width = dst.fBounds.width();
|
|
int height = dst.fBounds.height();
|
|
int dstRB = dst.fRowBytes;
|
|
uint8_t* dstRow = dst.fImage;
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
for (int x = 0; x < width; ++x) {
|
|
dstRow[x] = SkGetPackedA32(srcRow[x]);
|
|
}
|
|
// zero any padding on each row
|
|
for (int x = width; x < dstRB; ++x) {
|
|
dstRow[x] = 0;
|
|
}
|
|
dstRow += dstRB;
|
|
srcRow = (const SkPMColor*)((const char*)srcRow + srcRB);
|
|
}
|
|
}
|
|
|
|
void SkScalerContext::getImage(const SkGlyph& origGlyph) {
|
|
const SkGlyph* glyph = &origGlyph;
|
|
SkGlyph tmpGlyph;
|
|
|
|
// in case we need to call generateImage on a mask-format that is different
|
|
// (i.e. larger) than what our caller allocated by looking at origGlyph.
|
|
SkAutoMalloc tmpGlyphImageStorage;
|
|
|
|
// If we are going to draw-from-path, then we cannot generate color, since
|
|
// the path only makes a mask. This case should have been caught up in
|
|
// generateMetrics().
|
|
SkASSERT(!fGenerateImageFromPath ||
|
|
SkMask::kARGB32_Format != origGlyph.fMaskFormat);
|
|
|
|
if (fMaskFilter) { // restore the prefilter bounds
|
|
tmpGlyph.initGlyphIdFrom(origGlyph);
|
|
|
|
// need the original bounds, sans our maskfilter
|
|
SkMaskFilter* mf = fMaskFilter.release(); // temp disable
|
|
this->getMetrics(&tmpGlyph);
|
|
fMaskFilter = sk_sp<SkMaskFilter>(mf); // restore
|
|
|
|
// we need the prefilter bounds to be <= filter bounds
|
|
SkASSERT(tmpGlyph.fWidth <= origGlyph.fWidth);
|
|
SkASSERT(tmpGlyph.fHeight <= origGlyph.fHeight);
|
|
|
|
if (tmpGlyph.fMaskFormat == origGlyph.fMaskFormat) {
|
|
tmpGlyph.fImage = origGlyph.fImage;
|
|
} else {
|
|
tmpGlyphImageStorage.reset(tmpGlyph.computeImageSize());
|
|
tmpGlyph.fImage = tmpGlyphImageStorage.get();
|
|
}
|
|
glyph = &tmpGlyph;
|
|
}
|
|
|
|
if (fGenerateImageFromPath) {
|
|
SkPath devPath, fillPath;
|
|
SkMatrix fillToDevMatrix;
|
|
SkMask mask;
|
|
|
|
this->internalGetPath(*glyph, &fillPath, &devPath, &fillToDevMatrix);
|
|
glyph->toMask(&mask);
|
|
|
|
if (fRasterizer) {
|
|
mask.fFormat = SkMask::kA8_Format;
|
|
sk_bzero(glyph->fImage, mask.computeImageSize());
|
|
|
|
if (!fRasterizer->rasterize(fillPath, fillToDevMatrix, nullptr,
|
|
fMaskFilter.get(), &mask,
|
|
SkMask::kJustRenderImage_CreateMode)) {
|
|
return;
|
|
}
|
|
if (fPreBlend.isApplicable()) {
|
|
applyLUTToA8Mask(mask, fPreBlend.fG);
|
|
}
|
|
} else {
|
|
SkASSERT(SkMask::kARGB32_Format != mask.fFormat);
|
|
generateMask(mask, devPath, fPreBlend);
|
|
}
|
|
} else {
|
|
generateImage(*glyph);
|
|
}
|
|
|
|
if (fMaskFilter) {
|
|
SkMask srcM, dstM;
|
|
SkMatrix matrix;
|
|
|
|
// the src glyph image shouldn't be 3D
|
|
SkASSERT(SkMask::k3D_Format != glyph->fMaskFormat);
|
|
|
|
SkAutoSMalloc<32*32> a8storage;
|
|
glyph->toMask(&srcM);
|
|
if (SkMask::kARGB32_Format == srcM.fFormat) {
|
|
// now we need to extract the alpha-channel from the glyph's image
|
|
// and copy it into a temp buffer, and then point srcM at that temp.
|
|
srcM.fFormat = SkMask::kA8_Format;
|
|
srcM.fRowBytes = SkAlign4(srcM.fBounds.width());
|
|
size_t size = srcM.computeImageSize();
|
|
a8storage.reset(size);
|
|
srcM.fImage = (uint8_t*)a8storage.get();
|
|
extract_alpha(srcM,
|
|
(const SkPMColor*)glyph->fImage, glyph->rowBytes());
|
|
}
|
|
|
|
fRec.getMatrixFrom2x2(&matrix);
|
|
|
|
if (fMaskFilter->filterMask(&dstM, srcM, matrix, nullptr)) {
|
|
int width = SkFastMin32(origGlyph.fWidth, dstM.fBounds.width());
|
|
int height = SkFastMin32(origGlyph.fHeight, dstM.fBounds.height());
|
|
int dstRB = origGlyph.rowBytes();
|
|
int srcRB = dstM.fRowBytes;
|
|
|
|
const uint8_t* src = (const uint8_t*)dstM.fImage;
|
|
uint8_t* dst = (uint8_t*)origGlyph.fImage;
|
|
|
|
if (SkMask::k3D_Format == dstM.fFormat) {
|
|
// we have to copy 3 times as much
|
|
height *= 3;
|
|
}
|
|
|
|
// clean out our glyph, since it may be larger than dstM
|
|
//sk_bzero(dst, height * dstRB);
|
|
|
|
while (--height >= 0) {
|
|
memcpy(dst, src, width);
|
|
src += srcRB;
|
|
dst += dstRB;
|
|
}
|
|
SkMask::FreeImage(dstM.fImage);
|
|
|
|
if (fPreBlendForFilter.isApplicable()) {
|
|
applyLUTToA8Mask(srcM, fPreBlendForFilter.fG);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SkScalerContext::getPath(const SkGlyph& glyph, SkPath* path) {
|
|
this->internalGetPath(glyph, nullptr, path, nullptr);
|
|
}
|
|
|
|
void SkScalerContext::getFontMetrics(SkPaint::FontMetrics* fm) {
|
|
this->generateFontMetrics(fm);
|
|
}
|
|
|
|
SkUnichar SkScalerContext::generateGlyphToChar(uint16_t glyph) {
|
|
return 0;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
void SkScalerContext::internalGetPath(const SkGlyph& glyph, SkPath* fillPath,
|
|
SkPath* devPath, SkMatrix* fillToDevMatrix) {
|
|
SkPath path;
|
|
generatePath(glyph, &path);
|
|
|
|
if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) {
|
|
SkFixed dx = glyph.getSubXFixed();
|
|
SkFixed dy = glyph.getSubYFixed();
|
|
if (dx | dy) {
|
|
path.offset(SkFixedToScalar(dx), SkFixedToScalar(dy));
|
|
}
|
|
}
|
|
|
|
if (fRec.fFrameWidth > 0 || fPathEffect != nullptr) {
|
|
// need the path in user-space, with only the point-size applied
|
|
// so that our stroking and effects will operate the same way they
|
|
// would if the user had extracted the path themself, and then
|
|
// called drawPath
|
|
SkPath localPath;
|
|
SkMatrix matrix, inverse;
|
|
|
|
fRec.getMatrixFrom2x2(&matrix);
|
|
if (!matrix.invert(&inverse)) {
|
|
// assume fillPath and devPath are already empty.
|
|
return;
|
|
}
|
|
path.transform(inverse, &localPath);
|
|
// now localPath is only affected by the paint settings, and not the canvas matrix
|
|
|
|
SkStrokeRec rec(SkStrokeRec::kFill_InitStyle);
|
|
|
|
if (fRec.fFrameWidth > 0) {
|
|
rec.setStrokeStyle(fRec.fFrameWidth,
|
|
SkToBool(fRec.fFlags & kFrameAndFill_Flag));
|
|
// glyphs are always closed contours, so cap type is ignored,
|
|
// so we just pass something.
|
|
rec.setStrokeParams((SkPaint::Cap)fRec.fStrokeCap,
|
|
(SkPaint::Join)fRec.fStrokeJoin,
|
|
fRec.fMiterLimit);
|
|
}
|
|
|
|
if (fPathEffect) {
|
|
SkPath effectPath;
|
|
if (fPathEffect->filterPath(&effectPath, localPath, &rec, nullptr)) {
|
|
localPath.swap(effectPath);
|
|
}
|
|
}
|
|
|
|
if (rec.needToApply()) {
|
|
SkPath strokePath;
|
|
if (rec.applyToPath(&strokePath, localPath)) {
|
|
localPath.swap(strokePath);
|
|
}
|
|
}
|
|
|
|
// now return stuff to the caller
|
|
if (fillToDevMatrix) {
|
|
*fillToDevMatrix = matrix;
|
|
}
|
|
if (devPath) {
|
|
localPath.transform(matrix, devPath);
|
|
}
|
|
if (fillPath) {
|
|
fillPath->swap(localPath);
|
|
}
|
|
} else { // nothing tricky to do
|
|
if (fillToDevMatrix) {
|
|
fillToDevMatrix->reset();
|
|
}
|
|
if (devPath) {
|
|
if (fillPath == nullptr) {
|
|
devPath->swap(path);
|
|
} else {
|
|
*devPath = path;
|
|
}
|
|
}
|
|
|
|
if (fillPath) {
|
|
fillPath->swap(path);
|
|
}
|
|
}
|
|
|
|
if (devPath) {
|
|
devPath->updateBoundsCache();
|
|
}
|
|
if (fillPath) {
|
|
fillPath->updateBoundsCache();
|
|
}
|
|
}
|
|
|
|
|
|
void SkScalerContextRec::getMatrixFrom2x2(SkMatrix* dst) const {
|
|
dst->setAll(fPost2x2[0][0], fPost2x2[0][1], 0,
|
|
fPost2x2[1][0], fPost2x2[1][1], 0,
|
|
0, 0, 1);
|
|
}
|
|
|
|
void SkScalerContextRec::getLocalMatrix(SkMatrix* m) const {
|
|
SkPaint::SetTextMatrix(m, fTextSize, fPreScaleX, fPreSkewX);
|
|
}
|
|
|
|
void SkScalerContextRec::getSingleMatrix(SkMatrix* m) const {
|
|
this->getLocalMatrix(m);
|
|
|
|
// now concat the device matrix
|
|
SkMatrix deviceMatrix;
|
|
this->getMatrixFrom2x2(&deviceMatrix);
|
|
m->postConcat(deviceMatrix);
|
|
}
|
|
|
|
void SkScalerContextRec::computeMatrices(PreMatrixScale preMatrixScale, SkVector* s, SkMatrix* sA,
|
|
SkMatrix* GsA, SkMatrix* G_inv, SkMatrix* A_out)
|
|
{
|
|
// A is the 'total' matrix.
|
|
SkMatrix A;
|
|
this->getSingleMatrix(&A);
|
|
|
|
// The caller may find the 'total' matrix useful when dealing directly with EM sizes.
|
|
if (A_out) {
|
|
*A_out = A;
|
|
}
|
|
|
|
// If the 'total' matrix is singular, set the 'scale' to something finite and zero the matrices.
|
|
// All underlying ports have issues with zero text size, so use the matricies to zero.
|
|
|
|
// Map the vectors [0,1], [1,0], [1,1] and [1,-1] (the EM) through the 'total' matrix.
|
|
// If the length of one of these vectors is less than 1/256 then an EM filling square will
|
|
// never affect any pixels.
|
|
SkVector diag[4] = { { A.getScaleX() , A.getSkewY() },
|
|
{ A.getSkewX(), A.getScaleY() },
|
|
{ A.getScaleX() + A.getSkewX(), A.getScaleY() + A.getSkewY() },
|
|
{ A.getScaleX() - A.getSkewX(), A.getScaleY() - A.getSkewY() }, };
|
|
if (diag[0].lengthSqd() <= SK_ScalarNearlyZero * SK_ScalarNearlyZero ||
|
|
diag[1].lengthSqd() <= SK_ScalarNearlyZero * SK_ScalarNearlyZero ||
|
|
diag[2].lengthSqd() <= SK_ScalarNearlyZero * SK_ScalarNearlyZero ||
|
|
diag[3].lengthSqd() <= SK_ScalarNearlyZero * SK_ScalarNearlyZero)
|
|
{
|
|
s->fX = SK_Scalar1;
|
|
s->fY = SK_Scalar1;
|
|
sA->setScale(0, 0);
|
|
if (GsA) {
|
|
GsA->setScale(0, 0);
|
|
}
|
|
if (G_inv) {
|
|
G_inv->reset();
|
|
}
|
|
return;
|
|
}
|
|
|
|
// GA is the matrix A with rotation removed.
|
|
SkMatrix GA;
|
|
bool skewedOrFlipped = A.getSkewX() || A.getSkewY() || A.getScaleX() < 0 || A.getScaleY() < 0;
|
|
if (skewedOrFlipped) {
|
|
// h is where A maps the horizontal baseline.
|
|
SkPoint h = SkPoint::Make(SK_Scalar1, 0);
|
|
A.mapPoints(&h, 1);
|
|
|
|
// G is the Givens Matrix for A (rotational matrix where GA[0][1] == 0).
|
|
SkMatrix G;
|
|
SkComputeGivensRotation(h, &G);
|
|
|
|
GA = G;
|
|
GA.preConcat(A);
|
|
|
|
// The 'remainingRotation' is G inverse, which is fairly simple since G is 2x2 rotational.
|
|
if (G_inv) {
|
|
G_inv->setAll(
|
|
G.get(SkMatrix::kMScaleX), -G.get(SkMatrix::kMSkewX), G.get(SkMatrix::kMTransX),
|
|
-G.get(SkMatrix::kMSkewY), G.get(SkMatrix::kMScaleY), G.get(SkMatrix::kMTransY),
|
|
G.get(SkMatrix::kMPersp0), G.get(SkMatrix::kMPersp1), G.get(SkMatrix::kMPersp2));
|
|
}
|
|
} else {
|
|
GA = A;
|
|
if (G_inv) {
|
|
G_inv->reset();
|
|
}
|
|
}
|
|
|
|
// At this point, given GA, create s.
|
|
switch (preMatrixScale) {
|
|
case kFull_PreMatrixScale:
|
|
s->fX = SkScalarAbs(GA.get(SkMatrix::kMScaleX));
|
|
s->fY = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
|
|
break;
|
|
case kVertical_PreMatrixScale: {
|
|
SkScalar yScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
|
|
s->fX = yScale;
|
|
s->fY = yScale;
|
|
break;
|
|
}
|
|
case kVerticalInteger_PreMatrixScale: {
|
|
SkScalar realYScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
|
|
SkScalar intYScale = SkScalarRoundToScalar(realYScale);
|
|
if (intYScale == 0) {
|
|
intYScale = SK_Scalar1;
|
|
}
|
|
s->fX = intYScale;
|
|
s->fY = intYScale;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// The 'remaining' matrix sA is the total matrix A without the scale.
|
|
if (!skewedOrFlipped && (
|
|
(kFull_PreMatrixScale == preMatrixScale) ||
|
|
(kVertical_PreMatrixScale == preMatrixScale && A.getScaleX() == A.getScaleY())))
|
|
{
|
|
// If GA == A and kFull_PreMatrixScale, sA is identity.
|
|
// If GA == A and kVertical_PreMatrixScale and A.scaleX == A.scaleY, sA is identity.
|
|
sA->reset();
|
|
} else if (!skewedOrFlipped && kVertical_PreMatrixScale == preMatrixScale) {
|
|
// If GA == A and kVertical_PreMatrixScale, sA.scaleY is SK_Scalar1.
|
|
sA->reset();
|
|
sA->setScaleX(A.getScaleX() / s->fY);
|
|
} else {
|
|
// TODO: like kVertical_PreMatrixScale, kVerticalInteger_PreMatrixScale with int scales.
|
|
*sA = A;
|
|
sA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY));
|
|
}
|
|
|
|
// The 'remainingWithoutRotation' matrix GsA is the non-rotational part of A without the scale.
|
|
if (GsA) {
|
|
*GsA = GA;
|
|
// G is rotational so reorders with the scale.
|
|
GsA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY));
|
|
}
|
|
}
|
|
|
|
SkAxisAlignment SkScalerContext::computeAxisAlignmentForHText() {
|
|
// Why fPost2x2 can be used here.
|
|
// getSingleMatrix multiplies in getLocalMatrix, which consists of
|
|
// * fTextSize (a scale, which has no effect)
|
|
// * fPreScaleX (a scale in x, which has no effect)
|
|
// * fPreSkewX (has no effect, but would on vertical text alignment).
|
|
// In other words, making the text bigger, stretching it along the
|
|
// horizontal axis, or fake italicizing it does not move the baseline.
|
|
|
|
if (0 == fRec.fPost2x2[1][0]) {
|
|
// The x axis is mapped onto the x axis.
|
|
return kX_SkAxisAlignment;
|
|
}
|
|
if (0 == fRec.fPost2x2[0][0]) {
|
|
// The x axis is mapped onto the y axis.
|
|
return kY_SkAxisAlignment;
|
|
}
|
|
return kNone_SkAxisAlignment;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
class SkScalerContext_Empty : public SkScalerContext {
|
|
public:
|
|
SkScalerContext_Empty(SkTypeface* typeface, const SkScalerContextEffects& effects,
|
|
const SkDescriptor* desc)
|
|
: SkScalerContext(typeface, effects, desc) {}
|
|
|
|
protected:
|
|
unsigned generateGlyphCount() override {
|
|
return 0;
|
|
}
|
|
uint16_t generateCharToGlyph(SkUnichar uni) override {
|
|
return 0;
|
|
}
|
|
void generateAdvance(SkGlyph* glyph) override {
|
|
glyph->zeroMetrics();
|
|
}
|
|
void generateMetrics(SkGlyph* glyph) override {
|
|
glyph->zeroMetrics();
|
|
}
|
|
void generateImage(const SkGlyph& glyph) override {}
|
|
void generatePath(const SkGlyph& glyph, SkPath* path) override {}
|
|
void generateFontMetrics(SkPaint::FontMetrics* metrics) override {
|
|
if (metrics) {
|
|
sk_bzero(metrics, sizeof(*metrics));
|
|
}
|
|
}
|
|
};
|
|
|
|
extern SkScalerContext* SkCreateColorScalerContext(const SkDescriptor* desc);
|
|
|
|
SkScalerContext* SkTypeface::createScalerContext(const SkScalerContextEffects& effects,
|
|
const SkDescriptor* desc,
|
|
bool allowFailure) const {
|
|
SkScalerContext* c = this->onCreateScalerContext(effects, desc);
|
|
|
|
if (!c && !allowFailure) {
|
|
c = new SkScalerContext_Empty(const_cast<SkTypeface*>(this), effects, desc);
|
|
}
|
|
return c;
|
|
}
|