skia2/src/pathops/SkLineParameters.h

182 lines
5.2 KiB
C++

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkLineParameters_DEFINED
#define SkLineParameters_DEFINED
#include "SkPathOpsCubic.h"
#include "SkPathOpsLine.h"
#include "SkPathOpsQuad.h"
// Sources
// computer-aided design - volume 22 number 9 november 1990 pp 538 - 549
// online at http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf
// This turns a line segment into a parameterized line, of the form
// ax + by + c = 0
// When a^2 + b^2 == 1, the line is normalized.
// The distance to the line for (x, y) is d(x,y) = ax + by + c
//
// Note that the distances below are not necessarily normalized. To get the true
// distance, it's necessary to either call normalize() after xxxEndPoints(), or
// divide the result of xxxDistance() by sqrt(normalSquared())
class SkLineParameters {
public:
bool cubicEndPoints(const SkDCubic& pts) {
int endIndex = 1;
cubicEndPoints(pts, 0, endIndex);
if (dy() != 0) {
return true;
}
if (dx() == 0) {
cubicEndPoints(pts, 0, ++endIndex);
SkASSERT(endIndex == 2);
if (dy() != 0) {
return true;
}
if (dx() == 0) {
cubicEndPoints(pts, 0, ++endIndex); // line
SkASSERT(endIndex == 3);
return false;
}
}
// FIXME: after switching to round sort, remove bumping fA
if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie
return true;
}
// if cubic tangent is on x axis, look at next control point to break tie
// control point may be approximate, so it must move significantly to account for error
if (NotAlmostEqualUlps(pts[0].fY, pts[++endIndex].fY)) {
if (pts[0].fY > pts[endIndex].fY) {
fA = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a)
}
return true;
}
if (endIndex == 3) {
return true;
}
SkASSERT(endIndex == 2);
if (pts[0].fY > pts[3].fY) {
fA = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a)
}
return true;
}
void cubicEndPoints(const SkDCubic& pts, int s, int e) {
fA = pts[s].fY - pts[e].fY;
fB = pts[e].fX - pts[s].fX;
fC = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY;
}
double cubicPart(const SkDCubic& part) {
cubicEndPoints(part);
if (part[0] == part[1] || ((const SkDLine& ) part[0]).nearRay(part[2])) {
return pointDistance(part[3]);
}
return pointDistance(part[2]);
}
void lineEndPoints(const SkDLine& pts) {
fA = pts[0].fY - pts[1].fY;
fB = pts[1].fX - pts[0].fX;
fC = pts[0].fX * pts[1].fY - pts[1].fX * pts[0].fY;
}
bool quadEndPoints(const SkDQuad& pts) {
quadEndPoints(pts, 0, 1);
if (dy() != 0) {
return true;
}
if (dx() == 0) {
quadEndPoints(pts, 0, 2);
return false;
}
if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie
return true;
}
// FIXME: after switching to round sort, remove this
if (pts[0].fY > pts[2].fY) {
fA = DBL_EPSILON;
}
return true;
}
void quadEndPoints(const SkDQuad& pts, int s, int e) {
fA = pts[s].fY - pts[e].fY;
fB = pts[e].fX - pts[s].fX;
fC = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY;
}
double quadPart(const SkDQuad& part) {
quadEndPoints(part);
return pointDistance(part[2]);
}
double normalSquared() const {
return fA * fA + fB * fB;
}
bool normalize() {
double normal = sqrt(normalSquared());
if (approximately_zero(normal)) {
fA = fB = fC = 0;
return false;
}
double reciprocal = 1 / normal;
fA *= reciprocal;
fB *= reciprocal;
fC *= reciprocal;
return true;
}
void cubicDistanceY(const SkDCubic& pts, SkDCubic& distance) const {
double oneThird = 1 / 3.0;
for (int index = 0; index < 4; ++index) {
distance[index].fX = index * oneThird;
distance[index].fY = fA * pts[index].fX + fB * pts[index].fY + fC;
}
}
void quadDistanceY(const SkDQuad& pts, SkDQuad& distance) const {
double oneHalf = 1 / 2.0;
for (int index = 0; index < 3; ++index) {
distance[index].fX = index * oneHalf;
distance[index].fY = fA * pts[index].fX + fB * pts[index].fY + fC;
}
}
double controlPtDistance(const SkDCubic& pts, int index) const {
SkASSERT(index == 1 || index == 2);
return fA * pts[index].fX + fB * pts[index].fY + fC;
}
double controlPtDistance(const SkDQuad& pts) const {
return fA * pts[1].fX + fB * pts[1].fY + fC;
}
double pointDistance(const SkDPoint& pt) const {
return fA * pt.fX + fB * pt.fY + fC;
}
double dx() const {
return fB;
}
double dy() const {
return -fA;
}
private:
double fA;
double fB;
double fC;
};
#endif