skia2/tests/CodexTest.cpp

979 lines
36 KiB
C++

/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Resources.h"
#include "SkAndroidCodec.h"
#include "SkBitmap.h"
#include "SkCodec.h"
#include "SkCodecImageGenerator.h"
#include "SkData.h"
#include "SkImageDecoder.h"
#include "SkMD5.h"
#include "SkRandom.h"
#include "SkStream.h"
#include "SkStreamPriv.h"
#include "SkPngChunkReader.h"
#include "Test.h"
#include "png.h"
static SkStreamAsset* resource(const char path[]) {
SkString fullPath = GetResourcePath(path);
return SkStream::NewFromFile(fullPath.c_str());
}
static void md5(const SkBitmap& bm, SkMD5::Digest* digest) {
SkAutoLockPixels autoLockPixels(bm);
SkASSERT(bm.getPixels());
SkMD5 md5;
size_t rowLen = bm.info().bytesPerPixel() * bm.width();
for (int y = 0; y < bm.height(); ++y) {
md5.update(static_cast<uint8_t*>(bm.getAddr(0, y)), rowLen);
}
md5.finish(*digest);
}
/**
* Compute the digest for bm and compare it to a known good digest.
* @param r Reporter to assert that bm's digest matches goodDigest.
* @param goodDigest The known good digest to compare to.
* @param bm The bitmap to test.
*/
static void compare_to_good_digest(skiatest::Reporter* r, const SkMD5::Digest& goodDigest,
const SkBitmap& bm) {
SkMD5::Digest digest;
md5(bm, &digest);
REPORTER_ASSERT(r, digest == goodDigest);
}
/**
* Test decoding an SkCodec to a particular SkImageInfo.
*
* Calling getPixels(info) should return expectedResult, and if goodDigest is non nullptr,
* the resulting decode should match.
*/
static void test_info(skiatest::Reporter* r, SkCodec* codec, const SkImageInfo& info,
SkCodec::Result expectedResult, const SkMD5::Digest* goodDigest) {
SkBitmap bm;
bm.allocPixels(info);
SkAutoLockPixels autoLockPixels(bm);
SkCodec::Result result = codec->getPixels(info, bm.getPixels(), bm.rowBytes());
REPORTER_ASSERT(r, result == expectedResult);
if (goodDigest) {
compare_to_good_digest(r, *goodDigest, bm);
}
}
static void test_android_info(skiatest::Reporter* r, SkAndroidCodec* codec, const SkImageInfo& info,
SkCodec::Result expectedResult, const SkMD5::Digest* goodDigest) {
SkBitmap bm;
bm.allocPixels(info);
SkAutoLockPixels autoLockPixels(bm);
SkCodec::Result result = codec->getAndroidPixels(info, bm.getPixels(), bm.rowBytes());
REPORTER_ASSERT(r, result == expectedResult);
if (goodDigest) {
compare_to_good_digest(r, *goodDigest, bm);
}
}
SkIRect generate_random_subset(SkRandom* rand, int w, int h) {
SkIRect rect;
do {
rect.fLeft = rand->nextRangeU(0, w);
rect.fTop = rand->nextRangeU(0, h);
rect.fRight = rand->nextRangeU(0, w);
rect.fBottom = rand->nextRangeU(0, h);
rect.sort();
} while (rect.isEmpty());
return rect;
}
static void test_codec(skiatest::Reporter* r, SkCodec* codec, SkBitmap& bm, const SkImageInfo& info,
const SkISize& size, SkCodec::Result expectedResult, SkMD5::Digest* digest,
const SkMD5::Digest* goodDigest) {
REPORTER_ASSERT(r, info.dimensions() == size);
bm.allocPixels(info);
SkAutoLockPixels autoLockPixels(bm);
SkCodec::Result result = codec->getPixels(info, bm.getPixels(), bm.rowBytes());
REPORTER_ASSERT(r, result == expectedResult);
md5(bm, digest);
if (goodDigest) {
REPORTER_ASSERT(r, *digest == *goodDigest);
}
{
// Test decoding to 565
SkImageInfo info565 = info.makeColorType(kRGB_565_SkColorType);
SkCodec::Result expected565 = info.alphaType() == kOpaque_SkAlphaType ?
expectedResult : SkCodec::kInvalidConversion;
test_info(r, codec, info565, expected565, nullptr);
}
// Verify that re-decoding gives the same result. It is interesting to check this after
// a decode to 565, since choosing to decode to 565 may result in some of the decode
// options being modified. These options should return to their defaults on another
// decode to kN32, so the new digest should match the old digest.
test_info(r, codec, info, expectedResult, digest);
{
// Check alpha type conversions
if (info.alphaType() == kOpaque_SkAlphaType) {
test_info(r, codec, info.makeAlphaType(kUnpremul_SkAlphaType),
SkCodec::kInvalidConversion, nullptr);
test_info(r, codec, info.makeAlphaType(kPremul_SkAlphaType),
SkCodec::kInvalidConversion, nullptr);
} else {
// Decoding to opaque should fail
test_info(r, codec, info.makeAlphaType(kOpaque_SkAlphaType),
SkCodec::kInvalidConversion, nullptr);
SkAlphaType otherAt = info.alphaType();
if (kPremul_SkAlphaType == otherAt) {
otherAt = kUnpremul_SkAlphaType;
} else {
otherAt = kPremul_SkAlphaType;
}
// The other non-opaque alpha type should always succeed, but not match.
test_info(r, codec, info.makeAlphaType(otherAt), expectedResult, nullptr);
}
}
}
static void test_android_codec(skiatest::Reporter* r, SkAndroidCodec* codec, SkBitmap& bm,
const SkImageInfo& info, const SkISize& size, SkCodec::Result expectedResult,
SkMD5::Digest* digest, const SkMD5::Digest* goodDigest) {
REPORTER_ASSERT(r, info.dimensions() == size);
bm.allocPixels(info);
SkAutoLockPixels autoLockPixels(bm);
SkCodec::Result result = codec->getAndroidPixels(info, bm.getPixels(), bm.rowBytes());
REPORTER_ASSERT(r, result == expectedResult);
md5(bm, digest);
if (goodDigest) {
REPORTER_ASSERT(r, *digest == *goodDigest);
}
{
// Test decoding to 565
SkImageInfo info565 = info.makeColorType(kRGB_565_SkColorType);
SkCodec::Result expected565 = info.alphaType() == kOpaque_SkAlphaType ?
expectedResult : SkCodec::kInvalidConversion;
test_android_info(r, codec, info565, expected565, nullptr);
}
// Verify that re-decoding gives the same result. It is interesting to check this after
// a decode to 565, since choosing to decode to 565 may result in some of the decode
// options being modified. These options should return to their defaults on another
// decode to kN32, so the new digest should match the old digest.
test_android_info(r, codec, info, expectedResult, digest);
{
// Check alpha type conversions
if (info.alphaType() == kOpaque_SkAlphaType) {
test_android_info(r, codec, info.makeAlphaType(kUnpremul_SkAlphaType),
SkCodec::kInvalidConversion, nullptr);
test_android_info(r, codec, info.makeAlphaType(kPremul_SkAlphaType),
SkCodec::kInvalidConversion, nullptr);
} else {
// Decoding to opaque should fail
test_android_info(r, codec, info.makeAlphaType(kOpaque_SkAlphaType),
SkCodec::kInvalidConversion, nullptr);
SkAlphaType otherAt = info.alphaType();
if (kPremul_SkAlphaType == otherAt) {
otherAt = kUnpremul_SkAlphaType;
} else {
otherAt = kPremul_SkAlphaType;
}
// The other non-opaque alpha type should always succeed, but not match.
test_android_info(r, codec, info.makeAlphaType(otherAt), expectedResult, nullptr);
}
}
}
// FIXME: SkScaledCodec is currently only supported for types used by BRD
// https://bug.skia.org/4428
static bool supports_scaled_codec(const char path[]) {
static const char* const exts[] = {
"jpg", "jpeg", "png", "webp"
"JPG", "JPEG", "PNG", "WEBP"
};
for (uint32_t i = 0; i < SK_ARRAY_COUNT(exts); i++) {
if (SkStrEndsWith(path, exts[i])) {
return true;
}
}
return false;
}
static void check(skiatest::Reporter* r,
const char path[],
SkISize size,
bool supportsScanlineDecoding,
bool supportsSubsetDecoding,
bool supportsIncomplete = true) {
SkAutoTDelete<SkStream> stream(resource(path));
if (!stream) {
SkDebugf("Missing resource '%s'\n", path);
return;
}
SkAutoTDelete<SkCodec> codec(nullptr);
bool isIncomplete = supportsIncomplete;
if (isIncomplete) {
size_t size = stream->getLength();
SkAutoTUnref<SkData> data((SkData::NewFromStream(stream, 2 * size / 3)));
codec.reset(SkCodec::NewFromData(data));
} else {
codec.reset(SkCodec::NewFromStream(stream.detach()));
}
if (!codec) {
ERRORF(r, "Unable to decode '%s'", path);
return;
}
// Test full image decodes with SkCodec
SkMD5::Digest codecDigest;
SkImageInfo info = codec->getInfo().makeColorType(kN32_SkColorType);
SkBitmap bm;
SkCodec::Result expectedResult = isIncomplete ? SkCodec::kIncompleteInput : SkCodec::kSuccess;
test_codec(r, codec, bm, info, size, expectedResult, &codecDigest, nullptr);
// Scanline decoding follows.
// Need to call startScanlineDecode() first.
REPORTER_ASSERT(r, codec->getScanlines(bm.getAddr(0, 0), 1, 0)
== 0);
REPORTER_ASSERT(r, codec->skipScanlines(1)
== 0);
const SkCodec::Result startResult = codec->startScanlineDecode(info);
if (supportsScanlineDecoding) {
bm.eraseColor(SK_ColorYELLOW);
REPORTER_ASSERT(r, startResult == SkCodec::kSuccess);
for (int y = 0; y < info.height(); y++) {
const int lines = codec->getScanlines(bm.getAddr(0, y), 1, 0);
if (!isIncomplete) {
REPORTER_ASSERT(r, 1 == lines);
}
}
// verify that scanline decoding gives the same result.
if (SkCodec::kTopDown_SkScanlineOrder == codec->getScanlineOrder()) {
compare_to_good_digest(r, codecDigest, bm);
}
// Cannot continue to decode scanlines beyond the end
REPORTER_ASSERT(r, codec->getScanlines(bm.getAddr(0, 0), 1, 0)
== 0);
// Interrupting a scanline decode with a full decode starts from
// scratch
REPORTER_ASSERT(r, codec->startScanlineDecode(info) == SkCodec::kSuccess);
const int lines = codec->getScanlines(bm.getAddr(0, 0), 1, 0);
if (!isIncomplete) {
REPORTER_ASSERT(r, lines == 1);
}
REPORTER_ASSERT(r, codec->getPixels(bm.info(), bm.getPixels(), bm.rowBytes())
== expectedResult);
REPORTER_ASSERT(r, codec->getScanlines(bm.getAddr(0, 0), 1, 0)
== 0);
REPORTER_ASSERT(r, codec->skipScanlines(1)
== 0);
// Test partial scanline decodes
if (supports_scaled_codec(path) && info.width() >= 3) {
SkCodec::Options options;
int width = info.width();
int height = info.height();
SkIRect subset = SkIRect::MakeXYWH(2 * (width / 3), 0, width / 3, height);
options.fSubset = &subset;
const SkCodec::Result partialStartResult = codec->startScanlineDecode(info, &options,
nullptr, nullptr);
REPORTER_ASSERT(r, partialStartResult == SkCodec::kSuccess);
for (int y = 0; y < height; y++) {
const int lines = codec->getScanlines(bm.getAddr(0, y), 1, 0);
if (!isIncomplete) {
REPORTER_ASSERT(r, 1 == lines);
}
}
}
} else {
REPORTER_ASSERT(r, startResult == SkCodec::kUnimplemented);
}
// The rest of this function tests decoding subsets, and will decode an arbitrary number of
// random subsets.
// Do not attempt to decode subsets of an image of only once pixel, since there is no
// meaningful subset.
if (size.width() * size.height() == 1) {
return;
}
SkRandom rand;
SkIRect subset;
SkCodec::Options opts;
opts.fSubset = &subset;
for (int i = 0; i < 5; i++) {
subset = generate_random_subset(&rand, size.width(), size.height());
SkASSERT(!subset.isEmpty());
const bool supported = codec->getValidSubset(&subset);
REPORTER_ASSERT(r, supported == supportsSubsetDecoding);
SkImageInfo subsetInfo = info.makeWH(subset.width(), subset.height());
SkBitmap bm;
bm.allocPixels(subsetInfo);
const SkCodec::Result result = codec->getPixels(bm.info(), bm.getPixels(), bm.rowBytes(),
&opts, nullptr, nullptr);
if (supportsSubsetDecoding) {
REPORTER_ASSERT(r, result == expectedResult);
// Webp is the only codec that supports subsets, and it will have modified the subset
// to have even left/top.
REPORTER_ASSERT(r, SkIsAlign2(subset.fLeft) && SkIsAlign2(subset.fTop));
} else {
// No subsets will work.
REPORTER_ASSERT(r, result == SkCodec::kUnimplemented);
}
}
// SkScaledCodec tests
if ((supportsScanlineDecoding || supportsSubsetDecoding) && supports_scaled_codec(path)) {
SkAutoTDelete<SkStream> stream(resource(path));
if (!stream) {
SkDebugf("Missing resource '%s'\n", path);
return;
}
SkAutoTDelete<SkAndroidCodec> codec(nullptr);
if (isIncomplete) {
size_t size = stream->getLength();
SkAutoTUnref<SkData> data((SkData::NewFromStream(stream, 2 * size / 3)));
codec.reset(SkAndroidCodec::NewFromData(data));
} else {
codec.reset(SkAndroidCodec::NewFromStream(stream.detach()));
}
if (!codec) {
ERRORF(r, "Unable to decode '%s'", path);
return;
}
SkBitmap bm;
SkMD5::Digest scaledCodecDigest;
test_android_codec(r, codec, bm, info, size, expectedResult,
&scaledCodecDigest, &codecDigest);
}
// Test SkCodecImageGenerator
if (!isIncomplete) {
SkAutoTDelete<SkStream> stream(resource(path));
SkAutoTUnref<SkData> fullData(SkData::NewFromStream(stream, stream->getLength()));
SkAutoTDelete<SkImageGenerator> gen(SkCodecImageGenerator::NewFromEncodedCodec(fullData));
SkBitmap bm;
bm.allocPixels(info);
SkAutoLockPixels autoLockPixels(bm);
REPORTER_ASSERT(r, gen->getPixels(info, bm.getPixels(), bm.rowBytes()));
compare_to_good_digest(r, codecDigest, bm);
}
// If we've just tested incomplete decodes, let's run the same test again on full decodes.
if (isIncomplete) {
check(r, path, size, supportsScanlineDecoding, supportsSubsetDecoding, false);
}
}
DEF_TEST(Codec, r) {
// WBMP
check(r, "mandrill.wbmp", SkISize::Make(512, 512), true, false);
// WEBP
check(r, "baby_tux.webp", SkISize::Make(386, 395), false, true);
check(r, "color_wheel.webp", SkISize::Make(128, 128), false, true);
check(r, "yellow_rose.webp", SkISize::Make(400, 301), false, true);
// BMP
check(r, "randPixels.bmp", SkISize::Make(8, 8), true, false);
// ICO
// FIXME: We are not ready to test incomplete ICOs
// These two tests examine interestingly different behavior:
// Decodes an embedded BMP image
check(r, "color_wheel.ico", SkISize::Make(128, 128), true, false, false);
// Decodes an embedded PNG image
check(r, "google_chrome.ico", SkISize::Make(256, 256), true, false, false);
// GIF
// FIXME: We are not ready to test incomplete GIFs
check(r, "box.gif", SkISize::Make(200, 55), true, false, false);
check(r, "color_wheel.gif", SkISize::Make(128, 128), true, false, false);
// randPixels.gif is too small to test incomplete
check(r, "randPixels.gif", SkISize::Make(8, 8), true, false, false);
// JPG
check(r, "CMYK.jpg", SkISize::Make(642, 516), true, false);
check(r, "color_wheel.jpg", SkISize::Make(128, 128), true, false);
// grayscale.jpg is too small to test incomplete
check(r, "grayscale.jpg", SkISize::Make(128, 128), true, false, false);
check(r, "mandrill_512_q075.jpg", SkISize::Make(512, 512), true, false);
// randPixels.jpg is too small to test incomplete
check(r, "randPixels.jpg", SkISize::Make(8, 8), true, false, false);
// PNG
check(r, "arrow.png", SkISize::Make(187, 312), true, false, false);
check(r, "baby_tux.png", SkISize::Make(240, 246), true, false, false);
check(r, "color_wheel.png", SkISize::Make(128, 128), true, false, false);
check(r, "half-transparent-white-pixel.png", SkISize::Make(1, 1), true, false, false);
check(r, "mandrill_128.png", SkISize::Make(128, 128), true, false, false);
check(r, "mandrill_16.png", SkISize::Make(16, 16), true, false, false);
check(r, "mandrill_256.png", SkISize::Make(256, 256), true, false, false);
check(r, "mandrill_32.png", SkISize::Make(32, 32), true, false, false);
check(r, "mandrill_512.png", SkISize::Make(512, 512), true, false, false);
check(r, "mandrill_64.png", SkISize::Make(64, 64), true, false, false);
check(r, "plane.png", SkISize::Make(250, 126), true, false, false);
// FIXME: We are not ready to test incomplete interlaced pngs
check(r, "plane_interlaced.png", SkISize::Make(250, 126), true, false, false);
check(r, "randPixels.png", SkISize::Make(8, 8), true, false, false);
check(r, "yellow_rose.png", SkISize::Make(400, 301), true, false, false);
// RAW
#if defined(SK_CODEC_DECODES_RAW)
check(r, "sample_1mp.dng", SkISize::Make(600, 338), false, false, false);
#endif
}
// Test interlaced PNG in stripes, similar to DM's kStripe_Mode
DEF_TEST(Codec_stripes, r) {
const char * path = "plane_interlaced.png";
SkAutoTDelete<SkStream> stream(resource(path));
if (!stream) {
SkDebugf("Missing resource '%s'\n", path);
}
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromStream(stream.detach()));
REPORTER_ASSERT(r, codec);
if (!codec) {
return;
}
switch (codec->getScanlineOrder()) {
case SkCodec::kBottomUp_SkScanlineOrder:
case SkCodec::kOutOfOrder_SkScanlineOrder:
ERRORF(r, "This scanline order will not match the original.");
return;
default:
break;
}
// Baseline for what the image should look like, using N32.
const SkImageInfo info = codec->getInfo().makeColorType(kN32_SkColorType);
SkBitmap bm;
bm.allocPixels(info);
SkAutoLockPixels autoLockPixels(bm);
SkCodec::Result result = codec->getPixels(info, bm.getPixels(), bm.rowBytes());
REPORTER_ASSERT(r, result == SkCodec::kSuccess);
SkMD5::Digest digest;
md5(bm, &digest);
// Now decode in stripes
const int height = info.height();
const int numStripes = 4;
int stripeHeight;
int remainingLines;
SkTDivMod(height, numStripes, &stripeHeight, &remainingLines);
bm.eraseColor(SK_ColorYELLOW);
result = codec->startScanlineDecode(info);
REPORTER_ASSERT(r, result == SkCodec::kSuccess);
// Odd stripes
for (int i = 1; i < numStripes; i += 2) {
// Skip the even stripes
bool skipResult = codec->skipScanlines(stripeHeight);
REPORTER_ASSERT(r, skipResult);
int linesDecoded = codec->getScanlines(bm.getAddr(0, i * stripeHeight), stripeHeight,
bm.rowBytes());
REPORTER_ASSERT(r, linesDecoded == stripeHeight);
}
// Even stripes
result = codec->startScanlineDecode(info);
REPORTER_ASSERT(r, result == SkCodec::kSuccess);
for (int i = 0; i < numStripes; i += 2) {
int linesDecoded = codec->getScanlines(bm.getAddr(0, i * stripeHeight), stripeHeight,
bm.rowBytes());
REPORTER_ASSERT(r, linesDecoded == stripeHeight);
// Skip the odd stripes
if (i + 1 < numStripes) {
bool skipResult = codec->skipScanlines(stripeHeight);
REPORTER_ASSERT(r, skipResult);
}
}
// Remainder at the end
if (remainingLines > 0) {
result = codec->startScanlineDecode(info);
REPORTER_ASSERT(r, result == SkCodec::kSuccess);
bool skipResult = codec->skipScanlines(height - remainingLines);
REPORTER_ASSERT(r, skipResult);
int linesDecoded = codec->getScanlines(bm.getAddr(0, height - remainingLines),
remainingLines, bm.rowBytes());
REPORTER_ASSERT(r, linesDecoded == remainingLines);
}
compare_to_good_digest(r, digest, bm);
}
static void test_invalid_stream(skiatest::Reporter* r, const void* stream, size_t len) {
// Neither of these calls should return a codec. Bots should catch us if we leaked anything.
SkCodec* codec = SkCodec::NewFromStream(new SkMemoryStream(stream, len, false));
REPORTER_ASSERT(r, !codec);
SkAndroidCodec* androidCodec =
SkAndroidCodec::NewFromStream(new SkMemoryStream(stream, len, false));
REPORTER_ASSERT(r, !androidCodec);
}
// Ensure that SkCodec::NewFromStream handles freeing the passed in SkStream,
// even on failure. Test some bad streams.
DEF_TEST(Codec_leaks, r) {
// No codec should claim this as their format, so this tests SkCodec::NewFromStream.
const char nonSupportedStream[] = "hello world";
// The other strings should look like the beginning of a file type, so we'll call some
// internal version of NewFromStream, which must also delete the stream on failure.
const unsigned char emptyPng[] = { 0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a };
const unsigned char emptyJpeg[] = { 0xFF, 0xD8, 0xFF };
const char emptyWebp[] = "RIFF1234WEBPVP";
const char emptyBmp[] = { 'B', 'M' };
const char emptyIco[] = { '\x00', '\x00', '\x01', '\x00' };
const char emptyGif[] = "GIFVER";
test_invalid_stream(r, nonSupportedStream, sizeof(nonSupportedStream));
test_invalid_stream(r, emptyPng, sizeof(emptyPng));
test_invalid_stream(r, emptyJpeg, sizeof(emptyJpeg));
test_invalid_stream(r, emptyWebp, sizeof(emptyWebp));
test_invalid_stream(r, emptyBmp, sizeof(emptyBmp));
test_invalid_stream(r, emptyIco, sizeof(emptyIco));
test_invalid_stream(r, emptyGif, sizeof(emptyGif));
}
DEF_TEST(Codec_null, r) {
// Attempting to create an SkCodec or an SkScaledCodec with null should not
// crash.
SkCodec* codec = SkCodec::NewFromStream(nullptr);
REPORTER_ASSERT(r, !codec);
SkAndroidCodec* androidCodec = SkAndroidCodec::NewFromStream(nullptr);
REPORTER_ASSERT(r, !androidCodec);
}
static void test_dimensions(skiatest::Reporter* r, const char path[]) {
// Create the codec from the resource file
SkAutoTDelete<SkStream> stream(resource(path));
if (!stream) {
SkDebugf("Missing resource '%s'\n", path);
return;
}
SkAutoTDelete<SkAndroidCodec> codec(SkAndroidCodec::NewFromStream(stream.detach()));
if (!codec) {
ERRORF(r, "Unable to create codec '%s'", path);
return;
}
// Check that the decode is successful for a variety of scales
for (int sampleSize = 1; sampleSize < 32; sampleSize++) {
// Scale the output dimensions
SkISize scaledDims = codec->getSampledDimensions(sampleSize);
SkImageInfo scaledInfo = codec->getInfo()
.makeWH(scaledDims.width(), scaledDims.height())
.makeColorType(kN32_SkColorType);
// Set up for the decode
size_t rowBytes = scaledDims.width() * sizeof(SkPMColor);
size_t totalBytes = scaledInfo.getSafeSize(rowBytes);
SkAutoTMalloc<SkPMColor> pixels(totalBytes);
SkAndroidCodec::AndroidOptions options;
options.fSampleSize = sampleSize;
SkCodec::Result result =
codec->getAndroidPixels(scaledInfo, pixels.get(), rowBytes, &options);
REPORTER_ASSERT(r, SkCodec::kSuccess == result);
}
}
// Ensure that onGetScaledDimensions returns valid image dimensions to use for decodes
DEF_TEST(Codec_Dimensions, r) {
// JPG
test_dimensions(r, "CMYK.jpg");
test_dimensions(r, "color_wheel.jpg");
test_dimensions(r, "grayscale.jpg");
test_dimensions(r, "mandrill_512_q075.jpg");
test_dimensions(r, "randPixels.jpg");
// Decoding small images with very large scaling factors is a potential
// source of bugs and crashes. We disable these tests in Gold because
// tiny images are not very useful to look at.
// Here we make sure that we do not crash or access illegal memory when
// performing scaled decodes on small images.
test_dimensions(r, "1x1.png");
test_dimensions(r, "2x2.png");
test_dimensions(r, "3x3.png");
test_dimensions(r, "3x1.png");
test_dimensions(r, "1x1.png");
test_dimensions(r, "16x1.png");
test_dimensions(r, "1x16.png");
test_dimensions(r, "mandrill_16.png");
// RAW
#if defined(SK_CODEC_DECODES_RAW)
test_dimensions(r, "sample_1mp.dng");
#endif
}
static void test_invalid(skiatest::Reporter* r, const char path[]) {
SkAutoTDelete<SkStream> stream(resource(path));
if (!stream) {
SkDebugf("Missing resource '%s'\n", path);
return;
}
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromStream(stream.detach()));
REPORTER_ASSERT(r, nullptr == codec);
}
DEF_TEST(Codec_Empty, r) {
// Test images that should not be able to create a codec
test_invalid(r, "empty_images/zero-dims.gif");
test_invalid(r, "empty_images/zero-embedded.ico");
test_invalid(r, "empty_images/zero-width.bmp");
test_invalid(r, "empty_images/zero-height.bmp");
test_invalid(r, "empty_images/zero-width.jpg");
test_invalid(r, "empty_images/zero-height.jpg");
test_invalid(r, "empty_images/zero-width.png");
test_invalid(r, "empty_images/zero-height.png");
test_invalid(r, "empty_images/zero-width.wbmp");
test_invalid(r, "empty_images/zero-height.wbmp");
// This image is an ico with an embedded mask-bmp. This is illegal.
test_invalid(r, "invalid_images/mask-bmp-ico.ico");
}
static void test_invalid_parameters(skiatest::Reporter* r, const char path[]) {
SkAutoTDelete<SkStream> stream(resource(path));
if (!stream) {
SkDebugf("Missing resource '%s'\n", path);
return;
}
SkAutoTDelete<SkCodec> decoder(SkCodec::NewFromStream(stream.detach()));
// This should return kSuccess because kIndex8 is supported.
SkPMColor colorStorage[256];
int colorCount;
SkCodec::Result result = decoder->startScanlineDecode(
decoder->getInfo().makeColorType(kIndex_8_SkColorType), nullptr, colorStorage, &colorCount);
REPORTER_ASSERT(r, SkCodec::kSuccess == result);
// The rest of the test is uninteresting if kIndex8 is not supported
if (SkCodec::kSuccess != result) {
return;
}
// This should return kInvalidParameters because, in kIndex_8 mode, we must pass in a valid
// colorPtr and a valid colorCountPtr.
result = decoder->startScanlineDecode(
decoder->getInfo().makeColorType(kIndex_8_SkColorType), nullptr, nullptr, nullptr);
REPORTER_ASSERT(r, SkCodec::kInvalidParameters == result);
result = decoder->startScanlineDecode(
decoder->getInfo().makeColorType(kIndex_8_SkColorType));
REPORTER_ASSERT(r, SkCodec::kInvalidParameters == result);
}
DEF_TEST(Codec_Params, r) {
test_invalid_parameters(r, "index8.png");
test_invalid_parameters(r, "mandrill.wbmp");
}
static void codex_test_write_fn(png_structp png_ptr, png_bytep data, png_size_t len) {
SkWStream* sk_stream = (SkWStream*)png_get_io_ptr(png_ptr);
if (!sk_stream->write(data, len)) {
png_error(png_ptr, "sk_write_fn Error!");
}
}
#ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED
DEF_TEST(Codec_pngChunkReader, r) {
// Create a dummy bitmap. Use unpremul RGBA for libpng.
SkBitmap bm;
const int w = 1;
const int h = 1;
const SkImageInfo bmInfo = SkImageInfo::Make(w, h, kRGBA_8888_SkColorType,
kUnpremul_SkAlphaType);
bm.setInfo(bmInfo);
bm.allocPixels();
bm.eraseColor(SK_ColorBLUE);
SkMD5::Digest goodDigest;
md5(bm, &goodDigest);
// Write to a png file.
png_structp png = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
REPORTER_ASSERT(r, png);
if (!png) {
return;
}
png_infop info = png_create_info_struct(png);
REPORTER_ASSERT(r, info);
if (!info) {
png_destroy_write_struct(&png, nullptr);
return;
}
if (setjmp(png_jmpbuf(png))) {
ERRORF(r, "failed writing png");
png_destroy_write_struct(&png, &info);
return;
}
SkDynamicMemoryWStream wStream;
png_set_write_fn(png, (void*) (&wStream), codex_test_write_fn, nullptr);
png_set_IHDR(png, info, (png_uint_32)w, (png_uint_32)h, 8,
PNG_COLOR_TYPE_RGB_ALPHA, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
// Create some chunks that match the Android framework's use.
static png_unknown_chunk gUnknowns[] = {
{ "npOl", (png_byte*)"outline", sizeof("outline"), PNG_HAVE_IHDR },
{ "npLb", (png_byte*)"layoutBounds", sizeof("layoutBounds"), PNG_HAVE_IHDR },
{ "npTc", (png_byte*)"ninePatchData", sizeof("ninePatchData"), PNG_HAVE_IHDR },
};
png_set_keep_unknown_chunks(png, PNG_HANDLE_CHUNK_ALWAYS, (png_byte*)"npOl\0npLb\0npTc\0", 3);
png_set_unknown_chunks(png, info, gUnknowns, SK_ARRAY_COUNT(gUnknowns));
#if PNG_LIBPNG_VER < 10600
/* Deal with unknown chunk location bug in 1.5.x and earlier */
png_set_unknown_chunk_location(png, info, 0, PNG_HAVE_IHDR);
png_set_unknown_chunk_location(png, info, 1, PNG_HAVE_IHDR);
#endif
png_write_info(png, info);
for (int j = 0; j < h; j++) {
png_bytep row = (png_bytep)(bm.getAddr(0, j));
png_write_rows(png, &row, 1);
}
png_write_end(png, info);
png_destroy_write_struct(&png, &info);
class ChunkReader : public SkPngChunkReader {
public:
ChunkReader(skiatest::Reporter* r)
: fReporter(r)
{
this->reset();
}
bool readChunk(const char tag[], const void* data, size_t length) override {
for (size_t i = 0; i < SK_ARRAY_COUNT(gUnknowns); ++i) {
if (!strcmp(tag, (const char*) gUnknowns[i].name)) {
// Tag matches. This should have been the first time we see it.
REPORTER_ASSERT(fReporter, !fSeen[i]);
fSeen[i] = true;
// Data and length should match
REPORTER_ASSERT(fReporter, length == gUnknowns[i].size);
REPORTER_ASSERT(fReporter, !strcmp((const char*) data,
(const char*) gUnknowns[i].data));
return true;
}
}
ERRORF(fReporter, "Saw an unexpected unknown chunk.");
return true;
}
bool allHaveBeenSeen() {
bool ret = true;
for (auto seen : fSeen) {
ret &= seen;
}
return ret;
}
void reset() {
sk_bzero(fSeen, sizeof(fSeen));
}
private:
skiatest::Reporter* fReporter; // Unowned
bool fSeen[3];
};
ChunkReader chunkReader(r);
// Now read the file with SkCodec.
SkAutoTUnref<SkData> data(wStream.copyToData());
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(data, &chunkReader));
REPORTER_ASSERT(r, codec);
if (!codec) {
return;
}
// Now compare to the original.
SkBitmap decodedBm;
decodedBm.setInfo(codec->getInfo());
decodedBm.allocPixels();
SkCodec::Result result = codec->getPixels(codec->getInfo(), decodedBm.getPixels(),
decodedBm.rowBytes());
REPORTER_ASSERT(r, SkCodec::kSuccess == result);
if (decodedBm.colorType() != bm.colorType()) {
SkBitmap tmp;
bool success = decodedBm.copyTo(&tmp, bm.colorType());
REPORTER_ASSERT(r, success);
if (!success) {
return;
}
tmp.swap(decodedBm);
}
compare_to_good_digest(r, goodDigest, decodedBm);
REPORTER_ASSERT(r, chunkReader.allHaveBeenSeen());
// Decoding again will read the chunks again.
chunkReader.reset();
REPORTER_ASSERT(r, !chunkReader.allHaveBeenSeen());
result = codec->getPixels(codec->getInfo(), decodedBm.getPixels(), decodedBm.rowBytes());
REPORTER_ASSERT(r, SkCodec::kSuccess == result);
REPORTER_ASSERT(r, chunkReader.allHaveBeenSeen());
}
#endif // PNG_READ_UNKNOWN_CHUNKS_SUPPORTED
// Stream that can only peek up to a limit
class LimitedPeekingMemStream : public SkStream {
public:
LimitedPeekingMemStream(SkData* data, size_t limit)
: fStream(data)
, fLimit(limit) {}
size_t peek(void* buf, size_t bytes) const override {
return fStream.peek(buf, SkTMin(bytes, fLimit));
}
size_t read(void* buf, size_t bytes) override {
return fStream.read(buf, bytes);
}
bool rewind() override {
return fStream.rewind();
}
bool isAtEnd() const override {
return false;
}
private:
SkMemoryStream fStream;
const size_t fLimit;
};
// Test that even if webp_parse_header fails to peek enough, it will fall back to read()
// + rewind() and succeed.
DEF_TEST(Codec_webp_peek, r) {
const char* path = "baby_tux.webp";
SkString fullPath(GetResourcePath(path));
SkAutoTUnref<SkData> data(SkData::NewFromFileName(fullPath.c_str()));
if (!data) {
SkDebugf("Missing resource '%s'\n", path);
return;
}
// The limit is less than webp needs to peek or read.
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromStream(new LimitedPeekingMemStream(data, 25)));
REPORTER_ASSERT(r, codec);
test_info(r, codec, codec->getInfo(), SkCodec::kSuccess, nullptr);
// Similarly, a stream which does not peek should still succeed.
codec.reset(SkCodec::NewFromStream(new LimitedPeekingMemStream(data, 0)));
REPORTER_ASSERT(r, codec);
test_info(r, codec, codec->getInfo(), SkCodec::kSuccess, nullptr);
}
// SkCodec's wbmp decoder was initially more restrictive than SkImageDecoder.
// It required the second byte to be zero. But SkImageDecoder allowed a couple
// of bits to be 1 (so long as they do not overlap with 0x9F). Test that
// SkCodec now supports an image with these bits set.
DEF_TEST(Codec_wbmp, r) {
const char* path = "mandrill.wbmp";
SkAutoTDelete<SkStream> stream(resource(path));
if (!stream) {
SkDebugf("Missing resource '%s'\n", path);
return;
}
// Modify the stream to contain a second byte with some bits set.
SkAutoTUnref<SkData> data(SkCopyStreamToData(stream));
uint8_t* writeableData = static_cast<uint8_t*>(data->writable_data());
writeableData[1] = static_cast<uint8_t>(~0x9F);
// SkImageDecoder supports this.
SkBitmap bitmap;
REPORTER_ASSERT(r, SkImageDecoder::DecodeMemory(data->data(), data->size(), &bitmap));
// So SkCodec should, too.
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(data));
REPORTER_ASSERT(r, codec);
if (!codec) {
return;
}
test_info(r, codec, codec->getInfo(), SkCodec::kSuccess, nullptr);
}
// wbmp images have a header that can be arbitrarily large, depending on the
// size of the image. We cap the size at 65535, meaning we only need to look at
// 8 bytes to determine whether we can read the image. This is important
// because SkCodec only passes 14 bytes to SkWbmpCodec to determine whether the
// image is a wbmp.
DEF_TEST(Codec_wbmp_max_size, r) {
const unsigned char maxSizeWbmp[] = { 0x00, 0x00, // Header
0x83, 0xFF, 0x7F, // W: 65535
0x83, 0xFF, 0x7F }; // H: 65535
SkAutoTDelete<SkStream> stream(new SkMemoryStream(maxSizeWbmp, sizeof(maxSizeWbmp), false));
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromStream(stream.detach()));
REPORTER_ASSERT(r, codec);
if (!codec) return;
REPORTER_ASSERT(r, codec->getInfo().width() == 65535);
REPORTER_ASSERT(r, codec->getInfo().height() == 65535);
// Now test an image which is too big. Any image with a larger header (i.e.
// has bigger width/height) is also too big.
const unsigned char tooBigWbmp[] = { 0x00, 0x00, // Header
0x84, 0x80, 0x00, // W: 65536
0x84, 0x80, 0x00 }; // H: 65536
stream.reset(new SkMemoryStream(tooBigWbmp, sizeof(tooBigWbmp), false));
codec.reset(SkCodec::NewFromStream(stream.detach()));
REPORTER_ASSERT(r, !codec);
}