d07418c457
https://skia.googlesource.com/skcms.git/+log/68d3f3a95f1b..ef3043bd8110 git log 68d3f3a95f1b..ef3043bd8110 --date=short --no-merges --format='%ad %ae %s' 2019-11-25 brianosman@google.com Run up to 8 iterations of Gauss-Newton, choose the best error Created with: gclient setdep -r skia/third_party/skcms@ef3043bd8110 If this roll has caused a breakage, revert this CL and stop the roller using the controls here: https://autoroll.skia.org/r/skcms-skia-autoroll Please CC bungeman@google.com,mtklein@google.com on the revert to ensure that a human is aware of the problem. To report a problem with the AutoRoller itself, please file a bug: https://bugs.chromium.org/p/skia/issues/entry?template=Autoroller+Bug Documentation for the AutoRoller is here: https://skia.googlesource.com/buildbot/+/master/autoroll/README.md TBR=bungeman@google.com, mtklein@google.com Cq-Include-Trybots: luci.chromium.try:linux-blink-rel Bug: None Change-Id: I0c14b4bdd3601848a2a2c6a9f9c8ec3bacf8f068 Tbr: bungeman@google.com,mtklein@google.com Reviewed-on: https://skia-review.googlesource.com/c/skia/+/256329 Reviewed-by: skia-autoroll <skia-autoroll@skia-public.iam.gserviceaccount.com> Commit-Queue: skia-autoroll <skia-autoroll@skia-public.iam.gserviceaccount.com>
2611 lines
93 KiB
C++
2611 lines
93 KiB
C++
/*
|
|
* Copyright 2018 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "skcms.h"
|
|
#include "skcms_internal.h"
|
|
#include <assert.h>
|
|
#include <float.h>
|
|
#include <limits.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#if defined(__ARM_NEON)
|
|
#include <arm_neon.h>
|
|
#elif defined(__SSE__)
|
|
#include <immintrin.h>
|
|
|
|
#if defined(__clang__)
|
|
// That #include <immintrin.h> is usually enough, but Clang's headers
|
|
// "helpfully" skip including the whole kitchen sink when _MSC_VER is
|
|
// defined, because lots of programs on Windows would include that and
|
|
// it'd be a lot slower. But we want all those headers included so we
|
|
// can use their features after runtime checks later.
|
|
#include <smmintrin.h>
|
|
#include <avxintrin.h>
|
|
#include <avx2intrin.h>
|
|
#include <avx512fintrin.h>
|
|
#include <avx512dqintrin.h>
|
|
#endif
|
|
#endif
|
|
|
|
// sizeof(x) will return size_t, which is 32-bit on some machines and 64-bit on others.
|
|
// We have better testing on 64-bit machines, so force 32-bit machines to behave like 64-bit.
|
|
//
|
|
// Please do not use sizeof() directly, and size_t only when required.
|
|
// (We have no way of enforcing these requests...)
|
|
#define SAFE_SIZEOF(x) ((uint64_t)sizeof(x))
|
|
|
|
// Same sort of thing for _Layout structs with a variable sized array at the end (named "variable").
|
|
#define SAFE_FIXED_SIZE(type) ((uint64_t)offsetof(type, variable))
|
|
|
|
static const union {
|
|
uint32_t bits;
|
|
float f;
|
|
} inf_ = { 0x7f800000 };
|
|
#define INFINITY_ inf_.f
|
|
|
|
#if defined(__clang__) || defined(__GNUC__)
|
|
#define small_memcpy __builtin_memcpy
|
|
#else
|
|
#define small_memcpy memcpy
|
|
#endif
|
|
|
|
static float log2f_(float x) {
|
|
// The first approximation of log2(x) is its exponent 'e', minus 127.
|
|
int32_t bits;
|
|
small_memcpy(&bits, &x, sizeof(bits));
|
|
|
|
float e = (float)bits * (1.0f / (1<<23));
|
|
|
|
// If we use the mantissa too we can refine the error signficantly.
|
|
int32_t m_bits = (bits & 0x007fffff) | 0x3f000000;
|
|
float m;
|
|
small_memcpy(&m, &m_bits, sizeof(m));
|
|
|
|
return (e - 124.225514990f
|
|
- 1.498030302f*m
|
|
- 1.725879990f/(0.3520887068f + m));
|
|
}
|
|
static float logf_(float x) {
|
|
const float ln2 = 0.69314718f;
|
|
return ln2*log2f_(x);
|
|
}
|
|
|
|
static float exp2f_(float x) {
|
|
float fract = x - floorf_(x);
|
|
|
|
float fbits = (1.0f * (1<<23)) * (x + 121.274057500f
|
|
- 1.490129070f*fract
|
|
+ 27.728023300f/(4.84252568f - fract));
|
|
|
|
// Before we cast fbits to int32_t, check for out of range values to pacify UBSAN.
|
|
// INT_MAX is not exactly representable as a float, so exclude it as effectively infinite.
|
|
// INT_MIN is a power of 2 and exactly representable as a float, so it's fine.
|
|
if (fbits >= (float)INT_MAX) {
|
|
return INFINITY_;
|
|
} else if (fbits < (float)INT_MIN) {
|
|
return -INFINITY_;
|
|
}
|
|
|
|
int32_t bits = (int32_t)fbits;
|
|
small_memcpy(&x, &bits, sizeof(x));
|
|
return x;
|
|
}
|
|
|
|
// Not static, as it's used by some test tools.
|
|
float powf_(float x, float y) {
|
|
assert (x >= 0);
|
|
return (x == 0) || (x == 1) ? x
|
|
: exp2f_(log2f_(x) * y);
|
|
}
|
|
|
|
static float expf_(float x) {
|
|
const float log2_e = 1.4426950408889634074f;
|
|
return exp2f_(log2_e * x);
|
|
}
|
|
|
|
static float fmaxf_(float x, float y) { return x > y ? x : y; }
|
|
static float fminf_(float x, float y) { return x < y ? x : y; }
|
|
|
|
static bool isfinitef_(float x) { return 0 == x*0; }
|
|
|
|
static float minus_1_ulp(float x) {
|
|
int32_t bits;
|
|
memcpy(&bits, &x, sizeof(bits));
|
|
bits = bits - 1;
|
|
memcpy(&x, &bits, sizeof(bits));
|
|
return x;
|
|
}
|
|
|
|
// Most transfer functions we work with are sRGBish.
|
|
// For exotic HDR transfer functions, we encode them using a tf.g that makes no sense,
|
|
// and repurpose the other fields to hold the parameters of the HDR functions.
|
|
enum TFKind { Bad, sRGBish, PQish, HLGish, HLGinvish };
|
|
struct TF_PQish { float A,B,C,D,E,F; };
|
|
struct TF_HLGish { float R,G,a,b,c; };
|
|
|
|
static float TFKind_marker(TFKind kind) {
|
|
// We'd use different NaNs, but those aren't guaranteed to be preserved by WASM.
|
|
return -(float)kind;
|
|
}
|
|
|
|
static TFKind classify(const skcms_TransferFunction& tf, TF_PQish* pq = nullptr
|
|
, TF_HLGish* hlg = nullptr) {
|
|
if (tf.g < 0 && (int)tf.g == tf.g) {
|
|
// TODO: sanity checks for PQ/HLG like we do for sRGBish.
|
|
switch ((int)tf.g) {
|
|
case -PQish: if (pq ) { memcpy(pq , &tf.a, sizeof(*pq )); } return PQish;
|
|
case -HLGish: if (hlg) { memcpy(hlg, &tf.a, sizeof(*hlg)); } return HLGish;
|
|
case -HLGinvish: if (hlg) { memcpy(hlg, &tf.a, sizeof(*hlg)); } return HLGinvish;
|
|
}
|
|
return Bad;
|
|
}
|
|
|
|
// Basic sanity checks for sRGBish transfer functions.
|
|
if (isfinitef_(tf.a + tf.b + tf.c + tf.d + tf.e + tf.f + tf.g)
|
|
// a,c,d,g should be non-negative to make any sense.
|
|
&& tf.a >= 0
|
|
&& tf.c >= 0
|
|
&& tf.d >= 0
|
|
&& tf.g >= 0
|
|
// Raising a negative value to a fractional tf->g produces complex numbers.
|
|
&& tf.a * tf.d + tf.b >= 0) {
|
|
return sRGBish;
|
|
}
|
|
|
|
return Bad;
|
|
}
|
|
|
|
bool skcms_TransferFunction_makePQish(skcms_TransferFunction* tf,
|
|
float A, float B, float C,
|
|
float D, float E, float F) {
|
|
*tf = { TFKind_marker(PQish), A,B,C,D,E,F };
|
|
assert(classify(*tf) == PQish);
|
|
return true;
|
|
}
|
|
|
|
bool skcms_TransferFunction_makeHLGish(skcms_TransferFunction* tf,
|
|
float R, float G,
|
|
float a, float b, float c) {
|
|
*tf = { TFKind_marker(HLGish), R,G, a,b,c, 0 };
|
|
assert(classify(*tf) == HLGish);
|
|
return true;
|
|
}
|
|
|
|
float skcms_TransferFunction_eval(const skcms_TransferFunction* tf, float x) {
|
|
float sign = x < 0 ? -1.0f : 1.0f;
|
|
x *= sign;
|
|
|
|
TF_PQish pq;
|
|
TF_HLGish hlg;
|
|
switch (classify(*tf, &pq, &hlg)) {
|
|
case Bad: break;
|
|
|
|
case HLGish: return sign * (x*hlg.R <= 1 ? powf_(x*hlg.R, hlg.G)
|
|
: expf_((x-hlg.c)*hlg.a) + hlg.b);
|
|
|
|
// skcms_TransferFunction_invert() inverts R, G, and a for HLGinvish so this math is fast.
|
|
case HLGinvish: return sign * (x <= 1 ? hlg.R * powf_(x, hlg.G)
|
|
: hlg.a * logf_(x - hlg.b) + hlg.c);
|
|
|
|
|
|
case sRGBish: return sign * (x < tf->d ? tf->c * x + tf->f
|
|
: powf_(tf->a * x + tf->b, tf->g) + tf->e);
|
|
|
|
case PQish: return sign * powf_(fmaxf_(pq.A + pq.B * powf_(x, pq.C), 0)
|
|
/ (pq.D + pq.E * powf_(x, pq.C)),
|
|
pq.F);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static float eval_curve(const skcms_Curve* curve, float x) {
|
|
if (curve->table_entries == 0) {
|
|
return skcms_TransferFunction_eval(&curve->parametric, x);
|
|
}
|
|
|
|
float ix = fmaxf_(0, fminf_(x, 1)) * (curve->table_entries - 1);
|
|
int lo = (int) ix ,
|
|
hi = (int)(float)minus_1_ulp(ix + 1.0f);
|
|
float t = ix - (float)lo;
|
|
|
|
float l, h;
|
|
if (curve->table_8) {
|
|
l = curve->table_8[lo] * (1/255.0f);
|
|
h = curve->table_8[hi] * (1/255.0f);
|
|
} else {
|
|
uint16_t be_l, be_h;
|
|
memcpy(&be_l, curve->table_16 + 2*lo, 2);
|
|
memcpy(&be_h, curve->table_16 + 2*hi, 2);
|
|
uint16_t le_l = ((be_l << 8) | (be_l >> 8)) & 0xffff;
|
|
uint16_t le_h = ((be_h << 8) | (be_h >> 8)) & 0xffff;
|
|
l = le_l * (1/65535.0f);
|
|
h = le_h * (1/65535.0f);
|
|
}
|
|
return l + (h-l)*t;
|
|
}
|
|
|
|
float skcms_MaxRoundtripError(const skcms_Curve* curve, const skcms_TransferFunction* inv_tf) {
|
|
uint32_t N = curve->table_entries > 256 ? curve->table_entries : 256;
|
|
const float dx = 1.0f / (N - 1);
|
|
float err = 0;
|
|
for (uint32_t i = 0; i < N; i++) {
|
|
float x = i * dx,
|
|
y = eval_curve(curve, x);
|
|
err = fmaxf_(err, fabsf_(x - skcms_TransferFunction_eval(inv_tf, y)));
|
|
}
|
|
return err;
|
|
}
|
|
|
|
bool skcms_AreApproximateInverses(const skcms_Curve* curve, const skcms_TransferFunction* inv_tf) {
|
|
return skcms_MaxRoundtripError(curve, inv_tf) < (1/512.0f);
|
|
}
|
|
|
|
// Additional ICC signature values that are only used internally
|
|
enum {
|
|
// File signature
|
|
skcms_Signature_acsp = 0x61637370,
|
|
|
|
// Tag signatures
|
|
skcms_Signature_rTRC = 0x72545243,
|
|
skcms_Signature_gTRC = 0x67545243,
|
|
skcms_Signature_bTRC = 0x62545243,
|
|
skcms_Signature_kTRC = 0x6B545243,
|
|
|
|
skcms_Signature_rXYZ = 0x7258595A,
|
|
skcms_Signature_gXYZ = 0x6758595A,
|
|
skcms_Signature_bXYZ = 0x6258595A,
|
|
|
|
skcms_Signature_A2B0 = 0x41324230,
|
|
skcms_Signature_A2B1 = 0x41324231,
|
|
skcms_Signature_mAB = 0x6D414220,
|
|
|
|
skcms_Signature_CHAD = 0x63686164,
|
|
skcms_Signature_WTPT = 0x77747074,
|
|
|
|
// Type signatures
|
|
skcms_Signature_curv = 0x63757276,
|
|
skcms_Signature_mft1 = 0x6D667431,
|
|
skcms_Signature_mft2 = 0x6D667432,
|
|
skcms_Signature_para = 0x70617261,
|
|
skcms_Signature_sf32 = 0x73663332,
|
|
// XYZ is also a PCS signature, so it's defined in skcms.h
|
|
// skcms_Signature_XYZ = 0x58595A20,
|
|
};
|
|
|
|
static uint16_t read_big_u16(const uint8_t* ptr) {
|
|
uint16_t be;
|
|
memcpy(&be, ptr, sizeof(be));
|
|
#if defined(_MSC_VER)
|
|
return _byteswap_ushort(be);
|
|
#else
|
|
return __builtin_bswap16(be);
|
|
#endif
|
|
}
|
|
|
|
static uint32_t read_big_u32(const uint8_t* ptr) {
|
|
uint32_t be;
|
|
memcpy(&be, ptr, sizeof(be));
|
|
#if defined(_MSC_VER)
|
|
return _byteswap_ulong(be);
|
|
#else
|
|
return __builtin_bswap32(be);
|
|
#endif
|
|
}
|
|
|
|
static int32_t read_big_i32(const uint8_t* ptr) {
|
|
return (int32_t)read_big_u32(ptr);
|
|
}
|
|
|
|
static float read_big_fixed(const uint8_t* ptr) {
|
|
return read_big_i32(ptr) * (1.0f / 65536.0f);
|
|
}
|
|
|
|
// Maps to an in-memory profile so that fields line up to the locations specified
|
|
// in ICC.1:2010, section 7.2
|
|
typedef struct {
|
|
uint8_t size [ 4];
|
|
uint8_t cmm_type [ 4];
|
|
uint8_t version [ 4];
|
|
uint8_t profile_class [ 4];
|
|
uint8_t data_color_space [ 4];
|
|
uint8_t pcs [ 4];
|
|
uint8_t creation_date_time [12];
|
|
uint8_t signature [ 4];
|
|
uint8_t platform [ 4];
|
|
uint8_t flags [ 4];
|
|
uint8_t device_manufacturer [ 4];
|
|
uint8_t device_model [ 4];
|
|
uint8_t device_attributes [ 8];
|
|
uint8_t rendering_intent [ 4];
|
|
uint8_t illuminant_X [ 4];
|
|
uint8_t illuminant_Y [ 4];
|
|
uint8_t illuminant_Z [ 4];
|
|
uint8_t creator [ 4];
|
|
uint8_t profile_id [16];
|
|
uint8_t reserved [28];
|
|
uint8_t tag_count [ 4]; // Technically not part of header, but required
|
|
} header_Layout;
|
|
|
|
typedef struct {
|
|
uint8_t signature [4];
|
|
uint8_t offset [4];
|
|
uint8_t size [4];
|
|
} tag_Layout;
|
|
|
|
static const tag_Layout* get_tag_table(const skcms_ICCProfile* profile) {
|
|
return (const tag_Layout*)(profile->buffer + SAFE_SIZEOF(header_Layout));
|
|
}
|
|
|
|
// s15Fixed16ArrayType is technically variable sized, holding N values. However, the only valid
|
|
// use of the type is for the CHAD tag that stores exactly nine values.
|
|
typedef struct {
|
|
uint8_t type [ 4];
|
|
uint8_t reserved [ 4];
|
|
uint8_t values [36];
|
|
} sf32_Layout;
|
|
|
|
bool skcms_GetCHAD(const skcms_ICCProfile* profile, skcms_Matrix3x3* m) {
|
|
skcms_ICCTag tag;
|
|
if (!skcms_GetTagBySignature(profile, skcms_Signature_CHAD, &tag)) {
|
|
return false;
|
|
}
|
|
|
|
if (tag.type != skcms_Signature_sf32 || tag.size < SAFE_SIZEOF(sf32_Layout)) {
|
|
return false;
|
|
}
|
|
|
|
const sf32_Layout* sf32Tag = (const sf32_Layout*)tag.buf;
|
|
const uint8_t* values = sf32Tag->values;
|
|
for (int r = 0; r < 3; ++r)
|
|
for (int c = 0; c < 3; ++c, values += 4) {
|
|
m->vals[r][c] = read_big_fixed(values);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// XYZType is technically variable sized, holding N XYZ triples. However, the only valid uses of
|
|
// the type are for tags/data that store exactly one triple.
|
|
typedef struct {
|
|
uint8_t type [4];
|
|
uint8_t reserved [4];
|
|
uint8_t X [4];
|
|
uint8_t Y [4];
|
|
uint8_t Z [4];
|
|
} XYZ_Layout;
|
|
|
|
static bool read_tag_xyz(const skcms_ICCTag* tag, float* x, float* y, float* z) {
|
|
if (tag->type != skcms_Signature_XYZ || tag->size < SAFE_SIZEOF(XYZ_Layout)) {
|
|
return false;
|
|
}
|
|
|
|
const XYZ_Layout* xyzTag = (const XYZ_Layout*)tag->buf;
|
|
|
|
*x = read_big_fixed(xyzTag->X);
|
|
*y = read_big_fixed(xyzTag->Y);
|
|
*z = read_big_fixed(xyzTag->Z);
|
|
return true;
|
|
}
|
|
|
|
bool skcms_GetWTPT(const skcms_ICCProfile* profile, float xyz[3]) {
|
|
skcms_ICCTag tag;
|
|
return skcms_GetTagBySignature(profile, skcms_Signature_WTPT, &tag) &&
|
|
read_tag_xyz(&tag, &xyz[0], &xyz[1], &xyz[2]);
|
|
}
|
|
|
|
static bool read_to_XYZD50(const skcms_ICCTag* rXYZ, const skcms_ICCTag* gXYZ,
|
|
const skcms_ICCTag* bXYZ, skcms_Matrix3x3* toXYZ) {
|
|
return read_tag_xyz(rXYZ, &toXYZ->vals[0][0], &toXYZ->vals[1][0], &toXYZ->vals[2][0]) &&
|
|
read_tag_xyz(gXYZ, &toXYZ->vals[0][1], &toXYZ->vals[1][1], &toXYZ->vals[2][1]) &&
|
|
read_tag_xyz(bXYZ, &toXYZ->vals[0][2], &toXYZ->vals[1][2], &toXYZ->vals[2][2]);
|
|
}
|
|
|
|
typedef struct {
|
|
uint8_t type [4];
|
|
uint8_t reserved_a [4];
|
|
uint8_t function_type [2];
|
|
uint8_t reserved_b [2];
|
|
uint8_t variable [1/*variable*/]; // 1, 3, 4, 5, or 7 s15.16, depending on function_type
|
|
} para_Layout;
|
|
|
|
static bool read_curve_para(const uint8_t* buf, uint32_t size,
|
|
skcms_Curve* curve, uint32_t* curve_size) {
|
|
if (size < SAFE_FIXED_SIZE(para_Layout)) {
|
|
return false;
|
|
}
|
|
|
|
const para_Layout* paraTag = (const para_Layout*)buf;
|
|
|
|
enum { kG = 0, kGAB = 1, kGABC = 2, kGABCD = 3, kGABCDEF = 4 };
|
|
uint16_t function_type = read_big_u16(paraTag->function_type);
|
|
if (function_type > kGABCDEF) {
|
|
return false;
|
|
}
|
|
|
|
static const uint32_t curve_bytes[] = { 4, 12, 16, 20, 28 };
|
|
if (size < SAFE_FIXED_SIZE(para_Layout) + curve_bytes[function_type]) {
|
|
return false;
|
|
}
|
|
|
|
if (curve_size) {
|
|
*curve_size = SAFE_FIXED_SIZE(para_Layout) + curve_bytes[function_type];
|
|
}
|
|
|
|
curve->table_entries = 0;
|
|
curve->parametric.a = 1.0f;
|
|
curve->parametric.b = 0.0f;
|
|
curve->parametric.c = 0.0f;
|
|
curve->parametric.d = 0.0f;
|
|
curve->parametric.e = 0.0f;
|
|
curve->parametric.f = 0.0f;
|
|
curve->parametric.g = read_big_fixed(paraTag->variable);
|
|
|
|
switch (function_type) {
|
|
case kGAB:
|
|
curve->parametric.a = read_big_fixed(paraTag->variable + 4);
|
|
curve->parametric.b = read_big_fixed(paraTag->variable + 8);
|
|
if (curve->parametric.a == 0) {
|
|
return false;
|
|
}
|
|
curve->parametric.d = -curve->parametric.b / curve->parametric.a;
|
|
break;
|
|
case kGABC:
|
|
curve->parametric.a = read_big_fixed(paraTag->variable + 4);
|
|
curve->parametric.b = read_big_fixed(paraTag->variable + 8);
|
|
curve->parametric.e = read_big_fixed(paraTag->variable + 12);
|
|
if (curve->parametric.a == 0) {
|
|
return false;
|
|
}
|
|
curve->parametric.d = -curve->parametric.b / curve->parametric.a;
|
|
curve->parametric.f = curve->parametric.e;
|
|
break;
|
|
case kGABCD:
|
|
curve->parametric.a = read_big_fixed(paraTag->variable + 4);
|
|
curve->parametric.b = read_big_fixed(paraTag->variable + 8);
|
|
curve->parametric.c = read_big_fixed(paraTag->variable + 12);
|
|
curve->parametric.d = read_big_fixed(paraTag->variable + 16);
|
|
break;
|
|
case kGABCDEF:
|
|
curve->parametric.a = read_big_fixed(paraTag->variable + 4);
|
|
curve->parametric.b = read_big_fixed(paraTag->variable + 8);
|
|
curve->parametric.c = read_big_fixed(paraTag->variable + 12);
|
|
curve->parametric.d = read_big_fixed(paraTag->variable + 16);
|
|
curve->parametric.e = read_big_fixed(paraTag->variable + 20);
|
|
curve->parametric.f = read_big_fixed(paraTag->variable + 24);
|
|
break;
|
|
}
|
|
return classify(curve->parametric) == sRGBish;
|
|
}
|
|
|
|
typedef struct {
|
|
uint8_t type [4];
|
|
uint8_t reserved [4];
|
|
uint8_t value_count [4];
|
|
uint8_t variable [1/*variable*/]; // value_count, 8.8 if 1, uint16 (n*65535) if > 1
|
|
} curv_Layout;
|
|
|
|
static bool read_curve_curv(const uint8_t* buf, uint32_t size,
|
|
skcms_Curve* curve, uint32_t* curve_size) {
|
|
if (size < SAFE_FIXED_SIZE(curv_Layout)) {
|
|
return false;
|
|
}
|
|
|
|
const curv_Layout* curvTag = (const curv_Layout*)buf;
|
|
|
|
uint32_t value_count = read_big_u32(curvTag->value_count);
|
|
if (size < SAFE_FIXED_SIZE(curv_Layout) + value_count * SAFE_SIZEOF(uint16_t)) {
|
|
return false;
|
|
}
|
|
|
|
if (curve_size) {
|
|
*curve_size = SAFE_FIXED_SIZE(curv_Layout) + value_count * SAFE_SIZEOF(uint16_t);
|
|
}
|
|
|
|
if (value_count < 2) {
|
|
curve->table_entries = 0;
|
|
curve->parametric.a = 1.0f;
|
|
curve->parametric.b = 0.0f;
|
|
curve->parametric.c = 0.0f;
|
|
curve->parametric.d = 0.0f;
|
|
curve->parametric.e = 0.0f;
|
|
curve->parametric.f = 0.0f;
|
|
if (value_count == 0) {
|
|
// Empty tables are a shorthand for an identity curve
|
|
curve->parametric.g = 1.0f;
|
|
} else {
|
|
// Single entry tables are a shorthand for simple gamma
|
|
curve->parametric.g = read_big_u16(curvTag->variable) * (1.0f / 256.0f);
|
|
}
|
|
} else {
|
|
curve->table_8 = nullptr;
|
|
curve->table_16 = curvTag->variable;
|
|
curve->table_entries = value_count;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Parses both curveType and parametricCurveType data. Ensures that at most 'size' bytes are read.
|
|
// If curve_size is not nullptr, writes the number of bytes used by the curve in (*curve_size).
|
|
static bool read_curve(const uint8_t* buf, uint32_t size,
|
|
skcms_Curve* curve, uint32_t* curve_size) {
|
|
if (!buf || size < 4 || !curve) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t type = read_big_u32(buf);
|
|
if (type == skcms_Signature_para) {
|
|
return read_curve_para(buf, size, curve, curve_size);
|
|
} else if (type == skcms_Signature_curv) {
|
|
return read_curve_curv(buf, size, curve, curve_size);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// mft1 and mft2 share a large chunk of data
|
|
typedef struct {
|
|
uint8_t type [ 4];
|
|
uint8_t reserved_a [ 4];
|
|
uint8_t input_channels [ 1];
|
|
uint8_t output_channels [ 1];
|
|
uint8_t grid_points [ 1];
|
|
uint8_t reserved_b [ 1];
|
|
uint8_t matrix [36];
|
|
} mft_CommonLayout;
|
|
|
|
typedef struct {
|
|
mft_CommonLayout common [1];
|
|
|
|
uint8_t variable [1/*variable*/];
|
|
} mft1_Layout;
|
|
|
|
typedef struct {
|
|
mft_CommonLayout common [1];
|
|
|
|
uint8_t input_table_entries [2];
|
|
uint8_t output_table_entries [2];
|
|
uint8_t variable [1/*variable*/];
|
|
} mft2_Layout;
|
|
|
|
static bool read_mft_common(const mft_CommonLayout* mftTag, skcms_A2B* a2b) {
|
|
// MFT matrices are applied before the first set of curves, but must be identity unless the
|
|
// input is PCSXYZ. We don't support PCSXYZ profiles, so we ignore this matrix. Note that the
|
|
// matrix in skcms_A2B is applied later in the pipe, so supporting this would require another
|
|
// field/flag.
|
|
a2b->matrix_channels = 0;
|
|
|
|
a2b->input_channels = mftTag->input_channels[0];
|
|
a2b->output_channels = mftTag->output_channels[0];
|
|
|
|
// We require exactly three (ie XYZ/Lab/RGB) output channels
|
|
if (a2b->output_channels != ARRAY_COUNT(a2b->output_curves)) {
|
|
return false;
|
|
}
|
|
// We require at least one, and no more than four (ie CMYK) input channels
|
|
if (a2b->input_channels < 1 || a2b->input_channels > ARRAY_COUNT(a2b->input_curves)) {
|
|
return false;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < a2b->input_channels; ++i) {
|
|
a2b->grid_points[i] = mftTag->grid_points[0];
|
|
}
|
|
// The grid only makes sense with at least two points along each axis
|
|
if (a2b->grid_points[0] < 2) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool init_a2b_tables(const uint8_t* table_base, uint64_t max_tables_len, uint32_t byte_width,
|
|
uint32_t input_table_entries, uint32_t output_table_entries,
|
|
skcms_A2B* a2b) {
|
|
// byte_width is 1 or 2, [input|output]_table_entries are in [2, 4096], so no overflow
|
|
uint32_t byte_len_per_input_table = input_table_entries * byte_width;
|
|
uint32_t byte_len_per_output_table = output_table_entries * byte_width;
|
|
|
|
// [input|output]_channels are <= 4, so still no overflow
|
|
uint32_t byte_len_all_input_tables = a2b->input_channels * byte_len_per_input_table;
|
|
uint32_t byte_len_all_output_tables = a2b->output_channels * byte_len_per_output_table;
|
|
|
|
uint64_t grid_size = a2b->output_channels * byte_width;
|
|
for (uint32_t axis = 0; axis < a2b->input_channels; ++axis) {
|
|
grid_size *= a2b->grid_points[axis];
|
|
}
|
|
|
|
if (max_tables_len < byte_len_all_input_tables + grid_size + byte_len_all_output_tables) {
|
|
return false;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < a2b->input_channels; ++i) {
|
|
a2b->input_curves[i].table_entries = input_table_entries;
|
|
if (byte_width == 1) {
|
|
a2b->input_curves[i].table_8 = table_base + i * byte_len_per_input_table;
|
|
a2b->input_curves[i].table_16 = nullptr;
|
|
} else {
|
|
a2b->input_curves[i].table_8 = nullptr;
|
|
a2b->input_curves[i].table_16 = table_base + i * byte_len_per_input_table;
|
|
}
|
|
}
|
|
|
|
if (byte_width == 1) {
|
|
a2b->grid_8 = table_base + byte_len_all_input_tables;
|
|
a2b->grid_16 = nullptr;
|
|
} else {
|
|
a2b->grid_8 = nullptr;
|
|
a2b->grid_16 = table_base + byte_len_all_input_tables;
|
|
}
|
|
|
|
const uint8_t* output_table_base = table_base + byte_len_all_input_tables + grid_size;
|
|
for (uint32_t i = 0; i < a2b->output_channels; ++i) {
|
|
a2b->output_curves[i].table_entries = output_table_entries;
|
|
if (byte_width == 1) {
|
|
a2b->output_curves[i].table_8 = output_table_base + i * byte_len_per_output_table;
|
|
a2b->output_curves[i].table_16 = nullptr;
|
|
} else {
|
|
a2b->output_curves[i].table_8 = nullptr;
|
|
a2b->output_curves[i].table_16 = output_table_base + i * byte_len_per_output_table;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool read_tag_mft1(const skcms_ICCTag* tag, skcms_A2B* a2b) {
|
|
if (tag->size < SAFE_FIXED_SIZE(mft1_Layout)) {
|
|
return false;
|
|
}
|
|
|
|
const mft1_Layout* mftTag = (const mft1_Layout*)tag->buf;
|
|
if (!read_mft_common(mftTag->common, a2b)) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t input_table_entries = 256;
|
|
uint32_t output_table_entries = 256;
|
|
|
|
return init_a2b_tables(mftTag->variable, tag->size - SAFE_FIXED_SIZE(mft1_Layout), 1,
|
|
input_table_entries, output_table_entries, a2b);
|
|
}
|
|
|
|
static bool read_tag_mft2(const skcms_ICCTag* tag, skcms_A2B* a2b) {
|
|
if (tag->size < SAFE_FIXED_SIZE(mft2_Layout)) {
|
|
return false;
|
|
}
|
|
|
|
const mft2_Layout* mftTag = (const mft2_Layout*)tag->buf;
|
|
if (!read_mft_common(mftTag->common, a2b)) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t input_table_entries = read_big_u16(mftTag->input_table_entries);
|
|
uint32_t output_table_entries = read_big_u16(mftTag->output_table_entries);
|
|
|
|
// ICC spec mandates that 2 <= table_entries <= 4096
|
|
if (input_table_entries < 2 || input_table_entries > 4096 ||
|
|
output_table_entries < 2 || output_table_entries > 4096) {
|
|
return false;
|
|
}
|
|
|
|
return init_a2b_tables(mftTag->variable, tag->size - SAFE_FIXED_SIZE(mft2_Layout), 2,
|
|
input_table_entries, output_table_entries, a2b);
|
|
}
|
|
|
|
static bool read_curves(const uint8_t* buf, uint32_t size, uint32_t curve_offset,
|
|
uint32_t num_curves, skcms_Curve* curves) {
|
|
for (uint32_t i = 0; i < num_curves; ++i) {
|
|
if (curve_offset > size) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t curve_bytes;
|
|
if (!read_curve(buf + curve_offset, size - curve_offset, &curves[i], &curve_bytes)) {
|
|
return false;
|
|
}
|
|
|
|
if (curve_bytes > UINT32_MAX - 3) {
|
|
return false;
|
|
}
|
|
curve_bytes = (curve_bytes + 3) & ~3U;
|
|
|
|
uint64_t new_offset_64 = (uint64_t)curve_offset + curve_bytes;
|
|
curve_offset = (uint32_t)new_offset_64;
|
|
if (new_offset_64 != curve_offset) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
typedef struct {
|
|
uint8_t type [ 4];
|
|
uint8_t reserved_a [ 4];
|
|
uint8_t input_channels [ 1];
|
|
uint8_t output_channels [ 1];
|
|
uint8_t reserved_b [ 2];
|
|
uint8_t b_curve_offset [ 4];
|
|
uint8_t matrix_offset [ 4];
|
|
uint8_t m_curve_offset [ 4];
|
|
uint8_t clut_offset [ 4];
|
|
uint8_t a_curve_offset [ 4];
|
|
} mAB_Layout;
|
|
|
|
typedef struct {
|
|
uint8_t grid_points [16];
|
|
uint8_t grid_byte_width [ 1];
|
|
uint8_t reserved [ 3];
|
|
uint8_t variable [1/*variable*/];
|
|
} mABCLUT_Layout;
|
|
|
|
static bool read_tag_mab(const skcms_ICCTag* tag, skcms_A2B* a2b, bool pcs_is_xyz) {
|
|
if (tag->size < SAFE_SIZEOF(mAB_Layout)) {
|
|
return false;
|
|
}
|
|
|
|
const mAB_Layout* mABTag = (const mAB_Layout*)tag->buf;
|
|
|
|
a2b->input_channels = mABTag->input_channels[0];
|
|
a2b->output_channels = mABTag->output_channels[0];
|
|
|
|
// We require exactly three (ie XYZ/Lab/RGB) output channels
|
|
if (a2b->output_channels != ARRAY_COUNT(a2b->output_curves)) {
|
|
return false;
|
|
}
|
|
// We require no more than four (ie CMYK) input channels
|
|
if (a2b->input_channels > ARRAY_COUNT(a2b->input_curves)) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t b_curve_offset = read_big_u32(mABTag->b_curve_offset);
|
|
uint32_t matrix_offset = read_big_u32(mABTag->matrix_offset);
|
|
uint32_t m_curve_offset = read_big_u32(mABTag->m_curve_offset);
|
|
uint32_t clut_offset = read_big_u32(mABTag->clut_offset);
|
|
uint32_t a_curve_offset = read_big_u32(mABTag->a_curve_offset);
|
|
|
|
// "B" curves must be present
|
|
if (0 == b_curve_offset) {
|
|
return false;
|
|
}
|
|
|
|
if (!read_curves(tag->buf, tag->size, b_curve_offset, a2b->output_channels,
|
|
a2b->output_curves)) {
|
|
return false;
|
|
}
|
|
|
|
// "M" curves and Matrix must be used together
|
|
if (0 != m_curve_offset) {
|
|
if (0 == matrix_offset) {
|
|
return false;
|
|
}
|
|
a2b->matrix_channels = a2b->output_channels;
|
|
if (!read_curves(tag->buf, tag->size, m_curve_offset, a2b->matrix_channels,
|
|
a2b->matrix_curves)) {
|
|
return false;
|
|
}
|
|
|
|
// Read matrix, which is stored as a row-major 3x3, followed by the fourth column
|
|
if (tag->size < matrix_offset + 12 * SAFE_SIZEOF(uint32_t)) {
|
|
return false;
|
|
}
|
|
float encoding_factor = pcs_is_xyz ? 65535 / 32768.0f : 1.0f;
|
|
const uint8_t* mtx_buf = tag->buf + matrix_offset;
|
|
a2b->matrix.vals[0][0] = encoding_factor * read_big_fixed(mtx_buf + 0);
|
|
a2b->matrix.vals[0][1] = encoding_factor * read_big_fixed(mtx_buf + 4);
|
|
a2b->matrix.vals[0][2] = encoding_factor * read_big_fixed(mtx_buf + 8);
|
|
a2b->matrix.vals[1][0] = encoding_factor * read_big_fixed(mtx_buf + 12);
|
|
a2b->matrix.vals[1][1] = encoding_factor * read_big_fixed(mtx_buf + 16);
|
|
a2b->matrix.vals[1][2] = encoding_factor * read_big_fixed(mtx_buf + 20);
|
|
a2b->matrix.vals[2][0] = encoding_factor * read_big_fixed(mtx_buf + 24);
|
|
a2b->matrix.vals[2][1] = encoding_factor * read_big_fixed(mtx_buf + 28);
|
|
a2b->matrix.vals[2][2] = encoding_factor * read_big_fixed(mtx_buf + 32);
|
|
a2b->matrix.vals[0][3] = encoding_factor * read_big_fixed(mtx_buf + 36);
|
|
a2b->matrix.vals[1][3] = encoding_factor * read_big_fixed(mtx_buf + 40);
|
|
a2b->matrix.vals[2][3] = encoding_factor * read_big_fixed(mtx_buf + 44);
|
|
} else {
|
|
if (0 != matrix_offset) {
|
|
return false;
|
|
}
|
|
a2b->matrix_channels = 0;
|
|
}
|
|
|
|
// "A" curves and CLUT must be used together
|
|
if (0 != a_curve_offset) {
|
|
if (0 == clut_offset) {
|
|
return false;
|
|
}
|
|
if (!read_curves(tag->buf, tag->size, a_curve_offset, a2b->input_channels,
|
|
a2b->input_curves)) {
|
|
return false;
|
|
}
|
|
|
|
if (tag->size < clut_offset + SAFE_FIXED_SIZE(mABCLUT_Layout)) {
|
|
return false;
|
|
}
|
|
const mABCLUT_Layout* clut = (const mABCLUT_Layout*)(tag->buf + clut_offset);
|
|
|
|
if (clut->grid_byte_width[0] == 1) {
|
|
a2b->grid_8 = clut->variable;
|
|
a2b->grid_16 = nullptr;
|
|
} else if (clut->grid_byte_width[0] == 2) {
|
|
a2b->grid_8 = nullptr;
|
|
a2b->grid_16 = clut->variable;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
uint64_t grid_size = a2b->output_channels * clut->grid_byte_width[0];
|
|
for (uint32_t i = 0; i < a2b->input_channels; ++i) {
|
|
a2b->grid_points[i] = clut->grid_points[i];
|
|
// The grid only makes sense with at least two points along each axis
|
|
if (a2b->grid_points[i] < 2) {
|
|
return false;
|
|
}
|
|
grid_size *= a2b->grid_points[i];
|
|
}
|
|
if (tag->size < clut_offset + SAFE_FIXED_SIZE(mABCLUT_Layout) + grid_size) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (0 != clut_offset) {
|
|
return false;
|
|
}
|
|
|
|
// If there is no CLUT, the number of input and output channels must match
|
|
if (a2b->input_channels != a2b->output_channels) {
|
|
return false;
|
|
}
|
|
|
|
// Zero out the number of input channels to signal that we're skipping this stage
|
|
a2b->input_channels = 0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// If you pass f, we'll fit a possibly-non-zero value for *f.
|
|
// If you pass nullptr, we'll assume you want *f to be treated as zero.
|
|
static int fit_linear(const skcms_Curve* curve, int N, float tol,
|
|
float* c, float* d, float* f = nullptr) {
|
|
assert(N > 1);
|
|
// We iteratively fit the first points to the TF's linear piece.
|
|
// We want the cx + f line to pass through the first and last points we fit exactly.
|
|
//
|
|
// As we walk along the points we find the minimum and maximum slope of the line before the
|
|
// error would exceed our tolerance. We stop when the range [slope_min, slope_max] becomes
|
|
// emtpy, when we definitely can't add any more points.
|
|
//
|
|
// Some points' error intervals may intersect the running interval but not lie fully
|
|
// within it. So we keep track of the last point we saw that is a valid end point candidate,
|
|
// and once the search is done, back up to build the line through *that* point.
|
|
const float dx = 1.0f / (N - 1);
|
|
|
|
int lin_points = 1;
|
|
|
|
float f_zero = 0.0f;
|
|
if (f) {
|
|
*f = eval_curve(curve, 0);
|
|
} else {
|
|
f = &f_zero;
|
|
}
|
|
|
|
|
|
float slope_min = -INFINITY_;
|
|
float slope_max = +INFINITY_;
|
|
for (int i = 1; i < N; ++i) {
|
|
float x = i * dx;
|
|
float y = eval_curve(curve, x);
|
|
|
|
float slope_max_i = (y + tol - *f) / x,
|
|
slope_min_i = (y - tol - *f) / x;
|
|
if (slope_max_i < slope_min || slope_max < slope_min_i) {
|
|
// Slope intervals would no longer overlap.
|
|
break;
|
|
}
|
|
slope_max = fminf_(slope_max, slope_max_i);
|
|
slope_min = fmaxf_(slope_min, slope_min_i);
|
|
|
|
float cur_slope = (y - *f) / x;
|
|
if (slope_min <= cur_slope && cur_slope <= slope_max) {
|
|
lin_points = i + 1;
|
|
*c = cur_slope;
|
|
}
|
|
}
|
|
|
|
// Set D to the last point that met our tolerance.
|
|
*d = (lin_points - 1) * dx;
|
|
return lin_points;
|
|
}
|
|
|
|
static bool read_a2b(const skcms_ICCTag* tag, skcms_A2B* a2b, bool pcs_is_xyz) {
|
|
bool ok = false;
|
|
if (tag->type == skcms_Signature_mft1) {
|
|
ok = read_tag_mft1(tag, a2b);
|
|
} else if (tag->type == skcms_Signature_mft2) {
|
|
ok = read_tag_mft2(tag, a2b);
|
|
} else if (tag->type == skcms_Signature_mAB) {
|
|
ok = read_tag_mab(tag, a2b, pcs_is_xyz);
|
|
}
|
|
if (!ok) {
|
|
return false;
|
|
}
|
|
|
|
// Detect and canonicalize identity tables.
|
|
skcms_Curve* curves[] = {
|
|
a2b->input_channels > 0 ? a2b->input_curves + 0 : nullptr,
|
|
a2b->input_channels > 1 ? a2b->input_curves + 1 : nullptr,
|
|
a2b->input_channels > 2 ? a2b->input_curves + 2 : nullptr,
|
|
a2b->input_channels > 3 ? a2b->input_curves + 3 : nullptr,
|
|
a2b->matrix_channels > 0 ? a2b->matrix_curves + 0 : nullptr,
|
|
a2b->matrix_channels > 1 ? a2b->matrix_curves + 1 : nullptr,
|
|
a2b->matrix_channels > 2 ? a2b->matrix_curves + 2 : nullptr,
|
|
a2b->output_channels > 0 ? a2b->output_curves + 0 : nullptr,
|
|
a2b->output_channels > 1 ? a2b->output_curves + 1 : nullptr,
|
|
a2b->output_channels > 2 ? a2b->output_curves + 2 : nullptr,
|
|
};
|
|
|
|
for (int i = 0; i < ARRAY_COUNT(curves); i++) {
|
|
skcms_Curve* curve = curves[i];
|
|
|
|
if (curve && curve->table_entries && curve->table_entries <= (uint32_t)INT_MAX) {
|
|
int N = (int)curve->table_entries;
|
|
|
|
float c = 0.0f, d = 0.0f, f = 0.0f;
|
|
if (N == fit_linear(curve, N, 1.0f/(2*N), &c,&d,&f)
|
|
&& c == 1.0f
|
|
&& f == 0.0f) {
|
|
curve->table_entries = 0;
|
|
curve->table_8 = nullptr;
|
|
curve->table_16 = nullptr;
|
|
curve->parametric = skcms_TransferFunction{1,1,0,0,0,0,0};
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void skcms_GetTagByIndex(const skcms_ICCProfile* profile, uint32_t idx, skcms_ICCTag* tag) {
|
|
if (!profile || !profile->buffer || !tag) { return; }
|
|
if (idx > profile->tag_count) { return; }
|
|
const tag_Layout* tags = get_tag_table(profile);
|
|
tag->signature = read_big_u32(tags[idx].signature);
|
|
tag->size = read_big_u32(tags[idx].size);
|
|
tag->buf = read_big_u32(tags[idx].offset) + profile->buffer;
|
|
tag->type = read_big_u32(tag->buf);
|
|
}
|
|
|
|
bool skcms_GetTagBySignature(const skcms_ICCProfile* profile, uint32_t sig, skcms_ICCTag* tag) {
|
|
if (!profile || !profile->buffer || !tag) { return false; }
|
|
const tag_Layout* tags = get_tag_table(profile);
|
|
for (uint32_t i = 0; i < profile->tag_count; ++i) {
|
|
if (read_big_u32(tags[i].signature) == sig) {
|
|
tag->signature = sig;
|
|
tag->size = read_big_u32(tags[i].size);
|
|
tag->buf = read_big_u32(tags[i].offset) + profile->buffer;
|
|
tag->type = read_big_u32(tag->buf);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool usable_as_src(const skcms_ICCProfile* profile) {
|
|
return profile->has_A2B
|
|
|| (profile->has_trc && profile->has_toXYZD50);
|
|
}
|
|
|
|
bool skcms_Parse(const void* buf, size_t len, skcms_ICCProfile* profile) {
|
|
assert(SAFE_SIZEOF(header_Layout) == 132);
|
|
|
|
if (!profile) {
|
|
return false;
|
|
}
|
|
memset(profile, 0, SAFE_SIZEOF(*profile));
|
|
|
|
if (len < SAFE_SIZEOF(header_Layout)) {
|
|
return false;
|
|
}
|
|
|
|
// Byte-swap all header fields
|
|
const header_Layout* header = (const header_Layout*)buf;
|
|
profile->buffer = (const uint8_t*)buf;
|
|
profile->size = read_big_u32(header->size);
|
|
uint32_t version = read_big_u32(header->version);
|
|
profile->data_color_space = read_big_u32(header->data_color_space);
|
|
profile->pcs = read_big_u32(header->pcs);
|
|
uint32_t signature = read_big_u32(header->signature);
|
|
float illuminant_X = read_big_fixed(header->illuminant_X);
|
|
float illuminant_Y = read_big_fixed(header->illuminant_Y);
|
|
float illuminant_Z = read_big_fixed(header->illuminant_Z);
|
|
profile->tag_count = read_big_u32(header->tag_count);
|
|
|
|
// Validate signature, size (smaller than buffer, large enough to hold tag table),
|
|
// and major version
|
|
uint64_t tag_table_size = profile->tag_count * SAFE_SIZEOF(tag_Layout);
|
|
if (signature != skcms_Signature_acsp ||
|
|
profile->size > len ||
|
|
profile->size < SAFE_SIZEOF(header_Layout) + tag_table_size ||
|
|
(version >> 24) > 4) {
|
|
return false;
|
|
}
|
|
|
|
// Validate that illuminant is D50 white
|
|
if (fabsf_(illuminant_X - 0.9642f) > 0.0100f ||
|
|
fabsf_(illuminant_Y - 1.0000f) > 0.0100f ||
|
|
fabsf_(illuminant_Z - 0.8249f) > 0.0100f) {
|
|
return false;
|
|
}
|
|
|
|
// Validate that all tag entries have sane offset + size
|
|
const tag_Layout* tags = get_tag_table(profile);
|
|
for (uint32_t i = 0; i < profile->tag_count; ++i) {
|
|
uint32_t tag_offset = read_big_u32(tags[i].offset);
|
|
uint32_t tag_size = read_big_u32(tags[i].size);
|
|
uint64_t tag_end = (uint64_t)tag_offset + (uint64_t)tag_size;
|
|
if (tag_size < 4 || tag_end > profile->size) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (profile->pcs != skcms_Signature_XYZ && profile->pcs != skcms_Signature_Lab) {
|
|
return false;
|
|
}
|
|
|
|
bool pcs_is_xyz = profile->pcs == skcms_Signature_XYZ;
|
|
|
|
// Pre-parse commonly used tags.
|
|
skcms_ICCTag kTRC;
|
|
if (profile->data_color_space == skcms_Signature_Gray &&
|
|
skcms_GetTagBySignature(profile, skcms_Signature_kTRC, &kTRC)) {
|
|
if (!read_curve(kTRC.buf, kTRC.size, &profile->trc[0], nullptr)) {
|
|
// Malformed tag
|
|
return false;
|
|
}
|
|
profile->trc[1] = profile->trc[0];
|
|
profile->trc[2] = profile->trc[0];
|
|
profile->has_trc = true;
|
|
|
|
if (pcs_is_xyz) {
|
|
profile->toXYZD50.vals[0][0] = illuminant_X;
|
|
profile->toXYZD50.vals[1][1] = illuminant_Y;
|
|
profile->toXYZD50.vals[2][2] = illuminant_Z;
|
|
profile->has_toXYZD50 = true;
|
|
}
|
|
} else {
|
|
skcms_ICCTag rTRC, gTRC, bTRC;
|
|
if (skcms_GetTagBySignature(profile, skcms_Signature_rTRC, &rTRC) &&
|
|
skcms_GetTagBySignature(profile, skcms_Signature_gTRC, &gTRC) &&
|
|
skcms_GetTagBySignature(profile, skcms_Signature_bTRC, &bTRC)) {
|
|
if (!read_curve(rTRC.buf, rTRC.size, &profile->trc[0], nullptr) ||
|
|
!read_curve(gTRC.buf, gTRC.size, &profile->trc[1], nullptr) ||
|
|
!read_curve(bTRC.buf, bTRC.size, &profile->trc[2], nullptr)) {
|
|
// Malformed TRC tags
|
|
return false;
|
|
}
|
|
profile->has_trc = true;
|
|
}
|
|
|
|
skcms_ICCTag rXYZ, gXYZ, bXYZ;
|
|
if (skcms_GetTagBySignature(profile, skcms_Signature_rXYZ, &rXYZ) &&
|
|
skcms_GetTagBySignature(profile, skcms_Signature_gXYZ, &gXYZ) &&
|
|
skcms_GetTagBySignature(profile, skcms_Signature_bXYZ, &bXYZ)) {
|
|
if (!read_to_XYZD50(&rXYZ, &gXYZ, &bXYZ, &profile->toXYZD50)) {
|
|
// Malformed XYZ tags
|
|
return false;
|
|
}
|
|
profile->has_toXYZD50 = true;
|
|
}
|
|
}
|
|
|
|
skcms_ICCTag a2b_tag;
|
|
|
|
// For now, we're preferring A2B0, like Skia does and the ICC spec tells us to.
|
|
// TODO: prefer A2B1 (relative colormetric) over A2B0 (perceptual)?
|
|
// This breaks with the ICC spec, but we think it's a good idea, given that TRC curves
|
|
// and all our known users are thinking exclusively in terms of relative colormetric.
|
|
const uint32_t sigs[] = { skcms_Signature_A2B0, skcms_Signature_A2B1 };
|
|
for (int i = 0; i < ARRAY_COUNT(sigs); i++) {
|
|
if (skcms_GetTagBySignature(profile, sigs[i], &a2b_tag)) {
|
|
if (!read_a2b(&a2b_tag, &profile->A2B, pcs_is_xyz)) {
|
|
// Malformed A2B tag
|
|
return false;
|
|
}
|
|
profile->has_A2B = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return usable_as_src(profile);
|
|
}
|
|
|
|
|
|
const skcms_ICCProfile* skcms_sRGB_profile() {
|
|
static const skcms_ICCProfile sRGB_profile = {
|
|
nullptr, // buffer, moot here
|
|
|
|
0, // size, moot here
|
|
skcms_Signature_RGB, // data_color_space
|
|
skcms_Signature_XYZ, // pcs
|
|
0, // tag count, moot here
|
|
|
|
// We choose to represent sRGB with its canonical transfer function,
|
|
// and with its canonical XYZD50 gamut matrix.
|
|
true, // has_trc, followed by the 3 trc curves
|
|
{
|
|
{{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0}}},
|
|
{{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0}}},
|
|
{{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0}}},
|
|
},
|
|
|
|
true, // has_toXYZD50, followed by 3x3 toXYZD50 matrix
|
|
{{
|
|
{ 0.436065674f, 0.385147095f, 0.143066406f },
|
|
{ 0.222488403f, 0.716873169f, 0.060607910f },
|
|
{ 0.013916016f, 0.097076416f, 0.714096069f },
|
|
}},
|
|
|
|
false, // has_A2B, followed by a2b itself which we don't care about.
|
|
{
|
|
0,
|
|
{
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
},
|
|
{0,0,0,0},
|
|
nullptr,
|
|
nullptr,
|
|
|
|
0,
|
|
{
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
},
|
|
{{
|
|
{ 0,0,0,0 },
|
|
{ 0,0,0,0 },
|
|
{ 0,0,0,0 },
|
|
}},
|
|
|
|
0,
|
|
{
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
},
|
|
},
|
|
};
|
|
return &sRGB_profile;
|
|
}
|
|
|
|
const skcms_ICCProfile* skcms_XYZD50_profile() {
|
|
// Just like sRGB above, but with identity transfer functions and toXYZD50 matrix.
|
|
static const skcms_ICCProfile XYZD50_profile = {
|
|
nullptr, // buffer, moot here
|
|
|
|
0, // size, moot here
|
|
skcms_Signature_RGB, // data_color_space
|
|
skcms_Signature_XYZ, // pcs
|
|
0, // tag count, moot here
|
|
|
|
true, // has_trc, followed by the 3 trc curves
|
|
{
|
|
{{0, {1,1, 0,0,0,0,0}}},
|
|
{{0, {1,1, 0,0,0,0,0}}},
|
|
{{0, {1,1, 0,0,0,0,0}}},
|
|
},
|
|
|
|
true, // has_toXYZD50, followed by 3x3 toXYZD50 matrix
|
|
{{
|
|
{ 1,0,0 },
|
|
{ 0,1,0 },
|
|
{ 0,0,1 },
|
|
}},
|
|
|
|
false, // has_A2B, followed by a2b itself which we don't care about.
|
|
{
|
|
0,
|
|
{
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
},
|
|
{0,0,0,0},
|
|
nullptr,
|
|
nullptr,
|
|
|
|
0,
|
|
{
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
},
|
|
{{
|
|
{ 0,0,0,0 },
|
|
{ 0,0,0,0 },
|
|
{ 0,0,0,0 },
|
|
}},
|
|
|
|
0,
|
|
{
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
{{0, {0,0, 0,0,0,0,0}}},
|
|
},
|
|
},
|
|
};
|
|
|
|
return &XYZD50_profile;
|
|
}
|
|
|
|
const skcms_TransferFunction* skcms_sRGB_TransferFunction() {
|
|
return &skcms_sRGB_profile()->trc[0].parametric;
|
|
}
|
|
|
|
const skcms_TransferFunction* skcms_sRGB_Inverse_TransferFunction() {
|
|
static const skcms_TransferFunction sRGB_inv =
|
|
{0.416666657f, 1.137283325f, -0.0f, 12.920000076f, 0.003130805f, -0.054969788f, -0.0f};
|
|
return &sRGB_inv;
|
|
}
|
|
|
|
const skcms_TransferFunction* skcms_Identity_TransferFunction() {
|
|
static const skcms_TransferFunction identity = {1,1,0,0,0,0,0};
|
|
return &identity;
|
|
}
|
|
|
|
const uint8_t skcms_252_random_bytes[] = {
|
|
8, 179, 128, 204, 253, 38, 134, 184, 68, 102, 32, 138, 99, 39, 169, 215,
|
|
119, 26, 3, 223, 95, 239, 52, 132, 114, 74, 81, 234, 97, 116, 244, 205, 30,
|
|
154, 173, 12, 51, 159, 122, 153, 61, 226, 236, 178, 229, 55, 181, 220, 191,
|
|
194, 160, 126, 168, 82, 131, 18, 180, 245, 163, 22, 246, 69, 235, 252, 57,
|
|
108, 14, 6, 152, 240, 255, 171, 242, 20, 227, 177, 238, 96, 85, 16, 211,
|
|
70, 200, 149, 155, 146, 127, 145, 100, 151, 109, 19, 165, 208, 195, 164,
|
|
137, 254, 182, 248, 64, 201, 45, 209, 5, 147, 207, 210, 113, 162, 83, 225,
|
|
9, 31, 15, 231, 115, 37, 58, 53, 24, 49, 197, 56, 120, 172, 48, 21, 214,
|
|
129, 111, 11, 50, 187, 196, 34, 60, 103, 71, 144, 47, 203, 77, 80, 232,
|
|
140, 222, 250, 206, 166, 247, 139, 249, 221, 72, 106, 27, 199, 117, 54,
|
|
219, 135, 118, 40, 79, 41, 251, 46, 93, 212, 92, 233, 148, 28, 121, 63,
|
|
123, 158, 105, 59, 29, 42, 143, 23, 0, 107, 176, 87, 104, 183, 156, 193,
|
|
189, 90, 188, 65, 190, 17, 198, 7, 186, 161, 1, 124, 78, 125, 170, 133,
|
|
174, 218, 67, 157, 75, 101, 89, 217, 62, 33, 141, 228, 25, 35, 91, 230, 4,
|
|
2, 13, 73, 86, 167, 237, 84, 243, 44, 185, 66, 130, 110, 150, 142, 216, 88,
|
|
112, 36, 224, 136, 202, 76, 94, 98, 175, 213
|
|
};
|
|
|
|
bool skcms_ApproximatelyEqualProfiles(const skcms_ICCProfile* A, const skcms_ICCProfile* B) {
|
|
// Test for exactly equal profiles first.
|
|
if (A == B || 0 == memcmp(A,B, sizeof(skcms_ICCProfile))) {
|
|
return true;
|
|
}
|
|
|
|
// For now this is the essentially the same strategy we use in test_only.c
|
|
// for our skcms_Transform() smoke tests:
|
|
// 1) transform A to XYZD50
|
|
// 2) transform B to XYZD50
|
|
// 3) return true if they're similar enough
|
|
// Our current criterion in 3) is maximum 1 bit error per XYZD50 byte.
|
|
|
|
// skcms_252_random_bytes are 252 of a random shuffle of all possible bytes.
|
|
// 252 is evenly divisible by 3 and 4. Only 192, 10, 241, and 43 are missing.
|
|
|
|
if (A->data_color_space != B->data_color_space) {
|
|
return false;
|
|
}
|
|
|
|
// Interpret as RGB_888 if data color space is RGB or GRAY, RGBA_8888 if CMYK.
|
|
// TODO: working with RGBA_8888 either way is probably fastest.
|
|
skcms_PixelFormat fmt = skcms_PixelFormat_RGB_888;
|
|
size_t npixels = 84;
|
|
if (A->data_color_space == skcms_Signature_CMYK) {
|
|
fmt = skcms_PixelFormat_RGBA_8888;
|
|
npixels = 63;
|
|
}
|
|
|
|
// TODO: if A or B is a known profile (skcms_sRGB_profile, skcms_XYZD50_profile),
|
|
// use pre-canned results and skip that skcms_Transform() call?
|
|
uint8_t dstA[252],
|
|
dstB[252];
|
|
if (!skcms_Transform(
|
|
skcms_252_random_bytes, fmt, skcms_AlphaFormat_Unpremul, A,
|
|
dstA, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, skcms_XYZD50_profile(),
|
|
npixels)) {
|
|
return false;
|
|
}
|
|
if (!skcms_Transform(
|
|
skcms_252_random_bytes, fmt, skcms_AlphaFormat_Unpremul, B,
|
|
dstB, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, skcms_XYZD50_profile(),
|
|
npixels)) {
|
|
return false;
|
|
}
|
|
|
|
// TODO: make sure this final check has reasonable codegen.
|
|
for (size_t i = 0; i < 252; i++) {
|
|
if (abs((int)dstA[i] - (int)dstB[i]) > 1) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool skcms_TRCs_AreApproximateInverse(const skcms_ICCProfile* profile,
|
|
const skcms_TransferFunction* inv_tf) {
|
|
if (!profile || !profile->has_trc) {
|
|
return false;
|
|
}
|
|
|
|
return skcms_AreApproximateInverses(&profile->trc[0], inv_tf) &&
|
|
skcms_AreApproximateInverses(&profile->trc[1], inv_tf) &&
|
|
skcms_AreApproximateInverses(&profile->trc[2], inv_tf);
|
|
}
|
|
|
|
static bool is_zero_to_one(float x) {
|
|
return 0 <= x && x <= 1;
|
|
}
|
|
|
|
typedef struct { float vals[3]; } skcms_Vector3;
|
|
|
|
static skcms_Vector3 mv_mul(const skcms_Matrix3x3* m, const skcms_Vector3* v) {
|
|
skcms_Vector3 dst = {{0,0,0}};
|
|
for (int row = 0; row < 3; ++row) {
|
|
dst.vals[row] = m->vals[row][0] * v->vals[0]
|
|
+ m->vals[row][1] * v->vals[1]
|
|
+ m->vals[row][2] * v->vals[2];
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
bool skcms_PrimariesToXYZD50(float rx, float ry,
|
|
float gx, float gy,
|
|
float bx, float by,
|
|
float wx, float wy,
|
|
skcms_Matrix3x3* toXYZD50) {
|
|
if (!is_zero_to_one(rx) || !is_zero_to_one(ry) ||
|
|
!is_zero_to_one(gx) || !is_zero_to_one(gy) ||
|
|
!is_zero_to_one(bx) || !is_zero_to_one(by) ||
|
|
!is_zero_to_one(wx) || !is_zero_to_one(wy) ||
|
|
!toXYZD50) {
|
|
return false;
|
|
}
|
|
|
|
// First, we need to convert xy values (primaries) to XYZ.
|
|
skcms_Matrix3x3 primaries = {{
|
|
{ rx, gx, bx },
|
|
{ ry, gy, by },
|
|
{ 1 - rx - ry, 1 - gx - gy, 1 - bx - by },
|
|
}};
|
|
skcms_Matrix3x3 primaries_inv;
|
|
if (!skcms_Matrix3x3_invert(&primaries, &primaries_inv)) {
|
|
return false;
|
|
}
|
|
|
|
// Assumes that Y is 1.0f.
|
|
skcms_Vector3 wXYZ = { { wx / wy, 1, (1 - wx - wy) / wy } };
|
|
skcms_Vector3 XYZ = mv_mul(&primaries_inv, &wXYZ);
|
|
|
|
skcms_Matrix3x3 toXYZ = {{
|
|
{ XYZ.vals[0], 0, 0 },
|
|
{ 0, XYZ.vals[1], 0 },
|
|
{ 0, 0, XYZ.vals[2] },
|
|
}};
|
|
toXYZ = skcms_Matrix3x3_concat(&primaries, &toXYZ);
|
|
|
|
// Now convert toXYZ matrix to toXYZD50.
|
|
skcms_Vector3 wXYZD50 = { { 0.96422f, 1.0f, 0.82521f } };
|
|
|
|
// Calculate the chromatic adaptation matrix. We will use the Bradford method, thus
|
|
// the matrices below. The Bradford method is used by Adobe and is widely considered
|
|
// to be the best.
|
|
skcms_Matrix3x3 xyz_to_lms = {{
|
|
{ 0.8951f, 0.2664f, -0.1614f },
|
|
{ -0.7502f, 1.7135f, 0.0367f },
|
|
{ 0.0389f, -0.0685f, 1.0296f },
|
|
}};
|
|
skcms_Matrix3x3 lms_to_xyz = {{
|
|
{ 0.9869929f, -0.1470543f, 0.1599627f },
|
|
{ 0.4323053f, 0.5183603f, 0.0492912f },
|
|
{ -0.0085287f, 0.0400428f, 0.9684867f },
|
|
}};
|
|
|
|
skcms_Vector3 srcCone = mv_mul(&xyz_to_lms, &wXYZ);
|
|
skcms_Vector3 dstCone = mv_mul(&xyz_to_lms, &wXYZD50);
|
|
|
|
skcms_Matrix3x3 DXtoD50 = {{
|
|
{ dstCone.vals[0] / srcCone.vals[0], 0, 0 },
|
|
{ 0, dstCone.vals[1] / srcCone.vals[1], 0 },
|
|
{ 0, 0, dstCone.vals[2] / srcCone.vals[2] },
|
|
}};
|
|
DXtoD50 = skcms_Matrix3x3_concat(&DXtoD50, &xyz_to_lms);
|
|
DXtoD50 = skcms_Matrix3x3_concat(&lms_to_xyz, &DXtoD50);
|
|
|
|
*toXYZD50 = skcms_Matrix3x3_concat(&DXtoD50, &toXYZ);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool skcms_Matrix3x3_invert(const skcms_Matrix3x3* src, skcms_Matrix3x3* dst) {
|
|
double a00 = src->vals[0][0],
|
|
a01 = src->vals[1][0],
|
|
a02 = src->vals[2][0],
|
|
a10 = src->vals[0][1],
|
|
a11 = src->vals[1][1],
|
|
a12 = src->vals[2][1],
|
|
a20 = src->vals[0][2],
|
|
a21 = src->vals[1][2],
|
|
a22 = src->vals[2][2];
|
|
|
|
double b0 = a00*a11 - a01*a10,
|
|
b1 = a00*a12 - a02*a10,
|
|
b2 = a01*a12 - a02*a11,
|
|
b3 = a20,
|
|
b4 = a21,
|
|
b5 = a22;
|
|
|
|
double determinant = b0*b5
|
|
- b1*b4
|
|
+ b2*b3;
|
|
|
|
if (determinant == 0) {
|
|
return false;
|
|
}
|
|
|
|
double invdet = 1.0 / determinant;
|
|
if (invdet > +FLT_MAX || invdet < -FLT_MAX || !isfinitef_((float)invdet)) {
|
|
return false;
|
|
}
|
|
|
|
b0 *= invdet;
|
|
b1 *= invdet;
|
|
b2 *= invdet;
|
|
b3 *= invdet;
|
|
b4 *= invdet;
|
|
b5 *= invdet;
|
|
|
|
dst->vals[0][0] = (float)( a11*b5 - a12*b4 );
|
|
dst->vals[1][0] = (float)( a02*b4 - a01*b5 );
|
|
dst->vals[2][0] = (float)( + b2 );
|
|
dst->vals[0][1] = (float)( a12*b3 - a10*b5 );
|
|
dst->vals[1][1] = (float)( a00*b5 - a02*b3 );
|
|
dst->vals[2][1] = (float)( - b1 );
|
|
dst->vals[0][2] = (float)( a10*b4 - a11*b3 );
|
|
dst->vals[1][2] = (float)( a01*b3 - a00*b4 );
|
|
dst->vals[2][2] = (float)( + b0 );
|
|
|
|
for (int r = 0; r < 3; ++r)
|
|
for (int c = 0; c < 3; ++c) {
|
|
if (!isfinitef_(dst->vals[r][c])) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
skcms_Matrix3x3 skcms_Matrix3x3_concat(const skcms_Matrix3x3* A, const skcms_Matrix3x3* B) {
|
|
skcms_Matrix3x3 m = { { { 0,0,0 },{ 0,0,0 },{ 0,0,0 } } };
|
|
for (int r = 0; r < 3; r++)
|
|
for (int c = 0; c < 3; c++) {
|
|
m.vals[r][c] = A->vals[r][0] * B->vals[0][c]
|
|
+ A->vals[r][1] * B->vals[1][c]
|
|
+ A->vals[r][2] * B->vals[2][c];
|
|
}
|
|
return m;
|
|
}
|
|
|
|
#if defined(__clang__)
|
|
[[clang::no_sanitize("float-divide-by-zero")]] // Checked for by classify() on the way out.
|
|
#endif
|
|
bool skcms_TransferFunction_invert(const skcms_TransferFunction* src, skcms_TransferFunction* dst) {
|
|
TF_PQish pq;
|
|
TF_HLGish hlg;
|
|
switch (classify(*src, &pq, &hlg)) {
|
|
case Bad: return false;
|
|
case sRGBish: break; // handled below
|
|
|
|
case PQish:
|
|
*dst = { TFKind_marker(PQish), -pq.A, pq.D, 1.0f/pq.F
|
|
, pq.B, -pq.E, 1.0f/pq.C};
|
|
return true;
|
|
|
|
case HLGish:
|
|
*dst = { TFKind_marker(HLGinvish), 1.0f/hlg.R, 1.0f/hlg.G
|
|
, 1.0f/hlg.a, hlg.b, hlg.c, 0 };
|
|
return true;
|
|
|
|
case HLGinvish:
|
|
*dst = { TFKind_marker(HLGish), 1.0f/hlg.R, 1.0f/hlg.G
|
|
, 1.0f/hlg.a, hlg.b, hlg.c, 0 };
|
|
return true;
|
|
}
|
|
|
|
assert (classify(*src) == sRGBish);
|
|
|
|
// We're inverting this function, solving for x in terms of y.
|
|
// y = (cx + f) x < d
|
|
// (ax + b)^g + e x ≥ d
|
|
// The inverse of this function can be expressed in the same piecewise form.
|
|
skcms_TransferFunction inv = {0,0,0,0,0,0,0};
|
|
|
|
// We'll start by finding the new threshold inv.d.
|
|
// In principle we should be able to find that by solving for y at x=d from either side.
|
|
// (If those two d values aren't the same, it's a discontinuous transfer function.)
|
|
float d_l = src->c * src->d + src->f,
|
|
d_r = powf_(src->a * src->d + src->b, src->g) + src->e;
|
|
if (fabsf_(d_l - d_r) > 1/512.0f) {
|
|
return false;
|
|
}
|
|
inv.d = d_l; // TODO(mtklein): better in practice to choose d_r?
|
|
|
|
// When d=0, the linear section collapses to a point. We leave c,d,f all zero in that case.
|
|
if (inv.d > 0) {
|
|
// Inverting the linear section is pretty straightfoward:
|
|
// y = cx + f
|
|
// y - f = cx
|
|
// (1/c)y - f/c = x
|
|
inv.c = 1.0f/src->c;
|
|
inv.f = -src->f/src->c;
|
|
}
|
|
|
|
// The interesting part is inverting the nonlinear section:
|
|
// y = (ax + b)^g + e.
|
|
// y - e = (ax + b)^g
|
|
// (y - e)^1/g = ax + b
|
|
// (y - e)^1/g - b = ax
|
|
// (1/a)(y - e)^1/g - b/a = x
|
|
//
|
|
// To make that fit our form, we need to move the (1/a) term inside the exponentiation:
|
|
// let k = (1/a)^g
|
|
// (1/a)( y - e)^1/g - b/a = x
|
|
// (ky - ke)^1/g - b/a = x
|
|
|
|
float k = powf_(src->a, -src->g); // (1/a)^g == a^-g
|
|
inv.g = 1.0f / src->g;
|
|
inv.a = k;
|
|
inv.b = -k * src->e;
|
|
inv.e = -src->b / src->a;
|
|
|
|
// We need to enforce the same constraints here that we do when fitting a curve,
|
|
// a >= 0 and ad+b >= 0. These constraints are checked by classify(), so they're true
|
|
// of the source function if we're here.
|
|
|
|
// Just like when fitting the curve, there's really no way to rescue a < 0.
|
|
if (inv.a < 0) {
|
|
return false;
|
|
}
|
|
// On the other hand we can rescue an ad+b that's gone slightly negative here.
|
|
if (inv.a * inv.d + inv.b < 0) {
|
|
inv.b = -inv.a * inv.d;
|
|
}
|
|
|
|
// That should usually make classify(inv) == sRGBish true, but there are a couple situations
|
|
// where we might still fail here, like non-finite parameter values.
|
|
if (classify(inv) != sRGBish) {
|
|
return false;
|
|
}
|
|
|
|
assert (inv.a >= 0);
|
|
assert (inv.a * inv.d + inv.b >= 0);
|
|
|
|
// Now in principle we're done.
|
|
// But to preserve the valuable invariant inv(src(1.0f)) == 1.0f, we'll tweak
|
|
// e or f of the inverse, depending on which segment contains src(1.0f).
|
|
float s = skcms_TransferFunction_eval(src, 1.0f);
|
|
if (!isfinitef_(s)) {
|
|
return false;
|
|
}
|
|
|
|
float sign = s < 0 ? -1.0f : 1.0f;
|
|
s *= sign;
|
|
if (s < inv.d) {
|
|
inv.f = 1.0f - sign * inv.c * s;
|
|
} else {
|
|
inv.e = 1.0f - sign * powf_(inv.a * s + inv.b, inv.g);
|
|
}
|
|
|
|
*dst = inv;
|
|
return classify(*dst) == sRGBish;
|
|
}
|
|
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
|
|
|
|
// From here below we're approximating an skcms_Curve with an skcms_TransferFunction{g,a,b,c,d,e,f}:
|
|
//
|
|
// tf(x) = cx + f x < d
|
|
// tf(x) = (ax + b)^g + e x ≥ d
|
|
//
|
|
// When fitting, we add the additional constraint that both pieces meet at d:
|
|
//
|
|
// cd + f = (ad + b)^g + e
|
|
//
|
|
// Solving for e and folding it through gives an alternate formulation of the non-linear piece:
|
|
//
|
|
// tf(x) = cx + f x < d
|
|
// tf(x) = (ax + b)^g - (ad + b)^g + cd + f x ≥ d
|
|
//
|
|
// Our overall strategy is then:
|
|
// For a couple tolerances,
|
|
// - fit_linear(): fit c,d,f iteratively to as many points as our tolerance allows
|
|
// - invert c,d,f
|
|
// - fit_nonlinear(): fit g,a,b using Gauss-Newton given those inverted c,d,f
|
|
// (and by constraint, inverted e) to the inverse of the table.
|
|
// Return the parameters with least maximum error.
|
|
//
|
|
// To run Gauss-Newton to find g,a,b, we'll also need the gradient of the residuals
|
|
// of round-trip f_inv(x), the inverse of the non-linear piece of f(x).
|
|
//
|
|
// let y = Table(x)
|
|
// r(x) = x - f_inv(y)
|
|
//
|
|
// ∂r/∂g = ln(ay + b)*(ay + b)^g
|
|
// - ln(ad + b)*(ad + b)^g
|
|
// ∂r/∂a = yg(ay + b)^(g-1)
|
|
// - dg(ad + b)^(g-1)
|
|
// ∂r/∂b = g(ay + b)^(g-1)
|
|
// - g(ad + b)^(g-1)
|
|
|
|
// Return the residual of roundtripping skcms_Curve(x) through f_inv(y) with parameters P,
|
|
// and fill out the gradient of the residual into dfdP.
|
|
static float rg_nonlinear(float x,
|
|
const skcms_Curve* curve,
|
|
const skcms_TransferFunction* tf,
|
|
float dfdP[3]) {
|
|
const float y = eval_curve(curve, x);
|
|
|
|
const float g = tf->g, a = tf->a, b = tf->b,
|
|
c = tf->c, d = tf->d, f = tf->f;
|
|
|
|
const float Y = fmaxf_(a*y + b, 0.0f),
|
|
D = a*d + b;
|
|
assert (D >= 0);
|
|
|
|
// The gradient.
|
|
dfdP[0] = logf_(Y)*powf_(Y, g)
|
|
- logf_(D)*powf_(D, g);
|
|
dfdP[1] = y*g*powf_(Y, g-1)
|
|
- d*g*powf_(D, g-1);
|
|
dfdP[2] = g*powf_(Y, g-1)
|
|
- g*powf_(D, g-1);
|
|
|
|
// The residual.
|
|
const float f_inv = powf_(Y, g)
|
|
- powf_(D, g)
|
|
+ c*d + f;
|
|
return x - f_inv;
|
|
}
|
|
|
|
static bool gauss_newton_step(const skcms_Curve* curve,
|
|
skcms_TransferFunction* tf,
|
|
float x0, float dx, int N) {
|
|
// We'll sample x from the range [x0,x1] (both inclusive) N times with even spacing.
|
|
//
|
|
// Let P = [ tf->g, tf->a, tf->b ] (the three terms that we're adjusting).
|
|
//
|
|
// We want to do P' = P + (Jf^T Jf)^-1 Jf^T r(P),
|
|
// where r(P) is the residual vector
|
|
// and Jf is the Jacobian matrix of f(), ∂r/∂P.
|
|
//
|
|
// Let's review the shape of each of these expressions:
|
|
// r(P) is [N x 1], a column vector with one entry per value of x tested
|
|
// Jf is [N x 3], a matrix with an entry for each (x,P) pair
|
|
// Jf^T is [3 x N], the transpose of Jf
|
|
//
|
|
// Jf^T Jf is [3 x N] * [N x 3] == [3 x 3], a 3x3 matrix,
|
|
// and so is its inverse (Jf^T Jf)^-1
|
|
// Jf^T r(P) is [3 x N] * [N x 1] == [3 x 1], a column vector with the same shape as P
|
|
//
|
|
// Our implementation strategy to get to the final ∆P is
|
|
// 1) evaluate Jf^T Jf, call that lhs
|
|
// 2) evaluate Jf^T r(P), call that rhs
|
|
// 3) invert lhs
|
|
// 4) multiply inverse lhs by rhs
|
|
//
|
|
// This is a friendly implementation strategy because we don't have to have any
|
|
// buffers that scale with N, and equally nice don't have to perform any matrix
|
|
// operations that are variable size.
|
|
//
|
|
// Other implementation strategies could trade this off, e.g. evaluating the
|
|
// pseudoinverse of Jf ( (Jf^T Jf)^-1 Jf^T ) directly, then multiplying that by
|
|
// the residuals. That would probably require implementing singular value
|
|
// decomposition, and would create a [3 x N] matrix to be multiplied by the
|
|
// [N x 1] residual vector, but on the upside I think that'd eliminate the
|
|
// possibility of this gauss_newton_step() function ever failing.
|
|
|
|
// 0) start off with lhs and rhs safely zeroed.
|
|
skcms_Matrix3x3 lhs = {{ {0,0,0}, {0,0,0}, {0,0,0} }};
|
|
skcms_Vector3 rhs = { {0,0,0} };
|
|
|
|
// 1,2) evaluate lhs and evaluate rhs
|
|
// We want to evaluate Jf only once, but both lhs and rhs involve Jf^T,
|
|
// so we'll have to update lhs and rhs at the same time.
|
|
for (int i = 0; i < N; i++) {
|
|
float x = x0 + i*dx;
|
|
|
|
float dfdP[3] = {0,0,0};
|
|
float resid = rg_nonlinear(x,curve,tf, dfdP);
|
|
|
|
for (int r = 0; r < 3; r++) {
|
|
for (int c = 0; c < 3; c++) {
|
|
lhs.vals[r][c] += dfdP[r] * dfdP[c];
|
|
}
|
|
rhs.vals[r] += dfdP[r] * resid;
|
|
}
|
|
}
|
|
|
|
// If any of the 3 P parameters are unused, this matrix will be singular.
|
|
// Detect those cases and fix them up to indentity instead, so we can invert.
|
|
for (int k = 0; k < 3; k++) {
|
|
if (lhs.vals[0][k]==0 && lhs.vals[1][k]==0 && lhs.vals[2][k]==0 &&
|
|
lhs.vals[k][0]==0 && lhs.vals[k][1]==0 && lhs.vals[k][2]==0) {
|
|
lhs.vals[k][k] = 1;
|
|
}
|
|
}
|
|
|
|
// 3) invert lhs
|
|
skcms_Matrix3x3 lhs_inv;
|
|
if (!skcms_Matrix3x3_invert(&lhs, &lhs_inv)) {
|
|
return false;
|
|
}
|
|
|
|
// 4) multiply inverse lhs by rhs
|
|
skcms_Vector3 dP = mv_mul(&lhs_inv, &rhs);
|
|
tf->g += dP.vals[0];
|
|
tf->a += dP.vals[1];
|
|
tf->b += dP.vals[2];
|
|
return isfinitef_(tf->g) && isfinitef_(tf->a) && isfinitef_(tf->b);
|
|
}
|
|
|
|
static float max_roundtrip_error_checked(const skcms_Curve* curve,
|
|
const skcms_TransferFunction* tf_inv) {
|
|
skcms_TransferFunction tf;
|
|
if (!skcms_TransferFunction_invert(tf_inv, &tf) || sRGBish != classify(tf)) {
|
|
return INFINITY_;
|
|
}
|
|
|
|
skcms_TransferFunction tf_inv_again;
|
|
if (!skcms_TransferFunction_invert(&tf, &tf_inv_again)) {
|
|
return INFINITY_;
|
|
}
|
|
|
|
return skcms_MaxRoundtripError(curve, &tf_inv_again);
|
|
}
|
|
|
|
// Fit the points in [L,N) to the non-linear piece of tf, or return false if we can't.
|
|
static bool fit_nonlinear(const skcms_Curve* curve, int L, int N, skcms_TransferFunction* tf) {
|
|
// This enforces a few constraints that are not modeled in gauss_newton_step()'s optimization.
|
|
auto fixup_tf = [tf]() {
|
|
// a must be non-negative. That ensures the function is monotonically increasing.
|
|
// We don't really know how to fix up a if it goes negative.
|
|
if (tf->a < 0) {
|
|
return false;
|
|
}
|
|
// ad+b must be non-negative. That ensures we don't end up with complex numbers in powf.
|
|
// We feel just barely not uneasy enough to tweak b so ad+b is zero in this case.
|
|
if (tf->a * tf->d + tf->b < 0) {
|
|
tf->b = -tf->a * tf->d;
|
|
}
|
|
assert (tf->a >= 0 &&
|
|
tf->a * tf->d + tf->b >= 0);
|
|
|
|
// cd+f must be ~= (ad+b)^g+e. That ensures the function is continuous. We keep e as a free
|
|
// parameter so we can guarantee this.
|
|
tf->e = tf->c*tf->d + tf->f
|
|
- powf_(tf->a*tf->d + tf->b, tf->g);
|
|
|
|
return true;
|
|
};
|
|
|
|
if (!fixup_tf()) {
|
|
return false;
|
|
}
|
|
|
|
// No matter where we start, dx should always represent N even steps from 0 to 1.
|
|
const float dx = 1.0f / (N-1);
|
|
|
|
skcms_TransferFunction best_tf = *tf;
|
|
float best_max_error = INFINITY_;
|
|
|
|
// Need this or several curves get worse... *sigh*
|
|
float init_error = max_roundtrip_error_checked(curve, tf);
|
|
if (init_error < best_max_error) {
|
|
best_max_error = init_error;
|
|
best_tf = *tf;
|
|
}
|
|
|
|
// As far as we can tell, 1 Gauss-Newton step won't converge, and 3 steps is no better than 2.
|
|
for (int j = 0; j < 8; j++) {
|
|
if (!gauss_newton_step(curve, tf, L*dx, dx, N-L) || !fixup_tf()) {
|
|
*tf = best_tf;
|
|
return isfinitef_(best_max_error);
|
|
}
|
|
|
|
float max_error = max_roundtrip_error_checked(curve, tf);
|
|
if (max_error < best_max_error) {
|
|
best_max_error = max_error;
|
|
best_tf = *tf;
|
|
}
|
|
}
|
|
|
|
*tf = best_tf;
|
|
return isfinitef_(best_max_error);
|
|
}
|
|
|
|
bool skcms_ApproximateCurve(const skcms_Curve* curve,
|
|
skcms_TransferFunction* approx,
|
|
float* max_error) {
|
|
if (!curve || !approx || !max_error) {
|
|
return false;
|
|
}
|
|
|
|
if (curve->table_entries == 0) {
|
|
// No point approximating an skcms_TransferFunction with an skcms_TransferFunction!
|
|
return false;
|
|
}
|
|
|
|
if (curve->table_entries == 1 || curve->table_entries > (uint32_t)INT_MAX) {
|
|
// We need at least two points, and must put some reasonable cap on the maximum number.
|
|
return false;
|
|
}
|
|
|
|
int N = (int)curve->table_entries;
|
|
const float dx = 1.0f / (N - 1);
|
|
|
|
*max_error = INFINITY_;
|
|
const float kTolerances[] = { 1.5f / 65535.0f, 1.0f / 512.0f };
|
|
for (int t = 0; t < ARRAY_COUNT(kTolerances); t++) {
|
|
skcms_TransferFunction tf,
|
|
tf_inv;
|
|
|
|
// It's problematic to fit curves with non-zero f, so always force it to zero explicitly.
|
|
tf.f = 0.0f;
|
|
int L = fit_linear(curve, N, kTolerances[t], &tf.c, &tf.d);
|
|
|
|
if (L == N) {
|
|
// If the entire data set was linear, move the coefficients to the nonlinear portion
|
|
// with G == 1. This lets use a canonical representation with d == 0.
|
|
tf.g = 1;
|
|
tf.a = tf.c;
|
|
tf.b = tf.f;
|
|
tf.c = tf.d = tf.e = tf.f = 0;
|
|
} else if (L == N - 1) {
|
|
// Degenerate case with only two points in the nonlinear segment. Solve directly.
|
|
tf.g = 1;
|
|
tf.a = (eval_curve(curve, (N-1)*dx) -
|
|
eval_curve(curve, (N-2)*dx))
|
|
/ dx;
|
|
tf.b = eval_curve(curve, (N-2)*dx)
|
|
- tf.a * (N-2)*dx;
|
|
tf.e = 0;
|
|
} else {
|
|
// Start by guessing a gamma-only curve through the midpoint.
|
|
int mid = (L + N) / 2;
|
|
float mid_x = mid / (N - 1.0f);
|
|
float mid_y = eval_curve(curve, mid_x);
|
|
tf.g = log2f_(mid_y) / log2f_(mid_x);
|
|
tf.a = 1;
|
|
tf.b = 0;
|
|
tf.e = tf.c*tf.d + tf.f
|
|
- powf_(tf.a*tf.d + tf.b, tf.g);
|
|
|
|
|
|
if (!skcms_TransferFunction_invert(&tf, &tf_inv) ||
|
|
!fit_nonlinear(curve, L,N, &tf_inv)) {
|
|
continue;
|
|
}
|
|
|
|
// We fit tf_inv, so calculate tf to keep in sync.
|
|
// fit_nonlinear() should guarantee invertibility.
|
|
if (!skcms_TransferFunction_invert(&tf_inv, &tf)) {
|
|
assert(false);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// We'd better have a sane, sRGB-ish TF by now.
|
|
// Other non-Bad TFs would be fine, but we know we've only ever tried to fit sRGBish;
|
|
// anything else is just some accident of math and the way we pun tf.g as a type flag.
|
|
// fit_nonlinear() should guarantee this.
|
|
if (sRGBish != classify(tf)) {
|
|
assert(false);
|
|
continue;
|
|
}
|
|
|
|
// We find our error by roundtripping the table through tf_inv.
|
|
//
|
|
// (The most likely use case for this approximation is to be inverted and
|
|
// used as the transfer function for a destination color space.)
|
|
//
|
|
// We've kept tf and tf_inv in sync above, but we can't guarantee that tf is
|
|
// invertible, so re-verify that here (and use the new inverse for testing).
|
|
// fit_nonlinear() should guarantee this.
|
|
if (!skcms_TransferFunction_invert(&tf, &tf_inv)) {
|
|
assert(false);
|
|
continue;
|
|
}
|
|
|
|
float err = skcms_MaxRoundtripError(curve, &tf_inv);
|
|
if (*max_error > err) {
|
|
*max_error = err;
|
|
*approx = tf;
|
|
}
|
|
}
|
|
return isfinitef_(*max_error);
|
|
}
|
|
|
|
// ~~~~ Impl. of skcms_Transform() ~~~~
|
|
|
|
typedef enum {
|
|
Op_load_a8,
|
|
Op_load_g8,
|
|
Op_load_8888_palette8,
|
|
Op_load_4444,
|
|
Op_load_565,
|
|
Op_load_888,
|
|
Op_load_8888,
|
|
Op_load_1010102,
|
|
Op_load_161616LE,
|
|
Op_load_16161616LE,
|
|
Op_load_161616BE,
|
|
Op_load_16161616BE,
|
|
Op_load_hhh,
|
|
Op_load_hhhh,
|
|
Op_load_fff,
|
|
Op_load_ffff,
|
|
|
|
Op_swap_rb,
|
|
Op_clamp,
|
|
Op_invert,
|
|
Op_force_opaque,
|
|
Op_premul,
|
|
Op_unpremul,
|
|
Op_matrix_3x3,
|
|
Op_matrix_3x4,
|
|
Op_lab_to_xyz,
|
|
|
|
Op_tf_r,
|
|
Op_tf_g,
|
|
Op_tf_b,
|
|
Op_tf_a,
|
|
|
|
Op_pq_r,
|
|
Op_pq_g,
|
|
Op_pq_b,
|
|
Op_pq_a,
|
|
|
|
Op_hlg_r,
|
|
Op_hlg_g,
|
|
Op_hlg_b,
|
|
Op_hlg_a,
|
|
|
|
Op_hlginv_r,
|
|
Op_hlginv_g,
|
|
Op_hlginv_b,
|
|
Op_hlginv_a,
|
|
|
|
Op_table_r,
|
|
Op_table_g,
|
|
Op_table_b,
|
|
Op_table_a,
|
|
|
|
Op_clut,
|
|
|
|
Op_store_a8,
|
|
Op_store_g8,
|
|
Op_store_4444,
|
|
Op_store_565,
|
|
Op_store_888,
|
|
Op_store_8888,
|
|
Op_store_1010102,
|
|
Op_store_161616LE,
|
|
Op_store_16161616LE,
|
|
Op_store_161616BE,
|
|
Op_store_16161616BE,
|
|
Op_store_hhh,
|
|
Op_store_hhhh,
|
|
Op_store_fff,
|
|
Op_store_ffff,
|
|
} Op;
|
|
|
|
#if defined(__clang__)
|
|
template <int N, typename T> using Vec = T __attribute__((ext_vector_type(N)));
|
|
#elif defined(__GNUC__)
|
|
// For some reason GCC accepts this nonsense, but not the more straightforward version,
|
|
// template <int N, typename T> using Vec = T __attribute__((vector_size(N*sizeof(T))));
|
|
template <int N, typename T>
|
|
struct VecHelper { typedef T __attribute__((vector_size(N*sizeof(T)))) V; };
|
|
|
|
template <int N, typename T> using Vec = typename VecHelper<N,T>::V;
|
|
#endif
|
|
|
|
// First, instantiate our default exec_ops() implementation using the default compiliation target.
|
|
|
|
namespace baseline {
|
|
#if defined(SKCMS_PORTABLE) || !(defined(__clang__) || defined(__GNUC__)) \
|
|
|| (defined(__EMSCRIPTEN_major__) && !defined(__wasm_simd128__))
|
|
#define N 1
|
|
template <typename T> using V = T;
|
|
using Color = float;
|
|
#elif defined(__AVX512F__)
|
|
#define N 16
|
|
template <typename T> using V = Vec<N,T>;
|
|
using Color = float;
|
|
#elif defined(__AVX__)
|
|
#define N 8
|
|
template <typename T> using V = Vec<N,T>;
|
|
using Color = float;
|
|
#elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(SKCMS_OPT_INTO_NEON_FP16)
|
|
#define N 8
|
|
template <typename T> using V = Vec<N,T>;
|
|
using Color = _Float16;
|
|
#else
|
|
#define N 4
|
|
template <typename T> using V = Vec<N,T>;
|
|
using Color = float;
|
|
#endif
|
|
|
|
#include "src/Transform_inl.h"
|
|
#undef N
|
|
}
|
|
|
|
// Now, instantiate any other versions of run_program() we may want for runtime detection.
|
|
#if !defined(SKCMS_PORTABLE) && \
|
|
!defined(SKCMS_NO_RUNTIME_CPU_DETECTION) && \
|
|
(( defined(__clang__) && __clang_major__ >= 5) || \
|
|
(!defined(__clang__) && defined(__GNUC__))) \
|
|
&& defined(__x86_64__)
|
|
|
|
#if !defined(__AVX2__)
|
|
#if defined(__clang__)
|
|
#pragma clang attribute push(__attribute__((target("avx2,f16c"))), apply_to=function)
|
|
#elif defined(__GNUC__)
|
|
#pragma GCC push_options
|
|
#pragma GCC target("avx2,f16c")
|
|
#endif
|
|
|
|
namespace hsw {
|
|
#define USING_AVX
|
|
#define USING_AVX_F16C
|
|
#define USING_AVX2
|
|
#define N 8
|
|
template <typename T> using V = Vec<N,T>;
|
|
using Color = float;
|
|
|
|
#include "src/Transform_inl.h"
|
|
|
|
// src/Transform_inl.h will undefine USING_* for us.
|
|
#undef N
|
|
}
|
|
|
|
#if defined(__clang__)
|
|
#pragma clang attribute pop
|
|
#elif defined(__GNUC__)
|
|
#pragma GCC pop_options
|
|
#endif
|
|
|
|
#define TEST_FOR_HSW
|
|
#endif
|
|
|
|
#if !defined(__AVX512F__)
|
|
#if defined(__clang__)
|
|
#pragma clang attribute push(__attribute__((target("avx512f,avx512dq,avx512cd,avx512bw,avx512vl"))), apply_to=function)
|
|
#elif defined(__GNUC__)
|
|
#pragma GCC push_options
|
|
#pragma GCC target("avx512f,avx512dq,avx512cd,avx512bw,avx512vl")
|
|
#endif
|
|
|
|
namespace skx {
|
|
#define USING_AVX512F
|
|
#define N 16
|
|
template <typename T> using V = Vec<N,T>;
|
|
using Color = float;
|
|
|
|
#include "src/Transform_inl.h"
|
|
|
|
// src/Transform_inl.h will undefine USING_* for us.
|
|
#undef N
|
|
}
|
|
|
|
#if defined(__clang__)
|
|
#pragma clang attribute pop
|
|
#elif defined(__GNUC__)
|
|
#pragma GCC pop_options
|
|
#endif
|
|
|
|
#define TEST_FOR_SKX
|
|
#endif
|
|
|
|
#if defined(TEST_FOR_HSW) || defined(TEST_FOR_SKX)
|
|
enum class CpuType { None, HSW, SKX };
|
|
static CpuType cpu_type() {
|
|
static const CpuType type = []{
|
|
// See http://www.sandpile.org/x86/cpuid.htm
|
|
|
|
// First, a basic cpuid(1) lets us check prerequisites for HSW, SKX.
|
|
uint32_t eax, ebx, ecx, edx;
|
|
__asm__ __volatile__("cpuid" : "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx)
|
|
: "0"(1), "2"(0));
|
|
if ((edx & (1u<<25)) && // SSE
|
|
(edx & (1u<<26)) && // SSE2
|
|
(ecx & (1u<< 0)) && // SSE3
|
|
(ecx & (1u<< 9)) && // SSSE3
|
|
(ecx & (1u<<12)) && // FMA (N.B. not used, avoided even)
|
|
(ecx & (1u<<19)) && // SSE4.1
|
|
(ecx & (1u<<20)) && // SSE4.2
|
|
(ecx & (1u<<26)) && // XSAVE
|
|
(ecx & (1u<<27)) && // OSXSAVE
|
|
(ecx & (1u<<28)) && // AVX
|
|
(ecx & (1u<<29))) { // F16C
|
|
|
|
// Call cpuid(7) to check for AVX2 and AVX-512 bits.
|
|
__asm__ __volatile__("cpuid" : "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx)
|
|
: "0"(7), "2"(0));
|
|
// eax from xgetbv(0) will tell us whether XMM, YMM, and ZMM state is saved.
|
|
uint32_t xcr0, dont_need_edx;
|
|
__asm__ __volatile__("xgetbv" : "=a"(xcr0), "=d"(dont_need_edx) : "c"(0));
|
|
|
|
if ((xcr0 & (1u<<1)) && // XMM register state saved?
|
|
(xcr0 & (1u<<2)) && // YMM register state saved?
|
|
(ebx & (1u<<5))) { // AVX2
|
|
// At this point we're at least HSW. Continue checking for SKX.
|
|
if ((xcr0 & (1u<< 5)) && // Opmasks state saved?
|
|
(xcr0 & (1u<< 6)) && // First 16 ZMM registers saved?
|
|
(xcr0 & (1u<< 7)) && // High 16 ZMM registers saved?
|
|
(ebx & (1u<<16)) && // AVX512F
|
|
(ebx & (1u<<17)) && // AVX512DQ
|
|
(ebx & (1u<<28)) && // AVX512CD
|
|
(ebx & (1u<<30)) && // AVX512BW
|
|
(ebx & (1u<<31))) { // AVX512VL
|
|
return CpuType::SKX;
|
|
}
|
|
return CpuType::HSW;
|
|
}
|
|
}
|
|
return CpuType::None;
|
|
}();
|
|
return type;
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
|
|
typedef struct {
|
|
Op op;
|
|
const void* arg;
|
|
} OpAndArg;
|
|
|
|
static OpAndArg select_curve_op(const skcms_Curve* curve, int channel) {
|
|
static const struct { Op sRGBish, PQish, HLGish, HLGinvish, table; } ops[] = {
|
|
{ Op_tf_r, Op_pq_r, Op_hlg_r, Op_hlginv_r, Op_table_r },
|
|
{ Op_tf_g, Op_pq_g, Op_hlg_g, Op_hlginv_g, Op_table_g },
|
|
{ Op_tf_b, Op_pq_b, Op_hlg_b, Op_hlginv_b, Op_table_b },
|
|
{ Op_tf_a, Op_pq_a, Op_hlg_a, Op_hlginv_a, Op_table_a },
|
|
};
|
|
const auto& op = ops[channel];
|
|
|
|
if (curve->table_entries == 0) {
|
|
const OpAndArg noop = { Op_load_a8/*doesn't matter*/, nullptr };
|
|
|
|
const skcms_TransferFunction& tf = curve->parametric;
|
|
|
|
if (tf.g == 1 && tf.a == 1 &&
|
|
tf.b == 0 && tf.c == 0 && tf.d == 0 && tf.e == 0 && tf.f == 0) {
|
|
return noop;
|
|
}
|
|
|
|
switch (classify(tf)) {
|
|
case Bad: return noop;
|
|
case sRGBish: return OpAndArg{op.sRGBish, &tf};
|
|
case PQish: return OpAndArg{op.PQish, &tf};
|
|
case HLGish: return OpAndArg{op.HLGish, &tf};
|
|
case HLGinvish: return OpAndArg{op.HLGinvish, &tf};
|
|
}
|
|
}
|
|
return OpAndArg{op.table, curve};
|
|
}
|
|
|
|
static size_t bytes_per_pixel(skcms_PixelFormat fmt) {
|
|
switch (fmt >> 1) { // ignore rgb/bgr
|
|
case skcms_PixelFormat_A_8 >> 1: return 1;
|
|
case skcms_PixelFormat_G_8 >> 1: return 1;
|
|
case skcms_PixelFormat_RGBA_8888_Palette8 >> 1: return 1;
|
|
case skcms_PixelFormat_ABGR_4444 >> 1: return 2;
|
|
case skcms_PixelFormat_RGB_565 >> 1: return 2;
|
|
case skcms_PixelFormat_RGB_888 >> 1: return 3;
|
|
case skcms_PixelFormat_RGBA_8888 >> 1: return 4;
|
|
case skcms_PixelFormat_RGBA_1010102 >> 1: return 4;
|
|
case skcms_PixelFormat_RGB_161616LE >> 1: return 6;
|
|
case skcms_PixelFormat_RGBA_16161616LE >> 1: return 8;
|
|
case skcms_PixelFormat_RGB_161616BE >> 1: return 6;
|
|
case skcms_PixelFormat_RGBA_16161616BE >> 1: return 8;
|
|
case skcms_PixelFormat_RGB_hhh_Norm >> 1: return 6;
|
|
case skcms_PixelFormat_RGBA_hhhh_Norm >> 1: return 8;
|
|
case skcms_PixelFormat_RGB_hhh >> 1: return 6;
|
|
case skcms_PixelFormat_RGBA_hhhh >> 1: return 8;
|
|
case skcms_PixelFormat_RGB_fff >> 1: return 12;
|
|
case skcms_PixelFormat_RGBA_ffff >> 1: return 16;
|
|
}
|
|
assert(false);
|
|
return 0;
|
|
}
|
|
|
|
static bool prep_for_destination(const skcms_ICCProfile* profile,
|
|
skcms_Matrix3x3* fromXYZD50,
|
|
skcms_TransferFunction* invR,
|
|
skcms_TransferFunction* invG,
|
|
skcms_TransferFunction* invB) {
|
|
// We only support destinations with parametric transfer functions
|
|
// and with gamuts that can be transformed from XYZD50.
|
|
return profile->has_trc
|
|
&& profile->has_toXYZD50
|
|
&& profile->trc[0].table_entries == 0
|
|
&& profile->trc[1].table_entries == 0
|
|
&& profile->trc[2].table_entries == 0
|
|
&& skcms_TransferFunction_invert(&profile->trc[0].parametric, invR)
|
|
&& skcms_TransferFunction_invert(&profile->trc[1].parametric, invG)
|
|
&& skcms_TransferFunction_invert(&profile->trc[2].parametric, invB)
|
|
&& skcms_Matrix3x3_invert(&profile->toXYZD50, fromXYZD50);
|
|
}
|
|
|
|
bool skcms_Transform(const void* src,
|
|
skcms_PixelFormat srcFmt,
|
|
skcms_AlphaFormat srcAlpha,
|
|
const skcms_ICCProfile* srcProfile,
|
|
void* dst,
|
|
skcms_PixelFormat dstFmt,
|
|
skcms_AlphaFormat dstAlpha,
|
|
const skcms_ICCProfile* dstProfile,
|
|
size_t npixels) {
|
|
return skcms_TransformWithPalette(src, srcFmt, srcAlpha, srcProfile,
|
|
dst, dstFmt, dstAlpha, dstProfile,
|
|
npixels, nullptr);
|
|
}
|
|
|
|
bool skcms_TransformWithPalette(const void* src,
|
|
skcms_PixelFormat srcFmt,
|
|
skcms_AlphaFormat srcAlpha,
|
|
const skcms_ICCProfile* srcProfile,
|
|
void* dst,
|
|
skcms_PixelFormat dstFmt,
|
|
skcms_AlphaFormat dstAlpha,
|
|
const skcms_ICCProfile* dstProfile,
|
|
size_t nz,
|
|
const void* palette) {
|
|
const size_t dst_bpp = bytes_per_pixel(dstFmt),
|
|
src_bpp = bytes_per_pixel(srcFmt);
|
|
// Let's just refuse if the request is absurdly big.
|
|
if (nz * dst_bpp > INT_MAX || nz * src_bpp > INT_MAX) {
|
|
return false;
|
|
}
|
|
int n = (int)nz;
|
|
|
|
// Null profiles default to sRGB. Passing null for both is handy when doing format conversion.
|
|
if (!srcProfile) {
|
|
srcProfile = skcms_sRGB_profile();
|
|
}
|
|
if (!dstProfile) {
|
|
dstProfile = skcms_sRGB_profile();
|
|
}
|
|
|
|
// We can't transform in place unless the PixelFormats are the same size.
|
|
if (dst == src && dst_bpp != src_bpp) {
|
|
return false;
|
|
}
|
|
// TODO: more careful alias rejection (like, dst == src + 1)?
|
|
|
|
if (needs_palette(srcFmt) && !palette) {
|
|
return false;
|
|
}
|
|
|
|
Op program [32];
|
|
const void* arguments[32];
|
|
|
|
Op* ops = program;
|
|
const void** args = arguments;
|
|
|
|
// These are always parametric curves of some sort.
|
|
skcms_Curve dst_curves[3];
|
|
dst_curves[0].table_entries =
|
|
dst_curves[1].table_entries =
|
|
dst_curves[2].table_entries = 0;
|
|
|
|
skcms_Matrix3x3 from_xyz;
|
|
|
|
switch (srcFmt >> 1) {
|
|
default: return false;
|
|
case skcms_PixelFormat_A_8 >> 1: *ops++ = Op_load_a8; break;
|
|
case skcms_PixelFormat_G_8 >> 1: *ops++ = Op_load_g8; break;
|
|
case skcms_PixelFormat_ABGR_4444 >> 1: *ops++ = Op_load_4444; break;
|
|
case skcms_PixelFormat_RGB_565 >> 1: *ops++ = Op_load_565; break;
|
|
case skcms_PixelFormat_RGB_888 >> 1: *ops++ = Op_load_888; break;
|
|
case skcms_PixelFormat_RGBA_8888 >> 1: *ops++ = Op_load_8888; break;
|
|
case skcms_PixelFormat_RGBA_1010102 >> 1: *ops++ = Op_load_1010102; break;
|
|
case skcms_PixelFormat_RGB_161616LE >> 1: *ops++ = Op_load_161616LE; break;
|
|
case skcms_PixelFormat_RGBA_16161616LE >> 1: *ops++ = Op_load_16161616LE; break;
|
|
case skcms_PixelFormat_RGB_161616BE >> 1: *ops++ = Op_load_161616BE; break;
|
|
case skcms_PixelFormat_RGBA_16161616BE >> 1: *ops++ = Op_load_16161616BE; break;
|
|
case skcms_PixelFormat_RGB_hhh_Norm >> 1: *ops++ = Op_load_hhh; break;
|
|
case skcms_PixelFormat_RGBA_hhhh_Norm >> 1: *ops++ = Op_load_hhhh; break;
|
|
case skcms_PixelFormat_RGB_hhh >> 1: *ops++ = Op_load_hhh; break;
|
|
case skcms_PixelFormat_RGBA_hhhh >> 1: *ops++ = Op_load_hhhh; break;
|
|
case skcms_PixelFormat_RGB_fff >> 1: *ops++ = Op_load_fff; break;
|
|
case skcms_PixelFormat_RGBA_ffff >> 1: *ops++ = Op_load_ffff; break;
|
|
|
|
case skcms_PixelFormat_RGBA_8888_Palette8 >> 1: *ops++ = Op_load_8888_palette8;
|
|
*args++ = palette;
|
|
break;
|
|
}
|
|
if (srcFmt == skcms_PixelFormat_RGB_hhh_Norm ||
|
|
srcFmt == skcms_PixelFormat_RGBA_hhhh_Norm) {
|
|
*ops++ = Op_clamp;
|
|
}
|
|
if (srcFmt & 1) {
|
|
*ops++ = Op_swap_rb;
|
|
}
|
|
skcms_ICCProfile gray_dst_profile;
|
|
if ((dstFmt >> 1) == (skcms_PixelFormat_G_8 >> 1)) {
|
|
// When transforming to gray, stop at XYZ (by setting toXYZ to identity), then transform
|
|
// luminance (Y) by the destination transfer function.
|
|
gray_dst_profile = *dstProfile;
|
|
skcms_SetXYZD50(&gray_dst_profile, &skcms_XYZD50_profile()->toXYZD50);
|
|
dstProfile = &gray_dst_profile;
|
|
}
|
|
|
|
if (srcProfile->data_color_space == skcms_Signature_CMYK) {
|
|
// Photoshop creates CMYK images as inverse CMYK.
|
|
// These happen to be the only ones we've _ever_ seen.
|
|
*ops++ = Op_invert;
|
|
// With CMYK, ignore the alpha type, to avoid changing K or conflating CMY with K.
|
|
srcAlpha = skcms_AlphaFormat_Unpremul;
|
|
}
|
|
|
|
if (srcAlpha == skcms_AlphaFormat_Opaque) {
|
|
*ops++ = Op_force_opaque;
|
|
} else if (srcAlpha == skcms_AlphaFormat_PremulAsEncoded) {
|
|
*ops++ = Op_unpremul;
|
|
}
|
|
|
|
if (dstProfile != srcProfile) {
|
|
|
|
if (!prep_for_destination(dstProfile,
|
|
&from_xyz,
|
|
&dst_curves[0].parametric,
|
|
&dst_curves[1].parametric,
|
|
&dst_curves[2].parametric)) {
|
|
return false;
|
|
}
|
|
|
|
if (srcProfile->has_A2B) {
|
|
if (srcProfile->A2B.input_channels) {
|
|
for (int i = 0; i < (int)srcProfile->A2B.input_channels; i++) {
|
|
OpAndArg oa = select_curve_op(&srcProfile->A2B.input_curves[i], i);
|
|
if (oa.arg) {
|
|
*ops++ = oa.op;
|
|
*args++ = oa.arg;
|
|
}
|
|
}
|
|
*ops++ = Op_clamp;
|
|
*ops++ = Op_clut;
|
|
*args++ = &srcProfile->A2B;
|
|
}
|
|
|
|
if (srcProfile->A2B.matrix_channels == 3) {
|
|
for (int i = 0; i < 3; i++) {
|
|
OpAndArg oa = select_curve_op(&srcProfile->A2B.matrix_curves[i], i);
|
|
if (oa.arg) {
|
|
*ops++ = oa.op;
|
|
*args++ = oa.arg;
|
|
}
|
|
}
|
|
|
|
static const skcms_Matrix3x4 I = {{
|
|
{1,0,0,0},
|
|
{0,1,0,0},
|
|
{0,0,1,0},
|
|
}};
|
|
if (0 != memcmp(&I, &srcProfile->A2B.matrix, sizeof(I))) {
|
|
*ops++ = Op_matrix_3x4;
|
|
*args++ = &srcProfile->A2B.matrix;
|
|
}
|
|
}
|
|
|
|
if (srcProfile->A2B.output_channels == 3) {
|
|
for (int i = 0; i < 3; i++) {
|
|
OpAndArg oa = select_curve_op(&srcProfile->A2B.output_curves[i], i);
|
|
if (oa.arg) {
|
|
*ops++ = oa.op;
|
|
*args++ = oa.arg;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (srcProfile->pcs == skcms_Signature_Lab) {
|
|
*ops++ = Op_lab_to_xyz;
|
|
}
|
|
|
|
} else if (srcProfile->has_trc && srcProfile->has_toXYZD50) {
|
|
for (int i = 0; i < 3; i++) {
|
|
OpAndArg oa = select_curve_op(&srcProfile->trc[i], i);
|
|
if (oa.arg) {
|
|
*ops++ = oa.op;
|
|
*args++ = oa.arg;
|
|
}
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// A2B sources should already be in XYZD50 at this point.
|
|
// Others still need to be transformed using their toXYZD50 matrix.
|
|
// N.B. There are profiles that contain both A2B tags and toXYZD50 matrices.
|
|
// If we use the A2B tags, we need to ignore the XYZD50 matrix entirely.
|
|
assert (srcProfile->has_A2B || srcProfile->has_toXYZD50);
|
|
static const skcms_Matrix3x3 I = {{
|
|
{ 1.0f, 0.0f, 0.0f },
|
|
{ 0.0f, 1.0f, 0.0f },
|
|
{ 0.0f, 0.0f, 1.0f },
|
|
}};
|
|
const skcms_Matrix3x3* to_xyz = srcProfile->has_A2B ? &I : &srcProfile->toXYZD50;
|
|
|
|
// There's a chance the source and destination gamuts are identical,
|
|
// in which case we can skip the gamut transform.
|
|
if (0 != memcmp(&dstProfile->toXYZD50, to_xyz, sizeof(skcms_Matrix3x3))) {
|
|
// Concat the entire gamut transform into from_xyz,
|
|
// now slightly misnamed but it's a handy spot to stash the result.
|
|
from_xyz = skcms_Matrix3x3_concat(&from_xyz, to_xyz);
|
|
*ops++ = Op_matrix_3x3;
|
|
*args++ = &from_xyz;
|
|
}
|
|
|
|
// Encode back to dst RGB using its parametric transfer functions.
|
|
for (int i = 0; i < 3; i++) {
|
|
OpAndArg oa = select_curve_op(dst_curves+i, i);
|
|
if (oa.arg) {
|
|
assert (oa.op != Op_table_r &&
|
|
oa.op != Op_table_g &&
|
|
oa.op != Op_table_b &&
|
|
oa.op != Op_table_a);
|
|
*ops++ = oa.op;
|
|
*args++ = oa.arg;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Clamp here before premul to make sure we're clamping to normalized values _and_ gamut,
|
|
// not just to values that fit in [0,1].
|
|
//
|
|
// E.g. r = 1.1, a = 0.5 would fit fine in fixed point after premul (ra=0.55,a=0.5),
|
|
// but would be carrying r > 1, which is really unexpected for downstream consumers.
|
|
if (dstFmt < skcms_PixelFormat_RGB_hhh) {
|
|
*ops++ = Op_clamp;
|
|
}
|
|
if (dstAlpha == skcms_AlphaFormat_Opaque) {
|
|
*ops++ = Op_force_opaque;
|
|
} else if (dstAlpha == skcms_AlphaFormat_PremulAsEncoded) {
|
|
*ops++ = Op_premul;
|
|
}
|
|
if (dstFmt & 1) {
|
|
*ops++ = Op_swap_rb;
|
|
}
|
|
switch (dstFmt >> 1) {
|
|
default: return false;
|
|
case skcms_PixelFormat_A_8 >> 1: *ops++ = Op_store_a8; break;
|
|
case skcms_PixelFormat_G_8 >> 1: *ops++ = Op_store_g8; break;
|
|
case skcms_PixelFormat_ABGR_4444 >> 1: *ops++ = Op_store_4444; break;
|
|
case skcms_PixelFormat_RGB_565 >> 1: *ops++ = Op_store_565; break;
|
|
case skcms_PixelFormat_RGB_888 >> 1: *ops++ = Op_store_888; break;
|
|
case skcms_PixelFormat_RGBA_8888 >> 1: *ops++ = Op_store_8888; break;
|
|
case skcms_PixelFormat_RGBA_1010102 >> 1: *ops++ = Op_store_1010102; break;
|
|
case skcms_PixelFormat_RGB_161616LE >> 1: *ops++ = Op_store_161616LE; break;
|
|
case skcms_PixelFormat_RGBA_16161616LE >> 1: *ops++ = Op_store_16161616LE; break;
|
|
case skcms_PixelFormat_RGB_161616BE >> 1: *ops++ = Op_store_161616BE; break;
|
|
case skcms_PixelFormat_RGBA_16161616BE >> 1: *ops++ = Op_store_16161616BE; break;
|
|
case skcms_PixelFormat_RGB_hhh_Norm >> 1: *ops++ = Op_store_hhh; break;
|
|
case skcms_PixelFormat_RGBA_hhhh_Norm >> 1: *ops++ = Op_store_hhhh; break;
|
|
case skcms_PixelFormat_RGB_hhh >> 1: *ops++ = Op_store_hhh; break;
|
|
case skcms_PixelFormat_RGBA_hhhh >> 1: *ops++ = Op_store_hhhh; break;
|
|
case skcms_PixelFormat_RGB_fff >> 1: *ops++ = Op_store_fff; break;
|
|
case skcms_PixelFormat_RGBA_ffff >> 1: *ops++ = Op_store_ffff; break;
|
|
}
|
|
|
|
auto run = baseline::run_program;
|
|
#if defined(TEST_FOR_HSW)
|
|
switch (cpu_type()) {
|
|
case CpuType::None: break;
|
|
case CpuType::HSW: run = hsw::run_program; break;
|
|
case CpuType::SKX: run = hsw::run_program; break;
|
|
}
|
|
#endif
|
|
#if defined(TEST_FOR_SKX)
|
|
switch (cpu_type()) {
|
|
case CpuType::None: break;
|
|
case CpuType::HSW: break;
|
|
case CpuType::SKX: run = skx::run_program; break;
|
|
}
|
|
#endif
|
|
run(program, arguments, (const char*)src, (char*)dst, n, src_bpp,dst_bpp);
|
|
return true;
|
|
}
|
|
|
|
static void assert_usable_as_destination(const skcms_ICCProfile* profile) {
|
|
#if defined(NDEBUG)
|
|
(void)profile;
|
|
#else
|
|
skcms_Matrix3x3 fromXYZD50;
|
|
skcms_TransferFunction invR, invG, invB;
|
|
assert(prep_for_destination(profile, &fromXYZD50, &invR, &invG, &invB));
|
|
#endif
|
|
}
|
|
|
|
bool skcms_MakeUsableAsDestination(skcms_ICCProfile* profile) {
|
|
skcms_Matrix3x3 fromXYZD50;
|
|
if (!profile->has_trc || !profile->has_toXYZD50
|
|
|| !skcms_Matrix3x3_invert(&profile->toXYZD50, &fromXYZD50)) {
|
|
return false;
|
|
}
|
|
|
|
skcms_TransferFunction tf[3];
|
|
for (int i = 0; i < 3; i++) {
|
|
skcms_TransferFunction inv;
|
|
if (profile->trc[i].table_entries == 0
|
|
&& skcms_TransferFunction_invert(&profile->trc[i].parametric, &inv)) {
|
|
tf[i] = profile->trc[i].parametric;
|
|
continue;
|
|
}
|
|
|
|
float max_error;
|
|
// Parametric curves from skcms_ApproximateCurve() are guaranteed to be invertible.
|
|
if (!skcms_ApproximateCurve(&profile->trc[i], &tf[i], &max_error)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
profile->trc[i].table_entries = 0;
|
|
profile->trc[i].parametric = tf[i];
|
|
}
|
|
|
|
assert_usable_as_destination(profile);
|
|
return true;
|
|
}
|
|
|
|
bool skcms_MakeUsableAsDestinationWithSingleCurve(skcms_ICCProfile* profile) {
|
|
// Operate on a copy of profile, so we can choose the best TF for the original curves
|
|
skcms_ICCProfile result = *profile;
|
|
if (!skcms_MakeUsableAsDestination(&result)) {
|
|
return false;
|
|
}
|
|
|
|
int best_tf = 0;
|
|
float min_max_error = INFINITY_;
|
|
for (int i = 0; i < 3; i++) {
|
|
skcms_TransferFunction inv;
|
|
if (!skcms_TransferFunction_invert(&result.trc[i].parametric, &inv)) {
|
|
return false;
|
|
}
|
|
|
|
float err = 0;
|
|
for (int j = 0; j < 3; ++j) {
|
|
err = fmaxf_(err, skcms_MaxRoundtripError(&profile->trc[j], &inv));
|
|
}
|
|
if (min_max_error > err) {
|
|
min_max_error = err;
|
|
best_tf = i;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
result.trc[i].parametric = result.trc[best_tf].parametric;
|
|
}
|
|
|
|
*profile = result;
|
|
assert_usable_as_destination(profile);
|
|
return true;
|
|
}
|