73065f325f
This is a reland of 35a74eab5d
Added guard for SKNX_NO_SIMD. I guess they don't want speedy goodness.
Original change's description:
> add a scaled uint32x4_t divided by uint32_t to SkVx
>
> This extracts the divide used in SkImageBlurFilter.cpp, and
> encapsulates it into ScaledDividerU32. It generates results that
> are with in +/- 1 of the rounded answer generated by doubles.
>
> I have added hand coded implementations for sse and for neon to
> hopefully to avoid code generation problems.
>
> Bug: skia:12522
>
> Change-Id: Ia7372d45895c799f69f8c0fd9fdea5efac321139
> Reviewed-on: https://skia-review.googlesource.com/c/skia/+/458216
> Reviewed-by: Brian Osman <brianosman@google.com>
> Commit-Queue: Herb Derby <herb@google.com>
Bug: skia:12522
Change-Id: I9833a98f159827f483147c8155f1b92b7a7130ed
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/458716
Reviewed-by: Brian Osman <brianosman@google.com>
Commit-Queue: Herb Derby <herb@google.com>
426 lines
17 KiB
C++
426 lines
17 KiB
C++
/*
|
|
* Copyright 2019 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "include/private/SkVx.h"
|
|
#include "tests/Test.h"
|
|
#include <numeric>
|
|
|
|
using float2 = skvx::Vec<2,float>;
|
|
using float4 = skvx::Vec<4,float>;
|
|
using float8 = skvx::Vec<8,float>;
|
|
|
|
using double2 = skvx::Vec<2,double>;
|
|
using double4 = skvx::Vec<4,double>;
|
|
using double8 = skvx::Vec<8,double>;
|
|
|
|
using byte2 = skvx::Vec< 2,uint8_t>;
|
|
using byte4 = skvx::Vec< 4,uint8_t>;
|
|
using byte8 = skvx::Vec< 8,uint8_t>;
|
|
using byte16 = skvx::Vec<16,uint8_t>;
|
|
|
|
using int2 = skvx::Vec<2,int32_t>;
|
|
using int4 = skvx::Vec<4,int32_t>;
|
|
using int8 = skvx::Vec<8,int32_t>;
|
|
|
|
using uint2 = skvx::Vec<2,uint32_t>;
|
|
using uint4 = skvx::Vec<4,uint32_t>;
|
|
using uint8 = skvx::Vec<8,uint32_t>;
|
|
|
|
using long2 = skvx::Vec<2,int64_t>;
|
|
using long4 = skvx::Vec<4,int64_t>;
|
|
using long8 = skvx::Vec<8,int64_t>;
|
|
|
|
DEF_TEST(SkVx, r) {
|
|
static_assert(sizeof(float2) == 8, "");
|
|
static_assert(sizeof(float4) == 16, "");
|
|
static_assert(sizeof(float8) == 32, "");
|
|
|
|
static_assert(sizeof(byte2) == 2, "");
|
|
static_assert(sizeof(byte4) == 4, "");
|
|
static_assert(sizeof(byte8) == 8, "");
|
|
|
|
{
|
|
int4 mask = float4{1,2,3,4} < float4{1,2,4,8};
|
|
REPORTER_ASSERT(r, mask[0] == int32_t( 0));
|
|
REPORTER_ASSERT(r, mask[1] == int32_t( 0));
|
|
REPORTER_ASSERT(r, mask[2] == int32_t(-1));
|
|
REPORTER_ASSERT(r, mask[3] == int32_t(-1));
|
|
|
|
REPORTER_ASSERT(r, any(mask));
|
|
REPORTER_ASSERT(r, !all(mask));
|
|
}
|
|
|
|
{
|
|
long4 mask = double4{1,2,3,4} < double4{1,2,4,8};
|
|
REPORTER_ASSERT(r, mask[0] == int64_t( 0));
|
|
REPORTER_ASSERT(r, mask[1] == int64_t( 0));
|
|
REPORTER_ASSERT(r, mask[2] == int64_t(-1));
|
|
REPORTER_ASSERT(r, mask[3] == int64_t(-1));
|
|
|
|
REPORTER_ASSERT(r, any(mask));
|
|
REPORTER_ASSERT(r, !all(mask));
|
|
}
|
|
|
|
REPORTER_ASSERT(r, min(float4{1,2,3,4}) == 1);
|
|
REPORTER_ASSERT(r, max(float4{1,2,3,4}) == 4);
|
|
|
|
REPORTER_ASSERT(r, all(int4{1,2,3,4,5} == int4{1,2,3,4}));
|
|
REPORTER_ASSERT(r, all(int4{1,2,3,4} == int4{1,2,3,4}));
|
|
REPORTER_ASSERT(r, all(int4{1,2,3} == int4{1,2,3,0}));
|
|
REPORTER_ASSERT(r, all(int4{1,2} == int4{1,2,0,0}));
|
|
REPORTER_ASSERT(r, all(int4{1} == int4{1,0,0,0}));
|
|
REPORTER_ASSERT(r, all(int4(1) == int4{1,1,1,1}));
|
|
REPORTER_ASSERT(r, all(int4{} == int4{0,0,0,0}));
|
|
REPORTER_ASSERT(r, all(int4() == int4{0,0,0,0}));
|
|
|
|
REPORTER_ASSERT(r, all(int4{1,2,2,1} == min(int4{1,2,3,4}, int4{4,3,2,1})));
|
|
REPORTER_ASSERT(r, all(int4{4,3,3,4} == max(int4{1,2,3,4}, int4{4,3,2,1})));
|
|
|
|
REPORTER_ASSERT(r, all(if_then_else(float4{1,2,3,2} <= float4{2,2,2,2}, float4(42), float4(47))
|
|
== float4{42,42,47,42}));
|
|
|
|
REPORTER_ASSERT(r, all(floor(float4{-1.5f,1.5f,1.0f,-1.0f}) == float4{-2.0f,1.0f,1.0f,-1.0f}));
|
|
REPORTER_ASSERT(r, all( ceil(float4{-1.5f,1.5f,1.0f,-1.0f}) == float4{-1.0f,2.0f,1.0f,-1.0f}));
|
|
REPORTER_ASSERT(r, all(trunc(float4{-1.5f,1.5f,1.0f,-1.0f}) == float4{-1.0f,1.0f,1.0f,-1.0f}));
|
|
REPORTER_ASSERT(r, all(round(float4{-1.5f,1.5f,1.0f,-1.0f}) == float4{-2.0f,2.0f,1.0f,-1.0f}));
|
|
|
|
|
|
REPORTER_ASSERT(r, all(abs(float4{-2,-1,0,1}) == float4{2,1,0,1}));
|
|
|
|
// TODO(mtklein): these tests could be made less loose.
|
|
REPORTER_ASSERT(r, all( sqrt(float4{2,3,4,5}) < float4{2,2,3,3}));
|
|
REPORTER_ASSERT(r, all( sqrt(float2{2,3}) < float2{2,2}));
|
|
|
|
REPORTER_ASSERT(r, all(skvx::cast<int>(float4{-1.5f,0.5f,1.0f,1.5f}) == int4{-1,0,1,1}));
|
|
|
|
float buf[] = {1,2,3,4,5,6};
|
|
REPORTER_ASSERT(r, all(float4::Load(buf) == float4{1,2,3,4}));
|
|
float4{2,3,4,5}.store(buf);
|
|
REPORTER_ASSERT(r, buf[0] == 2
|
|
&& buf[1] == 3
|
|
&& buf[2] == 4
|
|
&& buf[3] == 5
|
|
&& buf[4] == 5
|
|
&& buf[5] == 6);
|
|
REPORTER_ASSERT(r, all(float4::Load(buf+0) == float4{2,3,4,5}));
|
|
REPORTER_ASSERT(r, all(float4::Load(buf+2) == float4{4,5,5,6}));
|
|
|
|
REPORTER_ASSERT(r, all(skvx::shuffle<2,1,0,3> (float4{1,2,3,4}) == float4{3,2,1,4}));
|
|
REPORTER_ASSERT(r, all(skvx::shuffle<2,1> (float4{1,2,3,4}) == float2{3,2}));
|
|
REPORTER_ASSERT(r, all(skvx::shuffle<3,3,3,3> (float4{1,2,3,4}) == float4{4,4,4,4}));
|
|
REPORTER_ASSERT(r, all(skvx::shuffle<2,1,2,1,2,1,2,1>(float4{1,2,3,4})
|
|
== float8{3,2,3,2,3,2,3,2}));
|
|
|
|
// Test that mixed types can be used where they make sense. Mostly about ergonomics.
|
|
REPORTER_ASSERT(r, all(float4{1,2,3,4} < 5));
|
|
REPORTER_ASSERT(r, all( byte4{1,2,3,4} < 5));
|
|
REPORTER_ASSERT(r, all( int4{1,2,3,4} < 5.0f));
|
|
float4 five = 5;
|
|
REPORTER_ASSERT(r, all(five == 5.0f));
|
|
REPORTER_ASSERT(r, all(five == 5));
|
|
|
|
REPORTER_ASSERT(r, all(max(2, min(float4{1,2,3,4}, 3)) == float4{2,2,3,3}));
|
|
|
|
for (int x = 0; x < 256; x++)
|
|
for (int y = 0; y < 256; y++) {
|
|
uint8_t want = (uint8_t)( 255*(x/255.0 * y/255.0) + 0.5 );
|
|
|
|
{
|
|
uint8_t got = skvx::div255(skvx::Vec<8, uint16_t>(x) *
|
|
skvx::Vec<8, uint16_t>(y) )[0];
|
|
REPORTER_ASSERT(r, got == want);
|
|
}
|
|
|
|
{
|
|
uint8_t got = skvx::approx_scale(skvx::Vec<8,uint8_t>(x),
|
|
skvx::Vec<8,uint8_t>(y))[0];
|
|
|
|
REPORTER_ASSERT(r, got == want-1 ||
|
|
got == want ||
|
|
got == want+1);
|
|
if (x == 0 || y == 0 || x == 255 || y == 255) {
|
|
REPORTER_ASSERT(r, got == want);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int x = 0; x < 256; x++)
|
|
for (int y = 0; y < 256; y++) {
|
|
uint16_t xy = x*y;
|
|
|
|
// Make sure to cover implementation cases N=8, N<8, and N>8.
|
|
REPORTER_ASSERT(r, all(mull(byte2 (x), byte2 (y)) == xy));
|
|
REPORTER_ASSERT(r, all(mull(byte4 (x), byte4 (y)) == xy));
|
|
REPORTER_ASSERT(r, all(mull(byte8 (x), byte8 (y)) == xy));
|
|
REPORTER_ASSERT(r, all(mull(byte16(x), byte16(y)) == xy));
|
|
}
|
|
|
|
{
|
|
// Intentionally not testing -0, as we don't care if it's 0x0000 or 0x8000.
|
|
float8 fs = {+0.0f,+0.5f,+1.0f,+2.0f,
|
|
-4.0f,-0.5f,-1.0f,-2.0f};
|
|
skvx::Vec<8,uint16_t> hs = {0x0000,0x3800,0x3c00,0x4000,
|
|
0xc400,0xb800,0xbc00,0xc000};
|
|
REPORTER_ASSERT(r, all(skvx:: to_half(fs) == hs));
|
|
REPORTER_ASSERT(r, all(skvx::from_half(hs) == fs));
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkVx_xy, r) {
|
|
float2 f = float2(1,2);
|
|
REPORTER_ASSERT(r, all(f == float2{1,2}));
|
|
REPORTER_ASSERT(r, f.x() == 1);
|
|
REPORTER_ASSERT(r, f.y() == 2);
|
|
f.y() = 9;
|
|
REPORTER_ASSERT(r, all(f == float2{1,9}));
|
|
f.x() = 0;
|
|
REPORTER_ASSERT(r, all(f == float2(0,9)));
|
|
f[0] = 8;
|
|
REPORTER_ASSERT(r, f.x() == 8);
|
|
f[1] = 6;
|
|
REPORTER_ASSERT(r, f.y() == 6);
|
|
REPORTER_ASSERT(r, all(f == float2(8,6)));
|
|
f = f.yx();
|
|
REPORTER_ASSERT(r, all(f == float2(6,8)));
|
|
REPORTER_ASSERT(r, skvx::bit_pun<SkPoint>(f) == SkPoint::Make(6,8));
|
|
SkPoint p;
|
|
f.store(&p);
|
|
REPORTER_ASSERT(r, p == SkPoint::Make(6,8));
|
|
f.yx().store(&p);
|
|
REPORTER_ASSERT(r, p == SkPoint::Make(8,6));
|
|
REPORTER_ASSERT(r, all(f.xyxy() == float4(6,8,6,8)));
|
|
REPORTER_ASSERT(r, all(f.xyxy() == float4(f,f)));
|
|
REPORTER_ASSERT(r, all(skvx::join(f,f) == f.xyxy()));
|
|
REPORTER_ASSERT(r, all(skvx::join(f.yx(),f) == float4(f.y(),f.x(),f)));
|
|
REPORTER_ASSERT(r, all(skvx::join(f.yx(),f) == float4(f.yx(),f.x(),f.y())));
|
|
REPORTER_ASSERT(r, all(skvx::join(f,f.yx()) == float4(f.x(),f.y(),f.yx())));
|
|
REPORTER_ASSERT(r, all(skvx::join(f.yx(),f.yx()) == float4(f.yx(),f.yx())));
|
|
}
|
|
|
|
DEF_TEST(SkVx_xyzw, r) {
|
|
float4 f = float4{1,2,3,4};
|
|
REPORTER_ASSERT(r, all(f == float4(1,2,3,4)));
|
|
REPORTER_ASSERT(r, all(f == float4(1,2,float2(3,4))));
|
|
REPORTER_ASSERT(r, all(f == float4(float2(1,2),3,4)));
|
|
REPORTER_ASSERT(r, all(f == float4(float2(1,2),float2(3,4))));
|
|
f.xy() = float2(9,8);
|
|
REPORTER_ASSERT(r, all(f == float4(9,8,3,4)));
|
|
f.zw().x() = 7;
|
|
f.zw().y() = 6;
|
|
REPORTER_ASSERT(r, all(f == float4(9,8,7,6)));
|
|
f.x() = 5;
|
|
f.y() = 4;
|
|
f.z() = 3;
|
|
f.w() = 2;
|
|
REPORTER_ASSERT(r, all(f == float4(5,4,3,2)));
|
|
f[0] = 0;
|
|
REPORTER_ASSERT(r, f.x() == 0);
|
|
f[1] = 1;
|
|
REPORTER_ASSERT(r, f.y() == 1);
|
|
f[2] = 2;
|
|
REPORTER_ASSERT(r, f.z() == 2);
|
|
f[3] = 3;
|
|
REPORTER_ASSERT(r, f.w() == 3);
|
|
REPORTER_ASSERT(r, skvx::all(f.xy() == float2(0,1)));
|
|
REPORTER_ASSERT(r, skvx::all(f.zw() == float2{2,3}));
|
|
REPORTER_ASSERT(r, all(f == float4(0,1,2,3)));
|
|
REPORTER_ASSERT(r, all(f.yxwz().lo == skvx::shuffle<1,0>(f)));
|
|
REPORTER_ASSERT(r, all(f.yxwz().hi == skvx::shuffle<3,2>(f)));
|
|
REPORTER_ASSERT(r, all(f.zwxy().lo.lo == f.z()));
|
|
REPORTER_ASSERT(r, all(f.zwxy().lo.hi == f.w()));
|
|
REPORTER_ASSERT(r, all(f.zwxy().hi.lo == f.x()));
|
|
REPORTER_ASSERT(r, all(f.zwxy().hi.hi == f.y()));
|
|
REPORTER_ASSERT(r, f.yxwz().lo.lo.val == f.y());
|
|
REPORTER_ASSERT(r, f.yxwz().lo.hi.val == f.x());
|
|
REPORTER_ASSERT(r, f.yxwz().hi.lo.val == f.w());
|
|
REPORTER_ASSERT(r, f.yxwz().hi.hi.val == f.z());
|
|
|
|
REPORTER_ASSERT(r, all(skvx::naive_if_then_else(int2(0,~0),
|
|
skvx::shuffle<3,2>(float4(0,1,2,3)),
|
|
float4(4,5,6,7).xy()) == float2(4,2)));
|
|
REPORTER_ASSERT(r, all(skvx::if_then_else(int2(0,~0),
|
|
skvx::shuffle<3,2>(float4(0,1,2,3)),
|
|
float4(4,5,6,7).xy()) == float2(4,2)));
|
|
REPORTER_ASSERT(r, all(skvx::naive_if_then_else(int2(0,~0).xyxy(),
|
|
float4(0,1,2,3).zwxy(),
|
|
float4(4,5,6,7)) == float4(4,3,6,1)));
|
|
REPORTER_ASSERT(r, all(skvx::if_then_else(int2(0,~0).xyxy(),
|
|
float4(0,1,2,3).zwxy(),
|
|
float4(4,5,6,7)) == float4(4,3,6,1)));
|
|
|
|
REPORTER_ASSERT(r, all(skvx::pin(float4(0,1,2,3).yxwz(),
|
|
float2(1).xyxy(),
|
|
float2(2).xyxy()) == float4(1,1,2,2)));
|
|
}
|
|
|
|
static bool check_approx_acos(skiatest::Reporter* r, float x, float approx_acos_x) {
|
|
float acosf_x = acosf(x);
|
|
float error = acosf_x - approx_acos_x;
|
|
if (!(fabsf(error) <= SKVX_APPROX_ACOS_MAX_ERROR)) {
|
|
ERRORF(r, "Larger-than-expected error from skvx::approx_acos\n"
|
|
" x= %f\n"
|
|
" approx_acos_x= %f (%f degrees\n"
|
|
" acosf_x= %f (%f degrees\n"
|
|
" error= %f (%f degrees)\n"
|
|
" tolerance= %f (%f degrees)\n\n",
|
|
x, approx_acos_x, SkRadiansToDegrees(approx_acos_x), acosf_x,
|
|
SkRadiansToDegrees(acosf_x), error, SkRadiansToDegrees(error),
|
|
SKVX_APPROX_ACOS_MAX_ERROR, SkRadiansToDegrees(SKVX_APPROX_ACOS_MAX_ERROR));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
DEF_TEST(SkVx_approx_acos, r) {
|
|
float4 boundaries = skvx::approx_acos(float4{-1, 0, 1, 0});
|
|
check_approx_acos(r, -1, boundaries[0]);
|
|
check_approx_acos(r, 0, boundaries[1]);
|
|
check_approx_acos(r, +1, boundaries[2]);
|
|
|
|
// Select a distribution of starting points around which to begin testing approx_acos. These
|
|
// fall roughly around the known minimum and maximum errors. No need to include -1, 0, or 1
|
|
// since those were just tested above. (Those are tricky because 0 is an inflection and the
|
|
// derivative is infinite at 1 and -1.)
|
|
float8 x = {-.99f, -.8f, -.4f, -.2f, .2f, .4f, .8f, .99f};
|
|
|
|
// Converge at the various local minima and maxima of "approx_acos(x) - cosf(x)" and verify that
|
|
// approx_acos is always within "kTolerance" degrees of the expected answer.
|
|
float8 err_;
|
|
for (int iter = 0; iter < 10; ++iter) {
|
|
// Run our approximate inverse cosine approximation.
|
|
auto approx_acos_x = skvx::approx_acos(x);
|
|
|
|
// Find d/dx(error)
|
|
// = d/dx(approx_acos(x) - acos(x))
|
|
// = (f'g - fg')/gg + 1/sqrt(1 - x^2), [where f = bx^3 + ax, g = dx^4 + cx^2 + 1]
|
|
float8 xx = x*x;
|
|
float8 a = -0.939115566365855f;
|
|
float8 b = 0.9217841528914573f;
|
|
float8 c = -1.2845906244690837f;
|
|
float8 d = 0.295624144969963174f;
|
|
float8 f = (b*xx + a)*x;
|
|
float8 f_ = 3*b*xx + a;
|
|
float8 g = (d*xx + c)*xx + 1;
|
|
float8 g_ = (4*d*xx + 2*c)*x;
|
|
float8 gg = g*g;
|
|
float8 q = skvx::sqrt(1 - xx);
|
|
err_ = (f_*g - f*g_)/gg + 1/q;
|
|
|
|
// Find d^2/dx^2(error)
|
|
// = ((f''g - fg'')g^2 - (f'g - fg')2gg') / g^4 + x(1 - x^2)^(-3/2)
|
|
// = ((f''g - fg'')g - (f'g - fg')2g') / g^3 + x(1 - x^2)^(-3/2)
|
|
float8 f__ = 6*b*x;
|
|
float8 g__ = 12*d*xx + 2*c;
|
|
float8 err__ = ((f__*g - f*g__)*g - (f_*g - f*g_)*2*g_) / (gg*g) + x/((1 - xx)*q);
|
|
|
|
#if 0
|
|
SkDebugf("\n\niter %i\n", iter);
|
|
#endif
|
|
// Ensure each lane's approximation is within maximum error.
|
|
for (int j = 0; j < 8; ++j) {
|
|
#if 0
|
|
SkDebugf("x=%f err=%f err'=%f err''=%f\n",
|
|
x[j], SkRadiansToDegrees(skvx::approx_acos_x[j] - acosf(x[j])),
|
|
SkRadiansToDegrees(err_[j]), SkRadiansToDegrees(err__[j]));
|
|
#endif
|
|
if (!check_approx_acos(r, x[j], approx_acos_x[j])) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Use Newton's method to update the x values to locations closer to their local minimum or
|
|
// maximum. (This is where d/dx(error) == 0.)
|
|
x -= err_/err__;
|
|
x = skvx::pin<8,float>(x, -.99f, .99f);
|
|
}
|
|
|
|
// Ensure each lane converged to a local minimum or maximum.
|
|
for (int j = 0; j < 8; ++j) {
|
|
REPORTER_ASSERT(r, SkScalarNearlyZero(err_[j]));
|
|
}
|
|
|
|
// Make sure we found all the actual known locations of local min/max error.
|
|
for (float knownRoot : {-0.983536f, -0.867381f, -0.410923f, 0.410923f, 0.867381f, 0.983536f}) {
|
|
REPORTER_ASSERT(r, skvx::any(skvx::abs(x - knownRoot) < SK_ScalarNearlyZero));
|
|
}
|
|
}
|
|
|
|
template<int N, typename T> void check_strided_loads(skiatest::Reporter* r) {
|
|
using Vec = skvx::Vec<N,T>;
|
|
T values[N*4];
|
|
std::iota(values, values + N*4, 0);
|
|
Vec a, b, c, d;
|
|
skvx::strided_load2(values, a, b);
|
|
for (int i = 0; i < N; ++i) {
|
|
REPORTER_ASSERT(r, a[i] == values[i*2]);
|
|
REPORTER_ASSERT(r, b[i] == values[i*2 + 1]);
|
|
}
|
|
skvx::strided_load4(values, a, b, c, d);
|
|
for (int i = 0; i < N; ++i) {
|
|
REPORTER_ASSERT(r, a[i] == values[i*4]);
|
|
REPORTER_ASSERT(r, b[i] == values[i*4 + 1]);
|
|
REPORTER_ASSERT(r, c[i] == values[i*4 + 2]);
|
|
REPORTER_ASSERT(r, d[i] == values[i*4 + 3]);
|
|
}
|
|
}
|
|
|
|
template<typename T> void check_strided_loads(skiatest::Reporter* r) {
|
|
check_strided_loads<1,T>(r);
|
|
check_strided_loads<2,T>(r);
|
|
check_strided_loads<4,T>(r);
|
|
check_strided_loads<8,T>(r);
|
|
check_strided_loads<16,T>(r);
|
|
check_strided_loads<32,T>(r);
|
|
}
|
|
|
|
DEF_TEST(SkVx_strided_loads, r) {
|
|
check_strided_loads<uint32_t>(r);
|
|
check_strided_loads<uint16_t>(r);
|
|
check_strided_loads<uint8_t>(r);
|
|
check_strided_loads<int32_t>(r);
|
|
check_strided_loads<int16_t>(r);
|
|
check_strided_loads<int8_t>(r);
|
|
check_strided_loads<float>(r);
|
|
}
|
|
|
|
DEF_TEST(SkVM_ScaledDividerU32, r) {
|
|
static constexpr uint32_t kMax = std::numeric_limits<uint32_t>::max();
|
|
|
|
auto errorBounds = [&](uint32_t actual, uint32_t expected) {
|
|
uint32_t lowerLimit = expected == 0 ? 0 : expected - 1,
|
|
upperLimit = expected == kMax ? kMax : expected + 1;
|
|
return lowerLimit <= actual && actual <= upperLimit;
|
|
};
|
|
|
|
auto test = [&](uint32_t denom) {
|
|
// half == 1 so, the max to check is kMax-1
|
|
skvx::ScaledDividerU32 d(denom);
|
|
uint32_t maxCheck = static_cast<uint32_t>(floor((double)(kMax - d.half()) / denom + 0.5));
|
|
REPORTER_ASSERT(r, errorBounds(d.divide((kMax))[0], maxCheck));
|
|
for (uint32_t i = 0; i < kMax - d.half(); i += 65535) {
|
|
uint32_t expected = static_cast<uint32_t>(floor((double)i / denom + 0.5));
|
|
auto actual = d.divide(i + d.half());
|
|
if (!errorBounds(actual[0], expected)) {
|
|
SkDebugf("i: %u expected: %u actual: %u\n", i, expected, actual[0]);
|
|
}
|
|
// Make sure all the lanes are the same.
|
|
for (int e = 1; e < 4; e++) {
|
|
SkASSERT(actual[0] == actual[e]);
|
|
}
|
|
}
|
|
};
|
|
|
|
test(2);
|
|
test(3);
|
|
test(5);
|
|
test(7);
|
|
test(27);
|
|
test(65'535);
|
|
test(15'485'863);
|
|
test(512'927'377);
|
|
}
|