235f56a92f
add quartic solution for intersecting quadratics git-svn-id: http://skia.googlecode.com/svn/trunk@5541 2bbb7eff-a529-9590-31e7-b0007b416f81
401 lines
9.2 KiB
C++
401 lines
9.2 KiB
C++
/*
|
|
* Copyright 2012 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
// http://metamerist.com/cbrt/CubeRoot.cpp
|
|
//
|
|
|
|
#include <math.h>
|
|
#include "CubicUtilities.h"
|
|
|
|
#define TEST_ALTERNATIVES 0
|
|
#if TEST_ALTERNATIVES
|
|
typedef float (*cuberootfnf) (float);
|
|
typedef double (*cuberootfnd) (double);
|
|
|
|
// estimate bits of precision (32-bit float case)
|
|
inline int bits_of_precision(float a, float b)
|
|
{
|
|
const double kd = 1.0 / log(2.0);
|
|
|
|
if (a==b)
|
|
return 23;
|
|
|
|
const double kdmin = pow(2.0, -23.0);
|
|
|
|
double d = fabs(a-b);
|
|
if (d < kdmin)
|
|
return 23;
|
|
|
|
return int(-log(d)*kd);
|
|
}
|
|
|
|
// estiamte bits of precision (64-bit double case)
|
|
inline int bits_of_precision(double a, double b)
|
|
{
|
|
const double kd = 1.0 / log(2.0);
|
|
|
|
if (a==b)
|
|
return 52;
|
|
|
|
const double kdmin = pow(2.0, -52.0);
|
|
|
|
double d = fabs(a-b);
|
|
if (d < kdmin)
|
|
return 52;
|
|
|
|
return int(-log(d)*kd);
|
|
}
|
|
|
|
// cube root via x^(1/3)
|
|
static float pow_cbrtf(float x)
|
|
{
|
|
return (float) pow(x, 1.0f/3.0f);
|
|
}
|
|
|
|
// cube root via x^(1/3)
|
|
static double pow_cbrtd(double x)
|
|
{
|
|
return pow(x, 1.0/3.0);
|
|
}
|
|
|
|
// cube root approximation using bit hack for 32-bit float
|
|
static float cbrt_5f(float f)
|
|
{
|
|
unsigned int* p = (unsigned int *) &f;
|
|
*p = *p/3 + 709921077;
|
|
return f;
|
|
}
|
|
#endif
|
|
|
|
// cube root approximation using bit hack for 64-bit float
|
|
// adapted from Kahan's cbrt
|
|
static double cbrt_5d(double d)
|
|
{
|
|
const unsigned int B1 = 715094163;
|
|
double t = 0.0;
|
|
unsigned int* pt = (unsigned int*) &t;
|
|
unsigned int* px = (unsigned int*) &d;
|
|
pt[1]=px[1]/3+B1;
|
|
return t;
|
|
}
|
|
|
|
#if TEST_ALTERNATIVES
|
|
// cube root approximation using bit hack for 64-bit float
|
|
// adapted from Kahan's cbrt
|
|
#if 0
|
|
static double quint_5d(double d)
|
|
{
|
|
return sqrt(sqrt(d));
|
|
|
|
const unsigned int B1 = 71509416*5/3;
|
|
double t = 0.0;
|
|
unsigned int* pt = (unsigned int*) &t;
|
|
unsigned int* px = (unsigned int*) &d;
|
|
pt[1]=px[1]/5+B1;
|
|
return t;
|
|
}
|
|
#endif
|
|
|
|
// iterative cube root approximation using Halley's method (float)
|
|
static float cbrta_halleyf(const float a, const float R)
|
|
{
|
|
const float a3 = a*a*a;
|
|
const float b= a * (a3 + R + R) / (a3 + a3 + R);
|
|
return b;
|
|
}
|
|
#endif
|
|
|
|
// iterative cube root approximation using Halley's method (double)
|
|
static double cbrta_halleyd(const double a, const double R)
|
|
{
|
|
const double a3 = a*a*a;
|
|
const double b= a * (a3 + R + R) / (a3 + a3 + R);
|
|
return b;
|
|
}
|
|
|
|
#if TEST_ALTERNATIVES
|
|
// iterative cube root approximation using Newton's method (float)
|
|
static float cbrta_newtonf(const float a, const float x)
|
|
{
|
|
// return (1.0 / 3.0) * ((a + a) + x / (a * a));
|
|
return a - (1.0f / 3.0f) * (a - x / (a*a));
|
|
}
|
|
|
|
// iterative cube root approximation using Newton's method (double)
|
|
static double cbrta_newtond(const double a, const double x)
|
|
{
|
|
return (1.0/3.0) * (x / (a*a) + 2*a);
|
|
}
|
|
|
|
// cube root approximation using 1 iteration of Halley's method (double)
|
|
static double halley_cbrt1d(double d)
|
|
{
|
|
double a = cbrt_5d(d);
|
|
return cbrta_halleyd(a, d);
|
|
}
|
|
|
|
// cube root approximation using 1 iteration of Halley's method (float)
|
|
static float halley_cbrt1f(float d)
|
|
{
|
|
float a = cbrt_5f(d);
|
|
return cbrta_halleyf(a, d);
|
|
}
|
|
|
|
// cube root approximation using 2 iterations of Halley's method (double)
|
|
static double halley_cbrt2d(double d)
|
|
{
|
|
double a = cbrt_5d(d);
|
|
a = cbrta_halleyd(a, d);
|
|
return cbrta_halleyd(a, d);
|
|
}
|
|
#endif
|
|
|
|
// cube root approximation using 3 iterations of Halley's method (double)
|
|
static double halley_cbrt3d(double d)
|
|
{
|
|
double a = cbrt_5d(d);
|
|
a = cbrta_halleyd(a, d);
|
|
a = cbrta_halleyd(a, d);
|
|
return cbrta_halleyd(a, d);
|
|
}
|
|
|
|
#if TEST_ALTERNATIVES
|
|
// cube root approximation using 2 iterations of Halley's method (float)
|
|
static float halley_cbrt2f(float d)
|
|
{
|
|
float a = cbrt_5f(d);
|
|
a = cbrta_halleyf(a, d);
|
|
return cbrta_halleyf(a, d);
|
|
}
|
|
|
|
// cube root approximation using 1 iteration of Newton's method (double)
|
|
static double newton_cbrt1d(double d)
|
|
{
|
|
double a = cbrt_5d(d);
|
|
return cbrta_newtond(a, d);
|
|
}
|
|
|
|
// cube root approximation using 2 iterations of Newton's method (double)
|
|
static double newton_cbrt2d(double d)
|
|
{
|
|
double a = cbrt_5d(d);
|
|
a = cbrta_newtond(a, d);
|
|
return cbrta_newtond(a, d);
|
|
}
|
|
|
|
// cube root approximation using 3 iterations of Newton's method (double)
|
|
static double newton_cbrt3d(double d)
|
|
{
|
|
double a = cbrt_5d(d);
|
|
a = cbrta_newtond(a, d);
|
|
a = cbrta_newtond(a, d);
|
|
return cbrta_newtond(a, d);
|
|
}
|
|
|
|
// cube root approximation using 4 iterations of Newton's method (double)
|
|
static double newton_cbrt4d(double d)
|
|
{
|
|
double a = cbrt_5d(d);
|
|
a = cbrta_newtond(a, d);
|
|
a = cbrta_newtond(a, d);
|
|
a = cbrta_newtond(a, d);
|
|
return cbrta_newtond(a, d);
|
|
}
|
|
|
|
// cube root approximation using 2 iterations of Newton's method (float)
|
|
static float newton_cbrt1f(float d)
|
|
{
|
|
float a = cbrt_5f(d);
|
|
return cbrta_newtonf(a, d);
|
|
}
|
|
|
|
// cube root approximation using 2 iterations of Newton's method (float)
|
|
static float newton_cbrt2f(float d)
|
|
{
|
|
float a = cbrt_5f(d);
|
|
a = cbrta_newtonf(a, d);
|
|
return cbrta_newtonf(a, d);
|
|
}
|
|
|
|
// cube root approximation using 3 iterations of Newton's method (float)
|
|
static float newton_cbrt3f(float d)
|
|
{
|
|
float a = cbrt_5f(d);
|
|
a = cbrta_newtonf(a, d);
|
|
a = cbrta_newtonf(a, d);
|
|
return cbrta_newtonf(a, d);
|
|
}
|
|
|
|
// cube root approximation using 4 iterations of Newton's method (float)
|
|
static float newton_cbrt4f(float d)
|
|
{
|
|
float a = cbrt_5f(d);
|
|
a = cbrta_newtonf(a, d);
|
|
a = cbrta_newtonf(a, d);
|
|
a = cbrta_newtonf(a, d);
|
|
return cbrta_newtonf(a, d);
|
|
}
|
|
|
|
static double TestCubeRootf(const char* szName, cuberootfnf cbrt, double rA, double rB, int rN)
|
|
{
|
|
const int N = rN;
|
|
|
|
float dd = float((rB-rA) / N);
|
|
|
|
// calculate 1M numbers
|
|
int i=0;
|
|
float d = (float) rA;
|
|
|
|
double s = 0.0;
|
|
|
|
for(d=(float) rA, i=0; i<N; i++, d += dd)
|
|
{
|
|
s += cbrt(d);
|
|
}
|
|
|
|
double bits = 0.0;
|
|
double worstx=0.0;
|
|
double worsty=0.0;
|
|
int minbits=64;
|
|
|
|
for(d=(float) rA, i=0; i<N; i++, d += dd)
|
|
{
|
|
float a = cbrt((float) d);
|
|
float b = (float) pow((double) d, 1.0/3.0);
|
|
|
|
int bc = bits_of_precision(a, b);
|
|
bits += bc;
|
|
|
|
if (b > 1.0e-6)
|
|
{
|
|
if (bc < minbits)
|
|
{
|
|
minbits = bc;
|
|
worstx = d;
|
|
worsty = a;
|
|
}
|
|
}
|
|
}
|
|
|
|
bits /= N;
|
|
|
|
printf(" %3d mbp %6.3f abp\n", minbits, bits);
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
static double TestCubeRootd(const char* szName, cuberootfnd cbrt, double rA, double rB, int rN)
|
|
{
|
|
const int N = rN;
|
|
|
|
double dd = (rB-rA) / N;
|
|
|
|
int i=0;
|
|
|
|
double s = 0.0;
|
|
double d = 0.0;
|
|
|
|
for(d=rA, i=0; i<N; i++, d += dd)
|
|
{
|
|
s += cbrt(d);
|
|
}
|
|
|
|
|
|
double bits = 0.0;
|
|
double worstx = 0.0;
|
|
double worsty = 0.0;
|
|
int minbits = 64;
|
|
for(d=rA, i=0; i<N; i++, d += dd)
|
|
{
|
|
double a = cbrt(d);
|
|
double b = pow(d, 1.0/3.0);
|
|
|
|
int bc = bits_of_precision(a, b); // min(53, count_matching_bitsd(a, b) - 12);
|
|
bits += bc;
|
|
|
|
if (b > 1.0e-6)
|
|
{
|
|
if (bc < minbits)
|
|
{
|
|
bits_of_precision(a, b);
|
|
minbits = bc;
|
|
worstx = d;
|
|
worsty = a;
|
|
}
|
|
}
|
|
}
|
|
|
|
bits /= N;
|
|
|
|
printf(" %3d mbp %6.3f abp\n", minbits, bits);
|
|
|
|
return s;
|
|
}
|
|
|
|
static int _tmain()
|
|
{
|
|
// a million uniform steps through the range from 0.0 to 1.0
|
|
// (doing uniform steps in the log scale would be better)
|
|
double a = 0.0;
|
|
double b = 1.0;
|
|
int n = 1000000;
|
|
|
|
printf("32-bit float tests\n");
|
|
printf("----------------------------------------\n");
|
|
TestCubeRootf("cbrt_5f", cbrt_5f, a, b, n);
|
|
TestCubeRootf("pow", pow_cbrtf, a, b, n);
|
|
TestCubeRootf("halley x 1", halley_cbrt1f, a, b, n);
|
|
TestCubeRootf("halley x 2", halley_cbrt2f, a, b, n);
|
|
TestCubeRootf("newton x 1", newton_cbrt1f, a, b, n);
|
|
TestCubeRootf("newton x 2", newton_cbrt2f, a, b, n);
|
|
TestCubeRootf("newton x 3", newton_cbrt3f, a, b, n);
|
|
TestCubeRootf("newton x 4", newton_cbrt4f, a, b, n);
|
|
printf("\n\n");
|
|
|
|
printf("64-bit double tests\n");
|
|
printf("----------------------------------------\n");
|
|
TestCubeRootd("cbrt_5d", cbrt_5d, a, b, n);
|
|
TestCubeRootd("pow", pow_cbrtd, a, b, n);
|
|
TestCubeRootd("halley x 1", halley_cbrt1d, a, b, n);
|
|
TestCubeRootd("halley x 2", halley_cbrt2d, a, b, n);
|
|
TestCubeRootd("halley x 3", halley_cbrt3d, a, b, n);
|
|
TestCubeRootd("newton x 1", newton_cbrt1d, a, b, n);
|
|
TestCubeRootd("newton x 2", newton_cbrt2d, a, b, n);
|
|
TestCubeRootd("newton x 3", newton_cbrt3d, a, b, n);
|
|
TestCubeRootd("newton x 4", newton_cbrt4d, a, b, n);
|
|
printf("\n\n");
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
double cube_root(double x) {
|
|
if (approximately_zero(x)) {
|
|
return 0;
|
|
}
|
|
double result = halley_cbrt3d(fabs(x));
|
|
if (x < 0) {
|
|
result = -result;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#if TEST_ALTERNATIVES
|
|
// http://bytes.com/topic/c/answers/754588-tips-find-cube-root-program-using-c
|
|
/* cube root */
|
|
int icbrt(int n) {
|
|
int t=0, x=(n+2)/3; /* works for n=0 and n>=1 */
|
|
for(; t!=x;) {
|
|
int x3=x*x*x;
|
|
t=x;
|
|
x*=(2*n + x3);
|
|
x/=(2*x3 + n);
|
|
}
|
|
return x ; /* always(?) equal to floor(n^(1/3)) */
|
|
}
|
|
#endif
|