skia2/src/effects/SkArithmeticMode_gpu.cpp
cdalton f4f2b44222 Add onGetBlendInfo to GrXferProcessor
Adds an onGetBlendInfo method for GrXferProcessor subclasses to
override instead of overriding getBlendInfo directly. This gives the
base class a chance to initialize the struct with default values
before passing it on. As the BlendInfo struct grows, this will keep
things simple and less error prone.

BUG=skia:
NOTREECHECKS=true
NOTRY=true

Review URL: https://codereview.chromium.org/1049143002
2015-04-23 09:40:23 -07:00

337 lines
13 KiB
C++

/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkArithmeticMode_gpu.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrFragmentProcessor.h"
#include "GrInvariantOutput.h"
#include "GrProcessor.h"
#include "GrTexture.h"
#include "gl/GrGLCaps.h"
#include "gl/GrGLProcessor.h"
#include "gl/GrGLProgramDataManager.h"
#include "gl/builders/GrGLProgramBuilder.h"
static const bool gUseUnpremul = false;
static void add_arithmetic_code(GrGLFPFragmentBuilder* fsBuilder,
const char* inputColor,
const char* dstColor,
const char* outputColor,
const char* kUni,
bool enforcePMColor) {
// We don't try to optimize for this case at all
if (NULL == inputColor) {
fsBuilder->codeAppend("const vec4 src = vec4(1);");
} else {
fsBuilder->codeAppendf("vec4 src = %s;", inputColor);
if (gUseUnpremul) {
fsBuilder->codeAppend("src.rgb = clamp(src.rgb / src.a, 0.0, 1.0);");
}
}
fsBuilder->codeAppendf("vec4 dst = %s;", dstColor);
if (gUseUnpremul) {
fsBuilder->codeAppend("dst.rgb = clamp(dst.rgb / dst.a, 0.0, 1.0);");
}
fsBuilder->codeAppendf("%s = %s.x * src * dst + %s.y * src + %s.z * dst + %s.w;",
outputColor, kUni, kUni, kUni, kUni);
fsBuilder->codeAppendf("%s = clamp(%s, 0.0, 1.0);\n", outputColor, outputColor);
if (gUseUnpremul) {
fsBuilder->codeAppendf("%s.rgb *= %s.a;", outputColor, outputColor);
} else if (enforcePMColor) {
fsBuilder->codeAppendf("%s.rgb = min(%s.rgb, %s.a);",
outputColor, outputColor, outputColor);
}
}
class GLArithmeticFP : public GrGLFragmentProcessor {
public:
GLArithmeticFP(const GrProcessor&)
: fEnforcePMColor(true) {
}
~GLArithmeticFP() override {}
void emitCode(GrGLFPBuilder* builder,
const GrFragmentProcessor& fp,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray& coords,
const TextureSamplerArray& samplers) override {
GrGLFPFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();
fsBuilder->codeAppend("vec4 bgColor = ");
fsBuilder->appendTextureLookup(samplers[0], coords[0].c_str(), coords[0].getType());
fsBuilder->codeAppendf(";");
const char* dstColor = "bgColor";
fKUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"k");
const char* kUni = builder->getUniformCStr(fKUni);
add_arithmetic_code(fsBuilder, inputColor, dstColor, outputColor, kUni, fEnforcePMColor);
}
void setData(const GrGLProgramDataManager& pdman, const GrProcessor& proc) override {
const GrArithmeticFP& arith = proc.cast<GrArithmeticFP>();
pdman.set4f(fKUni, arith.k1(), arith.k2(), arith.k3(), arith.k4());
fEnforcePMColor = arith.enforcePMColor();
}
static void GenKey(const GrProcessor& proc, const GrGLCaps& caps, GrProcessorKeyBuilder* b) {
const GrArithmeticFP& arith = proc.cast<GrArithmeticFP>();
uint32_t key = arith.enforcePMColor() ? 1 : 0;
b->add32(key);
}
private:
GrGLProgramDataManager::UniformHandle fKUni;
bool fEnforcePMColor;
typedef GrGLFragmentProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
GrArithmeticFP::GrArithmeticFP(float k1, float k2, float k3, float k4,
bool enforcePMColor, GrTexture* background)
: fK1(k1), fK2(k2), fK3(k3), fK4(k4), fEnforcePMColor(enforcePMColor) {
this->initClassID<GrArithmeticFP>();
SkASSERT(background);
fBackgroundTransform.reset(kLocal_GrCoordSet, background,
GrTextureParams::kNone_FilterMode);
this->addCoordTransform(&fBackgroundTransform);
fBackgroundAccess.reset(background);
this->addTextureAccess(&fBackgroundAccess);
}
void GrArithmeticFP::getGLProcessorKey(const GrGLCaps& caps, GrProcessorKeyBuilder* b) const {
GLArithmeticFP::GenKey(*this, caps, b);
}
GrGLFragmentProcessor* GrArithmeticFP::createGLInstance() const {
return SkNEW_ARGS(GLArithmeticFP, (*this));
}
bool GrArithmeticFP::onIsEqual(const GrFragmentProcessor& fpBase) const {
const GrArithmeticFP& fp = fpBase.cast<GrArithmeticFP>();
return fK1 == fp.fK1 &&
fK2 == fp.fK2 &&
fK3 == fp.fK3 &&
fK4 == fp.fK4 &&
fEnforcePMColor == fp.fEnforcePMColor;
}
void GrArithmeticFP::onComputeInvariantOutput(GrInvariantOutput* inout) const {
// TODO: optimize this
inout->setToUnknown(GrInvariantOutput::kWill_ReadInput);
}
///////////////////////////////////////////////////////////////////////////////
GrFragmentProcessor* GrArithmeticFP::TestCreate(SkRandom* rand,
GrContext*,
const GrDrawTargetCaps&,
GrTexture* textures[]) {
float k1 = rand->nextF();
float k2 = rand->nextF();
float k3 = rand->nextF();
float k4 = rand->nextF();
bool enforcePMColor = rand->nextBool();
return SkNEW_ARGS(GrArithmeticFP, (k1, k2, k3, k4, enforcePMColor, textures[0]));
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrArithmeticFP);
///////////////////////////////////////////////////////////////////////////////
// Xfer Processor
///////////////////////////////////////////////////////////////////////////////
class ArithmeticXP : public GrXferProcessor {
public:
static GrXferProcessor* Create(float k1, float k2, float k3, float k4, bool enforcePMColor,
const GrDeviceCoordTexture* dstCopy,
bool willReadDstColor) {
return SkNEW_ARGS(ArithmeticXP, (k1, k2, k3, k4, enforcePMColor, dstCopy,
willReadDstColor));
}
~ArithmeticXP() override {};
const char* name() const override { return "Arithmetic"; }
GrGLXferProcessor* createGLInstance() const override;
bool hasSecondaryOutput() const override { return false; }
GrXferProcessor::OptFlags getOptimizations(const GrProcOptInfo& colorPOI,
const GrProcOptInfo& coveragePOI,
bool doesStencilWrite,
GrColor* overrideColor,
const GrDrawTargetCaps& caps) override;
float k1() const { return fK1; }
float k2() const { return fK2; }
float k3() const { return fK3; }
float k4() const { return fK4; }
bool enforcePMColor() const { return fEnforcePMColor; }
private:
ArithmeticXP(float k1, float k2, float k3, float k4, bool enforcePMColor,
const GrDeviceCoordTexture* dstCopy, bool willReadDstColor);
void onGetGLProcessorKey(const GrGLCaps& caps, GrProcessorKeyBuilder* b) const override;
bool onIsEqual(const GrXferProcessor& xpBase) const override {
const ArithmeticXP& xp = xpBase.cast<ArithmeticXP>();
if (fK1 != xp.fK1 ||
fK2 != xp.fK2 ||
fK3 != xp.fK3 ||
fK4 != xp.fK4 ||
fEnforcePMColor != xp.fEnforcePMColor) {
return false;
}
return true;
}
float fK1, fK2, fK3, fK4;
bool fEnforcePMColor;
typedef GrXferProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
class GLArithmeticXP : public GrGLXferProcessor {
public:
GLArithmeticXP(const GrProcessor&)
: fEnforcePMColor(true) {
}
~GLArithmeticXP() override {}
static void GenKey(const GrProcessor& processor, const GrGLCaps& caps,
GrProcessorKeyBuilder* b) {
const ArithmeticXP& arith = processor.cast<ArithmeticXP>();
uint32_t key = arith.enforcePMColor() ? 1 : 0;
b->add32(key);
}
private:
void onEmitCode(const EmitArgs& args) override {
GrGLFPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
const char* dstColor = fsBuilder->dstColor();
fKUni = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"k");
const char* kUni = args.fPB->getUniformCStr(fKUni);
add_arithmetic_code(fsBuilder, args.fInputColor, dstColor, args.fOutputPrimary, kUni,
fEnforcePMColor);
fsBuilder->codeAppendf("%s = %s * %s + (vec4(1.0) - %s) * %s;",
args.fOutputPrimary, args.fOutputPrimary, args.fInputCoverage,
args.fInputCoverage, dstColor);
}
void onSetData(const GrGLProgramDataManager& pdman,
const GrXferProcessor& processor) override {
const ArithmeticXP& arith = processor.cast<ArithmeticXP>();
pdman.set4f(fKUni, arith.k1(), arith.k2(), arith.k3(), arith.k4());
fEnforcePMColor = arith.enforcePMColor();
};
GrGLProgramDataManager::UniformHandle fKUni;
bool fEnforcePMColor;
typedef GrGLXferProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
ArithmeticXP::ArithmeticXP(float k1, float k2, float k3, float k4, bool enforcePMColor,
const GrDeviceCoordTexture* dstCopy, bool willReadDstColor)
: INHERITED(dstCopy, willReadDstColor)
, fK1(k1)
, fK2(k2)
, fK3(k3)
, fK4(k4)
, fEnforcePMColor(enforcePMColor) {
this->initClassID<ArithmeticXP>();
}
void ArithmeticXP::onGetGLProcessorKey(const GrGLCaps& caps, GrProcessorKeyBuilder* b) const {
GLArithmeticXP::GenKey(*this, caps, b);
}
GrGLXferProcessor* ArithmeticXP::createGLInstance() const {
return SkNEW_ARGS(GLArithmeticXP, (*this));
}
GrXferProcessor::OptFlags ArithmeticXP::getOptimizations(const GrProcOptInfo& colorPOI,
const GrProcOptInfo& coveragePOI,
bool doesStencilWrite,
GrColor* overrideColor,
const GrDrawTargetCaps& caps) {
return GrXferProcessor::kNone_Opt;
}
///////////////////////////////////////////////////////////////////////////////
GrArithmeticXPFactory::GrArithmeticXPFactory(float k1, float k2, float k3, float k4,
bool enforcePMColor)
: fK1(k1), fK2(k2), fK3(k3), fK4(k4), fEnforcePMColor(enforcePMColor) {
this->initClassID<GrArithmeticXPFactory>();
}
GrXferProcessor*
GrArithmeticXPFactory::onCreateXferProcessor(const GrDrawTargetCaps& caps,
const GrProcOptInfo& colorPOI,
const GrProcOptInfo& coveragePOI,
const GrDeviceCoordTexture* dstCopy) const {
return ArithmeticXP::Create(fK1, fK2, fK3, fK4, fEnforcePMColor, dstCopy,
this->willReadDstColor(caps, colorPOI, coveragePOI));
}
void GrArithmeticXPFactory::getInvariantOutput(const GrProcOptInfo& colorPOI,
const GrProcOptInfo& coveragePOI,
GrXPFactory::InvariantOutput* output) const {
output->fWillBlendWithDst = true;
// TODO: We could try to optimize this more. For example if we have solid coverage and fK1 and
// fK3 are zero, then we won't be blending the color with dst at all so we can know what the
// output color is (up to the valid color components passed in).
output->fBlendedColorFlags = 0;
}
GR_DEFINE_XP_FACTORY_TEST(GrArithmeticXPFactory);
GrXPFactory* GrArithmeticXPFactory::TestCreate(SkRandom* random,
GrContext*,
const GrDrawTargetCaps&,
GrTexture*[]) {
float k1 = random->nextF();
float k2 = random->nextF();
float k3 = random->nextF();
float k4 = random->nextF();
bool enforcePMColor = random->nextBool();
return GrArithmeticXPFactory::Create(k1, k2, k3, k4, enforcePMColor);
}
#endif