9eb182ac4b
BUG=skia: R=reed@google.com, bsalomon@google.com, tfarina@chromium.org Author: george@mozilla.com Review URL: https://codereview.chromium.org/325843002
182 lines
5.2 KiB
C++
182 lines
5.2 KiB
C++
/*
|
|
* Copyright 2012 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#ifndef SkLineParameters_DEFINED
|
|
#define SkLineParameters_DEFINED
|
|
|
|
#include "SkPathOpsCubic.h"
|
|
#include "SkPathOpsLine.h"
|
|
#include "SkPathOpsQuad.h"
|
|
|
|
// Sources
|
|
// computer-aided design - volume 22 number 9 november 1990 pp 538 - 549
|
|
// online at http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf
|
|
|
|
// This turns a line segment into a parameterized line, of the form
|
|
// ax + by + c = 0
|
|
// When a^2 + b^2 == 1, the line is normalized.
|
|
// The distance to the line for (x, y) is d(x,y) = ax + by + c
|
|
//
|
|
// Note that the distances below are not necessarily normalized. To get the true
|
|
// distance, it's necessary to either call normalize() after xxxEndPoints(), or
|
|
// divide the result of xxxDistance() by sqrt(normalSquared())
|
|
|
|
class SkLineParameters {
|
|
public:
|
|
|
|
bool cubicEndPoints(const SkDCubic& pts) {
|
|
int endIndex = 1;
|
|
cubicEndPoints(pts, 0, endIndex);
|
|
if (dy() != 0) {
|
|
return true;
|
|
}
|
|
if (dx() == 0) {
|
|
cubicEndPoints(pts, 0, ++endIndex);
|
|
SkASSERT(endIndex == 2);
|
|
if (dy() != 0) {
|
|
return true;
|
|
}
|
|
if (dx() == 0) {
|
|
cubicEndPoints(pts, 0, ++endIndex); // line
|
|
SkASSERT(endIndex == 3);
|
|
return false;
|
|
}
|
|
}
|
|
// FIXME: after switching to round sort, remove bumping fA
|
|
if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie
|
|
return true;
|
|
}
|
|
// if cubic tangent is on x axis, look at next control point to break tie
|
|
// control point may be approximate, so it must move significantly to account for error
|
|
if (NotAlmostEqualUlps(pts[0].fY, pts[++endIndex].fY)) {
|
|
if (pts[0].fY > pts[endIndex].fY) {
|
|
fA = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a)
|
|
}
|
|
return true;
|
|
}
|
|
if (endIndex == 3) {
|
|
return true;
|
|
}
|
|
SkASSERT(endIndex == 2);
|
|
if (pts[0].fY > pts[3].fY) {
|
|
fA = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a)
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void cubicEndPoints(const SkDCubic& pts, int s, int e) {
|
|
fA = pts[s].fY - pts[e].fY;
|
|
fB = pts[e].fX - pts[s].fX;
|
|
fC = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY;
|
|
}
|
|
|
|
double cubicPart(const SkDCubic& part) {
|
|
cubicEndPoints(part);
|
|
if (part[0] == part[1] || ((const SkDLine& ) part[0]).nearRay(part[2])) {
|
|
return pointDistance(part[3]);
|
|
}
|
|
return pointDistance(part[2]);
|
|
}
|
|
|
|
void lineEndPoints(const SkDLine& pts) {
|
|
fA = pts[0].fY - pts[1].fY;
|
|
fB = pts[1].fX - pts[0].fX;
|
|
fC = pts[0].fX * pts[1].fY - pts[1].fX * pts[0].fY;
|
|
}
|
|
|
|
bool quadEndPoints(const SkDQuad& pts) {
|
|
quadEndPoints(pts, 0, 1);
|
|
if (dy() != 0) {
|
|
return true;
|
|
}
|
|
if (dx() == 0) {
|
|
quadEndPoints(pts, 0, 2);
|
|
return false;
|
|
}
|
|
if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie
|
|
return true;
|
|
}
|
|
// FIXME: after switching to round sort, remove this
|
|
if (pts[0].fY > pts[2].fY) {
|
|
fA = DBL_EPSILON;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void quadEndPoints(const SkDQuad& pts, int s, int e) {
|
|
fA = pts[s].fY - pts[e].fY;
|
|
fB = pts[e].fX - pts[s].fX;
|
|
fC = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY;
|
|
}
|
|
|
|
double quadPart(const SkDQuad& part) {
|
|
quadEndPoints(part);
|
|
return pointDistance(part[2]);
|
|
}
|
|
|
|
double normalSquared() const {
|
|
return fA * fA + fB * fB;
|
|
}
|
|
|
|
bool normalize() {
|
|
double normal = sqrt(normalSquared());
|
|
if (approximately_zero(normal)) {
|
|
fA = fB = fC = 0;
|
|
return false;
|
|
}
|
|
double reciprocal = 1 / normal;
|
|
fA *= reciprocal;
|
|
fB *= reciprocal;
|
|
fC *= reciprocal;
|
|
return true;
|
|
}
|
|
|
|
void cubicDistanceY(const SkDCubic& pts, SkDCubic& distance) const {
|
|
double oneThird = 1 / 3.0;
|
|
for (int index = 0; index < 4; ++index) {
|
|
distance[index].fX = index * oneThird;
|
|
distance[index].fY = fA * pts[index].fX + fB * pts[index].fY + fC;
|
|
}
|
|
}
|
|
|
|
void quadDistanceY(const SkDQuad& pts, SkDQuad& distance) const {
|
|
double oneHalf = 1 / 2.0;
|
|
for (int index = 0; index < 3; ++index) {
|
|
distance[index].fX = index * oneHalf;
|
|
distance[index].fY = fA * pts[index].fX + fB * pts[index].fY + fC;
|
|
}
|
|
}
|
|
|
|
double controlPtDistance(const SkDCubic& pts, int index) const {
|
|
SkASSERT(index == 1 || index == 2);
|
|
return fA * pts[index].fX + fB * pts[index].fY + fC;
|
|
}
|
|
|
|
double controlPtDistance(const SkDQuad& pts) const {
|
|
return fA * pts[1].fX + fB * pts[1].fY + fC;
|
|
}
|
|
|
|
double pointDistance(const SkDPoint& pt) const {
|
|
return fA * pt.fX + fB * pt.fY + fC;
|
|
}
|
|
|
|
double dx() const {
|
|
return fB;
|
|
}
|
|
|
|
double dy() const {
|
|
return -fA;
|
|
}
|
|
|
|
private:
|
|
double fA;
|
|
double fB;
|
|
double fC;
|
|
};
|
|
|
|
#endif
|