skia2/gm/wacky_yuv_formats.cpp
Greg Daniel 85da3368c5 Add d3d support for creating command lists.
Currently we only can create direct command lists and we also don't cache anything.

Change also has so minor fixes to GMs allowing the d3d backend to run through all
GMs without crashing (though not actually drawing anything).

Bug: skia:9935
Change-Id: Ibf378e522d2e49bf342c709eb93d6fca4d43eac9
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/276097
Reviewed-by: Jim Van Verth <jvanverth@google.com>
Commit-Queue: Greg Daniel <egdaniel@google.com>
2020-03-09 19:42:48 +00:00

1688 lines
68 KiB
C++

/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm/gm.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkBlendMode.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorFilter.h"
#include "include/core/SkColorPriv.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkFilterQuality.h"
#include "include/core/SkFont.h"
#include "include/core/SkFontStyle.h"
#include "include/core/SkFontTypes.h"
#include "include/core/SkImage.h"
#include "include/core/SkImageGenerator.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPath.h"
#include "include/core/SkPixmap.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkSize.h"
#include "include/core/SkString.h"
#include "include/core/SkTypeface.h"
#include "include/core/SkTypes.h"
#include "include/core/SkYUVAIndex.h"
#include "include/core/SkYUVASizeInfo.h"
#include "include/gpu/GrBackendSurface.h"
#include "include/gpu/GrConfig.h"
#include "include/gpu/GrContext.h"
#include "include/gpu/GrTypes.h"
#include "include/private/GrTypesPriv.h"
#include "include/private/SkTArray.h"
#include "include/private/SkTDArray.h"
#include "include/private/SkTemplates.h"
#include "include/utils/SkTextUtils.h"
#include "src/core/SkYUVMath.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrGpu.h"
#include "tools/ToolUtils.h"
#include <math.h>
#include <string.h>
#include <initializer_list>
#include <memory>
#include <utility>
class GrRenderTargetContext;
static const int kTileWidthHeight = 128;
static const int kLabelWidth = 64;
static const int kLabelHeight = 32;
static const int kDomainPadding = 8;
static const int kPad = 1;
enum YUVFormat {
// 4:2:0 formats, 24 bpp
kP016_YUVFormat, // 16-bit Y plane + 2x2 down sampled interleaved U/V plane (2 textures)
// 4:2:0 formats, "15 bpp" (but really 24 bpp)
kP010_YUVFormat, // same as kP016 except "10 bpp". Note that it is the same memory layout
// except that the bottom 6 bits are zeroed out (2 textures)
// TODO: we're cheating a bit w/ P010 and just treating it as unorm 16. This means its
// fully saturated values are 65504 rather than 65535 (that is just .9995 out of 1.0 though).
// This is laid out the same as kP016 and kP010 but uses F16 unstead of U16. In this case
// the 10 bits/channel vs 16 bits/channel distinction isn't relevant.
kP016F_YUVFormat,
// 4:4:4 formats, 64 bpp
kY416_YUVFormat, // 16-bit AVYU values all interleaved (1 texture)
// 4:4:4 formats, 32 bpp
kAYUV_YUVFormat, // 8-bit YUVA values all interleaved (1 texture)
kY410_YUVFormat, // AVYU w/ 10bpp for YUV and 2 for A all interleaved (1 texture)
// 4:2:0 formats, 12 bpp
kNV12_YUVFormat, // 8-bit Y plane + 2x2 down sampled interleaved U/V planes (2 textures)
kNV21_YUVFormat, // same as kNV12 but w/ U/V reversed in the interleaved texture (2 textures)
kI420_YUVFormat, // 8-bit Y plane + separate 2x2 down sampled U and V planes (3 textures)
kYV12_YUVFormat, // 8-bit Y plane + separate 2x2 down sampled V and U planes (3 textures)
kLast_YUVFormat = kYV12_YUVFormat
};
#ifdef SK_DEBUG
static bool format_uses_16_bpp(YUVFormat yuvFormat) {
return kP016_YUVFormat == yuvFormat ||
kP010_YUVFormat == yuvFormat ||
kP016F_YUVFormat == yuvFormat ||
kY416_YUVFormat == yuvFormat;
}
#endif
static bool format_has_builtin_alpha(YUVFormat yuvFormat) {
return kY416_YUVFormat == yuvFormat ||
kAYUV_YUVFormat == yuvFormat ||
kY410_YUVFormat == yuvFormat;
}
static bool is_colorType_texturable(const GrCaps* caps, GrColorType ct) {
GrBackendFormat format = caps->getDefaultBackendFormat(ct, GrRenderable::kNo);
if (!format.isValid()) {
return false;
}
return caps->isFormatTexturable(format);
}
static bool is_format_natively_supported(GrContext* context, YUVFormat yuvFormat) {
const GrCaps* caps = context->priv().caps();
switch (yuvFormat) {
case kP016_YUVFormat: // fall through
case kP010_YUVFormat: return is_colorType_texturable(caps, GrColorType::kAlpha_16) &&
is_colorType_texturable(caps, GrColorType::kRG_1616);
case kP016F_YUVFormat: return is_colorType_texturable(caps, GrColorType::kAlpha_F16) &&
is_colorType_texturable(caps, GrColorType::kRG_F16);
case kY416_YUVFormat: return is_colorType_texturable(caps, GrColorType::kRGBA_16161616);
case kAYUV_YUVFormat: return is_colorType_texturable(caps, GrColorType::kRGBA_8888);
case kY410_YUVFormat: return is_colorType_texturable(caps, GrColorType::kRGBA_1010102);
case kNV12_YUVFormat: // fall through
case kNV21_YUVFormat: return is_colorType_texturable(caps, GrColorType::kGray_8) &&
is_colorType_texturable(caps, GrColorType::kRG_88);
case kI420_YUVFormat: // fall through
case kYV12_YUVFormat: return is_colorType_texturable(caps, GrColorType::kGray_8);
}
SkUNREACHABLE;
}
// Helper to setup the SkYUVAIndex array correctly
// Skia allows the client to tack an additional alpha plane onto any of the standard opaque
// formats (via the addExtraAlpha) flag. In this case it is assumed to be a stand-alone single-
// channel plane.
static void setup_yuv_indices(YUVFormat yuvFormat, bool addExtraAlpha, SkYUVAIndex yuvaIndices[4]) {
switch (yuvFormat) {
case kP016_YUVFormat: // fall through
case kP010_YUVFormat: // fall through
case kP016F_YUVFormat:
yuvaIndices[0].fIndex = 0;
yuvaIndices[0].fChannel = SkColorChannel::kA; // bc 16bit is stored in A16 or AF16
yuvaIndices[1].fIndex = 1;
yuvaIndices[1].fChannel = SkColorChannel::kR;
yuvaIndices[2].fIndex = 1;
yuvaIndices[2].fChannel = SkColorChannel::kG;
if (addExtraAlpha) {
yuvaIndices[3].fIndex = 2;
yuvaIndices[3].fChannel = SkColorChannel::kA; // bc 16bit is stored in A16 or AF16
} else {
yuvaIndices[3].fIndex = -1; // No alpha channel
}
break;
case kY416_YUVFormat:
SkASSERT(!addExtraAlpha); // this format already has an alpha channel
yuvaIndices[0].fIndex = 0;
yuvaIndices[0].fChannel = SkColorChannel::kG;
yuvaIndices[1].fIndex = 0;
yuvaIndices[1].fChannel = SkColorChannel::kR;
yuvaIndices[2].fIndex = 0;
yuvaIndices[2].fChannel = SkColorChannel::kB;
yuvaIndices[3].fIndex = 0;
yuvaIndices[3].fChannel = SkColorChannel::kA;
break;
case kAYUV_YUVFormat:
SkASSERT(!addExtraAlpha); // this format already has an alpha channel
yuvaIndices[0].fIndex = 0;
yuvaIndices[0].fChannel = SkColorChannel::kR;
yuvaIndices[1].fIndex = 0;
yuvaIndices[1].fChannel = SkColorChannel::kG;
yuvaIndices[2].fIndex = 0;
yuvaIndices[2].fChannel = SkColorChannel::kB;
yuvaIndices[3].fIndex = 0;
yuvaIndices[3].fChannel = SkColorChannel::kA;
break;
case kY410_YUVFormat:
SkASSERT(!addExtraAlpha); // this format already has an alpha channel
yuvaIndices[0].fIndex = 0;
yuvaIndices[0].fChannel = SkColorChannel::kG;
yuvaIndices[1].fIndex = 0;
yuvaIndices[1].fChannel = SkColorChannel::kB;
yuvaIndices[2].fIndex = 0;
yuvaIndices[2].fChannel = SkColorChannel::kR;
yuvaIndices[3].fIndex = 0;
yuvaIndices[3].fChannel = SkColorChannel::kA;
break;
case kNV12_YUVFormat:
yuvaIndices[0].fIndex = 0;
yuvaIndices[0].fChannel = SkColorChannel::kR;
yuvaIndices[1].fIndex = 1;
yuvaIndices[1].fChannel = SkColorChannel::kR;
yuvaIndices[2].fIndex = 1;
yuvaIndices[2].fChannel = SkColorChannel::kG;
if (addExtraAlpha) {
yuvaIndices[3].fIndex = 2;
yuvaIndices[3].fChannel = SkColorChannel::kA;
} else {
yuvaIndices[3].fIndex = -1; // No alpha channel
}
break;
case kNV21_YUVFormat:
yuvaIndices[0].fIndex = 0;
yuvaIndices[0].fChannel = SkColorChannel::kR;
yuvaIndices[1].fIndex = 1;
yuvaIndices[1].fChannel = SkColorChannel::kG;
yuvaIndices[2].fIndex = 1;
yuvaIndices[2].fChannel = SkColorChannel::kR;
if (addExtraAlpha) {
yuvaIndices[3].fIndex = 2;
yuvaIndices[3].fChannel = SkColorChannel::kA;
} else {
yuvaIndices[3].fIndex = -1; // No alpha channel
}
break;
case kI420_YUVFormat:
yuvaIndices[0].fIndex = 0;
yuvaIndices[0].fChannel = SkColorChannel::kR;
yuvaIndices[1].fIndex = 1;
yuvaIndices[1].fChannel = SkColorChannel::kR;
yuvaIndices[2].fIndex = 2;
yuvaIndices[2].fChannel = SkColorChannel::kR;
if (addExtraAlpha) {
yuvaIndices[3].fIndex = 3;
yuvaIndices[3].fChannel = SkColorChannel::kA;
} else {
yuvaIndices[3].fIndex = -1; // No alpha channel
}
break;
case kYV12_YUVFormat:
yuvaIndices[0].fIndex = 0;
yuvaIndices[0].fChannel = SkColorChannel::kR;
yuvaIndices[1].fIndex = 2;
yuvaIndices[1].fChannel = SkColorChannel::kR;
yuvaIndices[2].fIndex = 1;
yuvaIndices[2].fChannel = SkColorChannel::kR;
if (addExtraAlpha) {
yuvaIndices[3].fIndex = 3;
yuvaIndices[3].fChannel = SkColorChannel::kA;
} else {
yuvaIndices[3].fIndex = -1; // No alpha channel
}
break;
}
}
// All the planes we need to construct the various YUV formats
struct PlaneData {
SkBitmap fYFull;
SkBitmap fUFull;
SkBitmap fVFull;
SkBitmap fAFull;
SkBitmap fUQuarter; // 2x2 downsampled U channel
SkBitmap fVQuarter; // 2x2 downsampled V channel
SkBitmap fFull;
SkBitmap fQuarter; // 2x2 downsampled YUVA
};
// Add a portion of a circle to 'path'. The points 'o1' and 'o2' are on the border of the circle
// and have tangents 'v1' and 'v2'.
static void add_arc(SkPath* path,
const SkPoint& o1, const SkVector& v1,
const SkPoint& o2, const SkVector& v2,
SkTDArray<SkRect>* circles, bool takeLongWayRound) {
SkVector v3 = { -v1.fY, v1.fX };
SkVector v4 = { v2.fY, -v2.fX };
SkScalar t = ((o2.fX - o1.fX) * v4.fY - (o2.fY - o1.fY) * v4.fX) / v3.cross(v4);
SkPoint center = { o1.fX + t * v3.fX, o1.fY + t * v3.fY };
SkRect r = { center.fX - t, center.fY - t, center.fX + t, center.fY + t };
if (circles) {
circles->push_back(r);
}
SkVector startV = o1 - center, endV = o2 - center;
startV.normalize();
endV.normalize();
SkScalar startDeg = SkRadiansToDegrees(SkScalarATan2(startV.fY, startV.fX));
SkScalar endDeg = SkRadiansToDegrees(SkScalarATan2(endV.fY, endV.fX));
startDeg += 360.0f;
startDeg = fmodf(startDeg, 360.0f);
endDeg += 360.0f;
endDeg = fmodf(endDeg, 360.0f);
if (endDeg < startDeg) {
endDeg += 360.0f;
}
SkScalar sweepDeg = SkTAbs(endDeg - startDeg);
if (!takeLongWayRound) {
sweepDeg = sweepDeg - 360;
}
path->arcTo(r, startDeg, sweepDeg, false);
}
static SkPath create_splat(const SkPoint& o, SkScalar innerRadius, SkScalar outerRadius,
SkScalar ratio, int numLobes, SkTDArray<SkRect>* circles) {
if (numLobes <= 1) {
return SkPath();
}
SkPath p;
int numDivisions = 2 * numLobes;
SkScalar fullLobeDegrees = 360.0f / numLobes;
SkScalar outDegrees = ratio * fullLobeDegrees / (ratio + 1.0f);
SkScalar innerDegrees = fullLobeDegrees / (ratio + 1.0f);
SkMatrix outerStep, innerStep;
outerStep.setRotate(outDegrees);
innerStep.setRotate(innerDegrees);
SkVector curV = SkVector::Make(0.0f, 1.0f);
if (circles) {
circles->push_back(SkRect::MakeLTRB(o.fX - innerRadius, o.fY - innerRadius,
o.fX + innerRadius, o.fY + innerRadius));
}
p.moveTo(o.fX + innerRadius * curV.fX, o.fY + innerRadius * curV.fY);
for (int i = 0; i < numDivisions; ++i) {
SkVector nextV;
if (0 == (i % 2)) {
nextV = outerStep.mapVector(curV.fX, curV.fY);
SkPoint top = SkPoint::Make(o.fX + outerRadius * curV.fX,
o.fY + outerRadius * curV.fY);
SkPoint nextTop = SkPoint::Make(o.fX + outerRadius * nextV.fX,
o.fY + outerRadius * nextV.fY);
p.lineTo(top);
add_arc(&p, top, curV, nextTop, nextV, circles, true);
} else {
nextV = innerStep.mapVector(curV.fX, curV.fY);
SkPoint bot = SkPoint::Make(o.fX + innerRadius * curV.fX,
o.fY + innerRadius * curV.fY);
SkPoint nextBot = SkPoint::Make(o.fX + innerRadius * nextV.fX,
o.fY + innerRadius * nextV.fY);
p.lineTo(bot);
add_arc(&p, bot, curV, nextBot, nextV, nullptr, false);
}
curV = nextV;
}
p.close();
return p;
}
static SkBitmap make_bitmap(SkColorType colorType, const SkPath& path,
const SkTDArray<SkRect>& circles, bool opaque, bool padWithRed) {
const SkColor kGreen = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 178, 240, 104));
const SkColor kBlue = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 173, 167, 252));
const SkColor kYellow = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 255, 221, 117));
int widthHeight = kTileWidthHeight + (padWithRed ? 2 * kDomainPadding : 0);
SkImageInfo ii = SkImageInfo::Make(widthHeight, widthHeight,
colorType, kPremul_SkAlphaType);
SkBitmap bm;
bm.allocPixels(ii);
std::unique_ptr<SkCanvas> canvas = SkCanvas::MakeRasterDirect(ii,
bm.getPixels(),
bm.rowBytes());
if (padWithRed) {
canvas->clear(SK_ColorRED);
canvas->translate(kDomainPadding, kDomainPadding);
canvas->clipRect(SkRect::MakeWH(kTileWidthHeight, kTileWidthHeight));
}
canvas->clear(opaque ? kGreen : SK_ColorTRANSPARENT);
SkPaint paint;
paint.setAntiAlias(false); // serialize-8888 doesn't seem to work well w/ partial transparency
paint.setColor(kBlue);
canvas->drawPath(path, paint);
paint.setColor(opaque ? kYellow : SK_ColorTRANSPARENT);
paint.setBlendMode(SkBlendMode::kSrc);
for (int i = 0; i < circles.count(); ++i) {
SkRect r = circles[i];
r.inset(r.width()/4, r.height()/4);
canvas->drawOval(r, paint);
}
return bm;
}
static void convert_rgba_to_yuva(const float mtx[20], SkColor col, uint8_t yuv[4]) {
const uint8_t r = SkColorGetR(col);
const uint8_t g = SkColorGetG(col);
const uint8_t b = SkColorGetB(col);
yuv[0] = SkTPin(SkScalarRoundToInt(mtx[ 0]*r + mtx[ 1]*g + mtx[ 2]*b + mtx[ 4]*255), 0, 255);
yuv[1] = SkTPin(SkScalarRoundToInt(mtx[ 5]*r + mtx[ 6]*g + mtx[ 7]*b + mtx[ 9]*255), 0, 255);
yuv[2] = SkTPin(SkScalarRoundToInt(mtx[10]*r + mtx[11]*g + mtx[12]*b + mtx[14]*255), 0, 255);
yuv[3] = SkColorGetA(col);
}
static SkPMColor convert_yuva_to_rgba(const float mtx[20],
uint8_t y, uint8_t u, uint8_t v, uint8_t a) {
uint8_t r = SkTPin(SkScalarRoundToInt(mtx[ 0]*y + mtx[ 1]*u + mtx[ 2]*v + mtx[ 4]*255), 0, 255);
uint8_t g = SkTPin(SkScalarRoundToInt(mtx[ 5]*y + mtx[ 6]*u + mtx[ 7]*v + mtx[ 9]*255), 0, 255);
uint8_t b = SkTPin(SkScalarRoundToInt(mtx[10]*y + mtx[11]*u + mtx[12]*v + mtx[14]*255), 0, 255);
return SkPremultiplyARGBInline(a, r, g, b);
}
static void extract_planes(const SkBitmap& bm, SkYUVColorSpace yuvColorSpace, PlaneData* planes) {
if (kIdentity_SkYUVColorSpace == yuvColorSpace) {
// To test the identity color space we use JPEG YUV planes
yuvColorSpace = kJPEG_SkYUVColorSpace;
}
SkASSERT(!(bm.width() % 2));
SkASSERT(!(bm.height() % 2));
planes->fYFull.allocPixels(
SkImageInfo::Make(bm.dimensions(), kGray_8_SkColorType, kUnpremul_SkAlphaType));
planes->fUFull.allocPixels(
SkImageInfo::Make(bm.dimensions(), kGray_8_SkColorType, kUnpremul_SkAlphaType));
planes->fVFull.allocPixels(
SkImageInfo::Make(bm.dimensions(), kGray_8_SkColorType, kUnpremul_SkAlphaType));
planes->fAFull.allocPixels(SkImageInfo::MakeA8(bm.width(), bm.height()));
planes->fUQuarter.allocPixels(SkImageInfo::Make(bm.width()/2, bm.height()/2,
kGray_8_SkColorType, kUnpremul_SkAlphaType));
planes->fVQuarter.allocPixels(SkImageInfo::Make(bm.width()/2, bm.height()/2,
kGray_8_SkColorType, kUnpremul_SkAlphaType));
planes->fFull.allocPixels(
SkImageInfo::Make(bm.dimensions(), kRGBA_F32_SkColorType, kUnpremul_SkAlphaType));
planes->fQuarter.allocPixels(SkImageInfo::Make(bm.width()/2, bm.height()/2,
kRGBA_F32_SkColorType, kUnpremul_SkAlphaType));
float mtx[20];
SkColorMatrix_RGB2YUV(yuvColorSpace, mtx);
SkColor4f* dst = (SkColor4f *) planes->fFull.getAddr(0, 0);
for (int y = 0; y < bm.height(); ++y) {
for (int x = 0; x < bm.width(); ++x) {
SkColor col = bm.getColor(x, y);
uint8_t yuva[4];
convert_rgba_to_yuva(mtx, col, yuva);
*planes->fYFull.getAddr8(x, y) = yuva[0];
*planes->fUFull.getAddr8(x, y) = yuva[1];
*planes->fVFull.getAddr8(x, y) = yuva[2];
*planes->fAFull.getAddr8(x, y) = yuva[3];
// TODO: render in F32 rather than converting here
dst->fR = yuva[0] / 255.0f;
dst->fG = yuva[1] / 255.0f;
dst->fB = yuva[2] / 255.0f;
dst->fA = yuva[3] / 255.0f;
++dst;
}
}
dst = (SkColor4f *) planes->fQuarter.getAddr(0, 0);
for (int y = 0; y < bm.height()/2; ++y) {
for (int x = 0; x < bm.width()/2; ++x) {
uint32_t yAccum = 0, uAccum = 0, vAccum = 0, aAccum = 0;
yAccum += *planes->fYFull.getAddr8(2*x, 2*y);
yAccum += *planes->fYFull.getAddr8(2*x+1, 2*y);
yAccum += *planes->fYFull.getAddr8(2*x, 2*y+1);
yAccum += *planes->fYFull.getAddr8(2*x+1, 2*y+1);
uAccum += *planes->fUFull.getAddr8(2*x, 2*y);
uAccum += *planes->fUFull.getAddr8(2*x+1, 2*y);
uAccum += *planes->fUFull.getAddr8(2*x, 2*y+1);
uAccum += *planes->fUFull.getAddr8(2*x+1, 2*y+1);
*planes->fUQuarter.getAddr8(x, y) = uAccum / 4.0f;
vAccum += *planes->fVFull.getAddr8(2*x, 2*y);
vAccum += *planes->fVFull.getAddr8(2*x+1, 2*y);
vAccum += *planes->fVFull.getAddr8(2*x, 2*y+1);
vAccum += *planes->fVFull.getAddr8(2*x+1, 2*y+1);
*planes->fVQuarter.getAddr8(x, y) = vAccum / 4.0f;
aAccum += *planes->fAFull.getAddr8(2*x, 2*y);
aAccum += *planes->fAFull.getAddr8(2*x+1, 2*y);
aAccum += *planes->fAFull.getAddr8(2*x, 2*y+1);
aAccum += *planes->fAFull.getAddr8(2*x+1, 2*y+1);
// TODO: render in F32 rather than converting here
dst->fR = yAccum / (4.0f * 255.0f);
dst->fG = uAccum / (4.0f * 255.0f);
dst->fB = vAccum / (4.0f * 255.0f);
dst->fA = aAccum / (4.0f * 255.0f);
++dst;
}
}
}
// Create a 2x2 downsampled SkBitmap. It is stored in an RG texture. It can optionally be
// uv (i.e., NV12) or vu (i.e., NV21).
static SkBitmap make_quarter_2_channel(const SkBitmap& fullY,
const SkBitmap& quarterU,
const SkBitmap& quarterV,
bool uv) {
SkBitmap result;
result.allocPixels(SkImageInfo::Make(fullY.width()/2,
fullY.height()/2,
kR8G8_unorm_SkColorType,
kUnpremul_SkAlphaType));
for (int y = 0; y < fullY.height()/2; ++y) {
for (int x = 0; x < fullY.width()/2; ++x) {
uint8_t u8 = *quarterU.getAddr8(x, y);
uint8_t v8 = *quarterV.getAddr8(x, y);
if (uv) {
*result.getAddr16(x, y) = (v8 << 8) | u8;
} else {
*result.getAddr16(x, y) = (u8 << 8) | v8;
}
}
}
return result;
}
// Create some flavor of a 16bits/channel bitmap from a RGBA_F32 source
static SkBitmap make_16(const SkBitmap& src, SkColorType dstCT,
std::function<void(uint16_t* dstPixel, const float* srcPixel)> convert) {
SkASSERT(src.colorType() == kRGBA_F32_SkColorType);
SkBitmap result;
result.allocPixels(SkImageInfo::Make(src.dimensions(), dstCT, kUnpremul_SkAlphaType));
for (int y = 0; y < src.height(); ++y) {
for (int x = 0; x < src.width(); ++x) {
const float* srcPixel = (const float*) src.getAddr(x, y);
uint16_t* dstPixel = (uint16_t*) result.getAddr(x, y);
convert(dstPixel, srcPixel);
}
}
return result;
}
static uint16_t flt_2_uint16(float flt) { return SkScalarRoundToInt(flt * 65535.0f); }
// Recombine the separate planes into some YUV format
static void create_YUV(const PlaneData& planes, YUVFormat yuvFormat,
SkBitmap resultBMs[], SkYUVAIndex yuvaIndices[4], bool opaque) {
int nextLayer = 0;
switch (yuvFormat) {
case kY416_YUVFormat: {
resultBMs[nextLayer++] = make_16(planes.fFull, kR16G16B16A16_unorm_SkColorType,
[] (uint16_t* dstPixel, const float* srcPixel) {
dstPixel[0] = flt_2_uint16(srcPixel[1]); // U
dstPixel[1] = flt_2_uint16(srcPixel[0]); // Y
dstPixel[2] = flt_2_uint16(srcPixel[2]); // V
dstPixel[3] = flt_2_uint16(srcPixel[3]); // A
});
setup_yuv_indices(yuvFormat, false, yuvaIndices);
break;
}
case kAYUV_YUVFormat: {
SkBitmap yuvaFull;
yuvaFull.allocPixels(SkImageInfo::Make(planes.fYFull.width(), planes.fYFull.height(),
kRGBA_8888_SkColorType, kUnpremul_SkAlphaType));
for (int y = 0; y < planes.fYFull.height(); ++y) {
for (int x = 0; x < planes.fYFull.width(); ++x) {
uint8_t Y = *planes.fYFull.getAddr8(x, y);
uint8_t U = *planes.fUFull.getAddr8(x, y);
uint8_t V = *planes.fVFull.getAddr8(x, y);
uint8_t A = *planes.fAFull.getAddr8(x, y);
// NOT premul!
// V and Y swapped to match RGBA layout
SkColor c = SkColorSetARGB(A, V, U, Y);
*yuvaFull.getAddr32(x, y) = c;
}
}
resultBMs[nextLayer++] = yuvaFull;
setup_yuv_indices(yuvFormat, false, yuvaIndices);
break;
}
case kY410_YUVFormat: {
SkBitmap yuvaFull;
uint32_t Y, U, V;
uint8_t A;
yuvaFull.allocPixels(SkImageInfo::Make(planes.fYFull.width(), planes.fYFull.height(),
kRGBA_1010102_SkColorType,
kUnpremul_SkAlphaType));
for (int y = 0; y < planes.fYFull.height(); ++y) {
for (int x = 0; x < planes.fYFull.width(); ++x) {
Y = SkScalarRoundToInt((*planes.fYFull.getAddr8(x, y) / 255.0f) * 1023.0f);
U = SkScalarRoundToInt((*planes.fUFull.getAddr8(x, y) / 255.0f) * 1023.0f);
V = SkScalarRoundToInt((*planes.fVFull.getAddr8(x, y) / 255.0f) * 1023.0f);
A = SkScalarRoundToInt((*planes.fAFull.getAddr8(x, y) / 255.0f) * 3.0f);
// NOT premul!
// AVYU but w/ V and U swapped to match RGBA layout
*yuvaFull.getAddr32(x, y) = (A << 30) | (U << 20) | (Y << 10) | (V << 0);
}
}
resultBMs[nextLayer++] = yuvaFull;
setup_yuv_indices(yuvFormat, false, yuvaIndices);
break;
}
case kP016_YUVFormat: // fall through
case kP010_YUVFormat: {
resultBMs[nextLayer++] = make_16(planes.fFull, kA16_unorm_SkColorType,
[tenBitsPP = (yuvFormat == kP010_YUVFormat)]
(uint16_t* dstPixel, const float* srcPixel) {
uint16_t val16 = flt_2_uint16(srcPixel[0]);
dstPixel[0] = tenBitsPP ? (val16 & 0xFFC0)
: val16;
});
resultBMs[nextLayer++] = make_16(planes.fQuarter, kR16G16_unorm_SkColorType,
[tenBitsPP = (yuvFormat == kP010_YUVFormat)]
(uint16_t* dstPixel, const float* srcPixel) {
uint16_t u16 = flt_2_uint16(srcPixel[1]);
uint16_t v16 = flt_2_uint16(srcPixel[2]);
dstPixel[0] = tenBitsPP ? (u16 & 0xFFC0) : u16;
dstPixel[1] = tenBitsPP ? (v16 & 0xFFC0) : v16;
});
if (!opaque) {
resultBMs[nextLayer] = make_16(planes.fFull, kA16_unorm_SkColorType,
[tenBitsPP = (yuvFormat == kP010_YUVFormat)]
(uint16_t* dstPixel, const float* srcPixel) {
uint16_t val16 = flt_2_uint16(srcPixel[3]);
dstPixel[0] = tenBitsPP ? (val16 & 0xFFC0)
: val16;
});
}
setup_yuv_indices(yuvFormat, !opaque, yuvaIndices);
return;
}
case kP016F_YUVFormat: {
resultBMs[nextLayer++] = make_16(planes.fFull, kA16_float_SkColorType,
[] (uint16_t* dstPixel, const float* srcPixel) {
dstPixel[0] = SkFloatToHalf(srcPixel[0]);
});
resultBMs[nextLayer++] = make_16(planes.fQuarter, kR16G16_float_SkColorType,
[] (uint16_t* dstPixel, const float* srcPixel) {
dstPixel[0] = SkFloatToHalf(srcPixel[1]);
dstPixel[1] = SkFloatToHalf(srcPixel[2]);
});
if (!opaque) {
resultBMs[nextLayer] = make_16(planes.fFull, kA16_float_SkColorType,
[] (uint16_t* dstPixel, const float* srcPixel) {
dstPixel[0] = SkFloatToHalf(srcPixel[3]);
});
}
setup_yuv_indices(yuvFormat, !opaque, yuvaIndices);
return;
}
case kNV12_YUVFormat: {
SkBitmap uvQuarter = make_quarter_2_channel(planes.fYFull,
planes.fUQuarter,
planes.fVQuarter, true);
resultBMs[nextLayer++] = planes.fYFull;
resultBMs[nextLayer++] = uvQuarter;
setup_yuv_indices(yuvFormat, !opaque, yuvaIndices);
break;
}
case kNV21_YUVFormat: {
SkBitmap vuQuarter = make_quarter_2_channel(planes.fYFull,
planes.fUQuarter,
planes.fVQuarter, false);
resultBMs[nextLayer++] = planes.fYFull;
resultBMs[nextLayer++] = vuQuarter;
setup_yuv_indices(yuvFormat, !opaque, yuvaIndices);
break;
}
case kI420_YUVFormat:
resultBMs[nextLayer++] = planes.fYFull;
resultBMs[nextLayer++] = planes.fUQuarter;
resultBMs[nextLayer++] = planes.fVQuarter;
setup_yuv_indices(yuvFormat, !opaque, yuvaIndices);
break;
case kYV12_YUVFormat:
resultBMs[nextLayer++] = planes.fYFull;
resultBMs[nextLayer++] = planes.fVQuarter;
resultBMs[nextLayer++] = planes.fUQuarter;
setup_yuv_indices(yuvFormat, !opaque, yuvaIndices);
break;
}
if (!format_has_builtin_alpha(yuvFormat) && !opaque) {
resultBMs[nextLayer] = planes.fAFull;
}
}
static uint8_t look_up(float x1, float y1, const SkBitmap& bm, SkColorChannel channel) {
uint8_t result;
SkASSERT(x1 > 0 && x1 < 1.0f);
SkASSERT(y1 > 0 && y1 < 1.0f);
int x = SkScalarFloorToInt(x1 * bm.width());
int y = SkScalarFloorToInt(y1 * bm.height());
if (kGray_8_SkColorType == bm.colorType()) {
SkASSERT(SkColorChannel::kA == channel || SkColorChannel::kR == channel);
result = *bm.getAddr8(x, y);
} else if (kAlpha_8_SkColorType == bm.colorType() ||
kA16_unorm_SkColorType == bm.colorType() ||
kA16_float_SkColorType == bm.colorType()) {
SkASSERT(SkColorChannel::kA == channel);
SkColor c = bm.getColor(x, y);
result = SkColorGetA(c);
} else if (kR8G8_unorm_SkColorType == bm.colorType() ||
kR16G16_unorm_SkColorType == bm.colorType() ||
kR16G16_float_SkColorType == bm.colorType()) {
SkASSERT(SkColorChannel::kR == channel || SkColorChannel::kG == channel);
SkColor c = bm.getColor(x, y);
switch (channel) {
case SkColorChannel::kR:
result = SkColorGetR(c);
break;
case SkColorChannel::kG:
result = SkColorGetG(c);
break;
case SkColorChannel::kB:
result = 0;
break;
case SkColorChannel::kA:
result = 255;
break;
}
} else {
SkASSERT(kRGBA_1010102_SkColorType == bm.colorType() ||
kRGBA_8888_SkColorType == bm.colorType() ||
kR16G16B16A16_unorm_SkColorType == bm.colorType());
SkColor c = bm.getColor(x, y);
switch (channel) {
case SkColorChannel::kR:
result = SkColorGetR(c);
break;
case SkColorChannel::kG:
result = SkColorGetG(c);
break;
case SkColorChannel::kB:
result = SkColorGetB(c);
break;
case SkColorChannel::kA:
result = SkColorGetA(c);
break;
}
}
return result;
}
class YUVGenerator : public SkImageGenerator {
public:
YUVGenerator(const SkImageInfo& ii,
SkYUVColorSpace yuvColorSpace,
SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount],
SkBitmap bitmaps[SkYUVASizeInfo::kMaxCount])
: SkImageGenerator(ii)
, fYUVColorSpace(yuvColorSpace)
, fAllA8(true) {
memcpy(fYUVAIndices, yuvaIndices, sizeof(fYUVAIndices));
SkAssertResult(SkYUVAIndex::AreValidIndices(fYUVAIndices, &fNumBitmaps));
SkASSERT(fNumBitmaps > 0 && fNumBitmaps <= SkYUVASizeInfo::kMaxCount);
for (int i = 0; i < fNumBitmaps; ++i) {
fYUVBitmaps[i] = bitmaps[i];
if (kAlpha_8_SkColorType != fYUVBitmaps[i].colorType()) {
fAllA8 = false;
}
}
}
protected:
bool onGetPixels(const SkImageInfo& info, void* pixels, size_t rowBytes,
const Options&) override {
if (kUnknown_SkColorType == fFlattened.colorType()) {
fFlattened.allocPixels(info);
SkASSERT(kN32_SkColorType == info.colorType());
SkASSERT(kPremul_SkAlphaType == info.alphaType());
float mtx[20];
SkColorMatrix_YUV2RGB(fYUVColorSpace, mtx);
for (int y = 0; y < info.height(); ++y) {
for (int x = 0; x < info.width(); ++x) {
float x1 = (x + 0.5f) / info.width();
float y1 = (y + 0.5f) / info.height();
uint8_t Y = look_up(x1, y1,
fYUVBitmaps[fYUVAIndices[0].fIndex],
fYUVAIndices[0].fChannel);
uint8_t U = look_up(x1, y1,
fYUVBitmaps[fYUVAIndices[1].fIndex],
fYUVAIndices[1].fChannel);
uint8_t V = look_up(x1, y1,
fYUVBitmaps[fYUVAIndices[2].fIndex],
fYUVAIndices[2].fChannel);
uint8_t A = 255;
if (fYUVAIndices[3].fIndex >= 0) {
A = look_up(x1, y1,
fYUVBitmaps[fYUVAIndices[3].fIndex],
fYUVAIndices[3].fChannel);
}
// Making premul here.
*fFlattened.getAddr32(x, y) = convert_yuva_to_rgba(mtx, Y, U, V, A);
}
}
}
return fFlattened.readPixels(info, pixels, rowBytes, 0, 0);
}
bool onQueryYUVA8(SkYUVASizeInfo* size,
SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount],
SkYUVColorSpace* yuvColorSpace) const override {
// The onQueryYUVA8/onGetYUVA8Planes can only handle A8 planes
if (!fAllA8) {
return false;
}
memcpy(yuvaIndices, fYUVAIndices, sizeof(fYUVAIndices));
*yuvColorSpace = fYUVColorSpace;
int i = 0;
for ( ; i < fNumBitmaps; ++i) {
size->fSizes[i].fWidth = fYUVBitmaps[i].width();
size->fSizes[i].fHeight = fYUVBitmaps[i].height();
size->fWidthBytes[i] = fYUVBitmaps[i].rowBytes();
}
for ( ; i < SkYUVASizeInfo::kMaxCount; ++i) {
size->fSizes[i].fWidth = 0;
size->fSizes[i].fHeight = 0;
size->fWidthBytes[i] = 0;
}
return true;
}
bool onGetYUVA8Planes(const SkYUVASizeInfo&, const SkYUVAIndex[SkYUVAIndex::kIndexCount],
void* planes[SkYUVASizeInfo::kMaxCount]) override {
SkASSERT(fAllA8);
for (int i = 0; i < fNumBitmaps; ++i) {
planes[i] = fYUVBitmaps[i].getPixels();
}
return true;
}
private:
SkYUVColorSpace fYUVColorSpace;
SkYUVAIndex fYUVAIndices[SkYUVAIndex::kIndexCount];
int fNumBitmaps;
SkBitmap fYUVBitmaps[SkYUVASizeInfo::kMaxCount];
SkBitmap fFlattened;
bool fAllA8; // are all the SkBitmaps in "fYUVBitmaps" A8?
};
static sk_sp<SkImage> make_yuv_gen_image(const SkImageInfo& ii,
SkYUVColorSpace yuvColorSpace,
SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount],
SkBitmap bitmaps[]) {
std::unique_ptr<SkImageGenerator> gen(new YUVGenerator(ii, yuvColorSpace,
yuvaIndices, bitmaps));
return SkImage::MakeFromGenerator(std::move(gen));
}
static void draw_col_label(SkCanvas* canvas, int x, int yuvColorSpace, bool opaque) {
static const char* kYUVColorSpaceNames[] = { "JPEG", "601", "709", "2020", "Identity" };
static_assert(SK_ARRAY_COUNT(kYUVColorSpaceNames) == kLastEnum_SkYUVColorSpace + 1);
SkPaint paint;
SkFont font(ToolUtils::create_portable_typeface(nullptr, SkFontStyle::Bold()), 16);
font.setEdging(SkFont::Edging::kAlias);
SkRect textRect;
SkString colLabel;
colLabel.printf("%s", kYUVColorSpaceNames[yuvColorSpace]);
font.measureText(colLabel.c_str(), colLabel.size(), SkTextEncoding::kUTF8, &textRect);
int y = textRect.height();
SkTextUtils::DrawString(canvas, colLabel.c_str(), x, y, font, paint, SkTextUtils::kCenter_Align);
colLabel.printf("%s", opaque ? "Opaque" : "Transparent");
font.measureText(colLabel.c_str(), colLabel.size(), SkTextEncoding::kUTF8, &textRect);
y += textRect.height();
SkTextUtils::DrawString(canvas, colLabel.c_str(), x, y, font, paint, SkTextUtils::kCenter_Align);
}
static void draw_row_label(SkCanvas* canvas, int y, int yuvFormat) {
static const char* kYUVFormatNames[] = {
"P016", "P010", "P016F", "Y416", "AYUV", "Y410", "NV12", "NV21", "I420", "YV12"
};
static_assert(SK_ARRAY_COUNT(kYUVFormatNames) == kLast_YUVFormat + 1);
SkPaint paint;
SkFont font(ToolUtils::create_portable_typeface(nullptr, SkFontStyle::Bold()), 16);
font.setEdging(SkFont::Edging::kAlias);
SkRect textRect;
SkString rowLabel;
rowLabel.printf("%s", kYUVFormatNames[yuvFormat]);
font.measureText(rowLabel.c_str(), rowLabel.size(), SkTextEncoding::kUTF8, &textRect);
y += kTileWidthHeight/2 + textRect.height()/2;
canvas->drawString(rowLabel, 0, y, font, paint);
}
static GrBackendTexture create_yuva_texture(GrContext* context, const SkBitmap& bm,
SkYUVAIndex yuvaIndices[4], int texIndex,
YUVFormat yuvFormat) {
#ifdef SK_DEBUG
SkASSERT(texIndex >= 0 && texIndex <= 3);
int channelCount = 0;
for (int i = 0; i < SkYUVAIndex::kIndexCount; ++i) {
if (yuvaIndices[i].fIndex == texIndex) {
++channelCount;
}
}
if (format_uses_16_bpp(yuvFormat) || 2 == channelCount) {
if (2 == channelCount) {
if (format_uses_16_bpp(yuvFormat)) {
if (yuvFormat == kP016F_YUVFormat) {
SkASSERT(kR16G16_float_SkColorType == bm.colorType());
} else {
SkASSERT(yuvFormat == kP016_YUVFormat || yuvFormat == kP010_YUVFormat);
SkASSERT(kR16G16_unorm_SkColorType == bm.colorType());
}
} else {
SkASSERT(kR8G8_unorm_SkColorType == bm.colorType());
}
} else {
if (yuvFormat == kY416_YUVFormat) {
SkASSERT(kR16G16B16A16_unorm_SkColorType == bm.colorType());
} else if (yuvFormat == kP016F_YUVFormat) {
SkASSERT(kA16_float_SkColorType == bm.colorType());
} else {
SkASSERT(yuvFormat == kP016_YUVFormat || yuvFormat == kP010_YUVFormat);
SkASSERT(kA16_unorm_SkColorType == bm.colorType());
}
}
}
#endif
return context->createBackendTexture(&bm.pixmap(), 1, GrRenderable::kNo, GrProtected::kNo);
}
static sk_sp<SkColorFilter> yuv_to_rgb_colorfilter() {
static const float kJPEGConversionMatrix[20] = {
1.0f, 0.0f, 1.402f, 0.0f, -180.0f/255,
1.0f, -0.344136f, -0.714136f, 0.0f, 136.0f/255,
1.0f, 1.772f, 0.0f, 0.0f, -227.6f/255,
0.0f, 0.0f, 0.0f, 1.0f, 0.0f
};
return SkColorFilters::Matrix(kJPEGConversionMatrix);
}
// Get the SkColorType to use when creating an SkSurface wrapping 'format'.
static SkColorType get_color_type(const GrBackendFormat& format) {
GrGLFormat glFormat = format.asGLFormat();
if (GrGLFormat::kUnknown != glFormat) {
switch (glFormat) {
case GrGLFormat::kLUMINANCE8: // fall through
case GrGLFormat::kR8: // fall through
case GrGLFormat::kALPHA8: return kAlpha_8_SkColorType;
case GrGLFormat::kRG8: return kR8G8_unorm_SkColorType;
case GrGLFormat::kRGB8: return kRGB_888x_SkColorType;
case GrGLFormat::kRGBA8: return kRGBA_8888_SkColorType;
case GrGLFormat::kBGRA8: return kBGRA_8888_SkColorType;
case GrGLFormat::kRGB10_A2: return kRGBA_1010102_SkColorType;
case GrGLFormat::kLUMINANCE16F: // fall through
case GrGLFormat::kR16F: return kA16_float_SkColorType;
case GrGLFormat::kRG16F: return kR16G16_float_SkColorType;
case GrGLFormat::kR16: return kA16_unorm_SkColorType;
case GrGLFormat::kRG16: return kR16G16_unorm_SkColorType;
case GrGLFormat::kRGBA16: return kR16G16B16A16_unorm_SkColorType;
default: return kUnknown_SkColorType;
}
SkUNREACHABLE;
}
VkFormat vkFormat;
if (format.asVkFormat(&vkFormat)) {
switch (vkFormat) {
case VK_FORMAT_R8_UNORM: return kAlpha_8_SkColorType;
case VK_FORMAT_R8G8_UNORM: return kR8G8_unorm_SkColorType;
case VK_FORMAT_R8G8B8_UNORM: return kRGB_888x_SkColorType;
case VK_FORMAT_R8G8B8A8_UNORM: return kRGBA_8888_SkColorType;
case VK_FORMAT_B8G8R8A8_UNORM: return kBGRA_8888_SkColorType;
case VK_FORMAT_A2B10G10R10_UNORM_PACK32: return kRGBA_1010102_SkColorType;
case VK_FORMAT_R16_SFLOAT: return kA16_float_SkColorType;
case VK_FORMAT_R16G16_SFLOAT: return kR16G16_float_SkColorType;
case VK_FORMAT_R16_UNORM: return kA16_unorm_SkColorType;
case VK_FORMAT_R16G16_UNORM: return kR16G16_unorm_SkColorType;
case VK_FORMAT_R16G16B16A16_UNORM: return kR16G16B16A16_unorm_SkColorType;
default: return kUnknown_SkColorType;
}
SkUNREACHABLE;
}
return kUnknown_SkColorType;
}
namespace skiagm {
// This GM creates an opaque and transparent bitmap, extracts the planes and then recombines
// them into various YUV formats. It then renders the results in the grid:
//
// JPEG 601 709 Identity
// Transparent Opaque Transparent Opaque Transparent Opaque Transparent Opaque
// originals
// P016
// P010
// P016F
// Y416
// AYUV
// Y410
// NV12
// NV21
// I420
// YV12
class WackyYUVFormatsGM : public GM {
public:
WackyYUVFormatsGM(bool useTargetColorSpace, bool useDomain, bool quarterSize)
: fUseTargetColorSpace(useTargetColorSpace)
, fUseDomain(useDomain)
, fQuarterSize(quarterSize) {
this->setBGColor(0xFFCCCCCC);
}
protected:
SkString onShortName() override {
SkString name("wacky_yuv_formats");
if (fUseTargetColorSpace) {
name += "_cs";
}
if (fUseDomain) {
name += "_domain";
}
if (fQuarterSize) {
name += "_qtr";
}
return name;
}
SkISize onISize() override {
int numCols = 2 * (kLastEnum_SkYUVColorSpace + 1); // opacity x #-color-spaces
int numRows = 1 + (kLast_YUVFormat + 1); // original + #-yuv-formats
int wh = SkScalarCeilToInt(kTileWidthHeight * (fUseDomain ? 1.5f : 1.f));
return SkISize::Make(kLabelWidth + numCols * (wh + kPad),
kLabelHeight + numRows * (wh + kPad));
}
void onOnceBeforeDraw() override {
SkPoint origin = { kTileWidthHeight/2.0f, kTileWidthHeight/2.0f };
float outerRadius = kTileWidthHeight/2.0f - 20.0f;
float innerRadius = 20.0f;
{
// transparent
SkTDArray<SkRect> circles;
SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 5, &circles);
fOriginalBMs[0] = make_bitmap(kRGBA_8888_SkColorType, path, circles, false, fUseDomain);
}
{
// opaque
SkTDArray<SkRect> circles;
SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 7, &circles);
fOriginalBMs[1] = make_bitmap(kRGBA_8888_SkColorType, path, circles, true, fUseDomain);
}
if (fUseTargetColorSpace) {
fTargetColorSpace = SkColorSpace::MakeSRGB()->makeColorSpin();
}
}
// Resize all the backend textures in 'yuvaTextures' to a quarter their size.
sk_sp<SkImage> resizeOnGpu(GrContext* context,
YUVFormat yuvFormat,
SkYUVColorSpace yuvColorSpace,
bool opaque,
const GrBackendTexture yuvaTextures[],
const SkYUVAIndex yuvaIndices[4],
int numTextures,
SkISize imageSize) {
GrBackendTexture shrunkTextures[4];
for (int i = 0; i < numTextures; ++i) {
SkColorType ct = get_color_type(yuvaTextures[i].getBackendFormat());
if (ct == kUnknown_SkColorType || !context->colorTypeSupportedAsSurface(ct)) {
return nullptr;
}
if (ct == kRGBA_8888_SkColorType || ct == kRGBA_1010102_SkColorType) {
// We disallow resizing AYUV and Y410 formats on the GPU bc resizing them w/ a
// premul draw combines the YUV channels w/ the A channel in an inappropriate
// manner.
return nullptr;
}
SkISize shrunkPlaneSize = { yuvaTextures[i].width() / 2, yuvaTextures[i].height() / 2 };
sk_sp<SkImage> wrappedOrig = SkImage::MakeFromTexture(context, yuvaTextures[i],
kTopLeft_GrSurfaceOrigin,
ct,
kPremul_SkAlphaType,
nullptr);
shrunkTextures[i] = context->createBackendTexture(shrunkPlaneSize.width(),
shrunkPlaneSize.height(),
yuvaTextures[i].getBackendFormat(),
GrMipMapped::kNo,
GrRenderable::kYes);
if (!shrunkTextures[i].isValid()) {
return nullptr;
}
// Store this away so it will be cleaned up at the end.
fBackendTextures.push_back(shrunkTextures[i]);
sk_sp<SkSurface> s = SkSurface::MakeFromBackendTexture(context, shrunkTextures[i],
kTopLeft_GrSurfaceOrigin, 0,
ct, nullptr, nullptr);
if (!s) {
return nullptr;
}
SkCanvas* c = s->getCanvas();
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
c->drawImageRect(wrappedOrig,
SkRect::MakeWH(shrunkPlaneSize.width(), shrunkPlaneSize.height()),
&paint);
s->flush();
}
SkISize shrunkImageSize = { imageSize.width() / 2, imageSize.height() / 2 };
return SkImage::MakeFromYUVATextures(context,
yuvColorSpace,
shrunkTextures,
yuvaIndices,
shrunkImageSize,
kTopLeft_GrSurfaceOrigin);
}
void createImages(GrContext* context) {
int counter = 0;
for (bool opaque : { false, true }) {
for (int cs = kJPEG_SkYUVColorSpace; cs <= kLastEnum_SkYUVColorSpace; ++cs) {
PlaneData planes;
extract_planes(fOriginalBMs[opaque], (SkYUVColorSpace) cs, &planes);
for (int format = kP016_YUVFormat; format <= kLast_YUVFormat; ++format) {
SkBitmap resultBMs[4];
SkYUVAIndex yuvaIndices[4];
create_YUV(planes, (YUVFormat) format, resultBMs, yuvaIndices, opaque);
int numTextures;
if (!SkYUVAIndex::AreValidIndices(yuvaIndices, &numTextures)) {
continue;
}
if (context) {
if (context->abandoned()) {
return;
}
if (!is_format_natively_supported(context, (YUVFormat) format)) {
continue;
}
GrBackendTexture yuvaTextures[4];
SkPixmap yuvaPixmaps[4];
for (int i = 0; i < numTextures; ++i) {
yuvaTextures[i] = create_yuva_texture(context, resultBMs[i],
yuvaIndices, i,
(YUVFormat) format);
if (yuvaTextures[i].isValid()) {
fBackendTextures.push_back(yuvaTextures[i]);
}
yuvaPixmaps[i] = resultBMs[i].pixmap();
}
if (fQuarterSize) {
fImages[opaque][cs][format] = this->resizeOnGpu(
context,
(YUVFormat) format,
(SkYUVColorSpace) cs,
opaque,
yuvaTextures,
yuvaIndices,
numTextures,
fOriginalBMs[opaque].dimensions());
} else {
int counterMod = counter % 3;
if (fUseDomain && counterMod == 0) {
// Copies flatten to RGB when they copy the YUVA data, which doesn't
// know about the intended domain and the domain padding bleeds in
counterMod = 1;
}
switch (counterMod) {
case 0:
fImages[opaque][cs][format] = SkImage::MakeFromYUVATexturesCopy(
context,
(SkYUVColorSpace)cs,
yuvaTextures,
yuvaIndices,
{ fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() },
kTopLeft_GrSurfaceOrigin);
break;
case 1:
fImages[opaque][cs][format] = SkImage::MakeFromYUVATextures(
context,
(SkYUVColorSpace)cs,
yuvaTextures,
yuvaIndices,
{ fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() },
kTopLeft_GrSurfaceOrigin);
break;
case 2:
default:
fImages[opaque][cs][format] = SkImage::MakeFromYUVAPixmaps(
context,
(SkYUVColorSpace)cs,
yuvaPixmaps,
yuvaIndices,
{ fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() },
kTopLeft_GrSurfaceOrigin, true);
break;
}
++counter;
}
} else {
SkImageInfo ii = SkImageInfo::MakeN32(fOriginalBMs[opaque].width(),
fOriginalBMs[opaque].height(),
kPremul_SkAlphaType);
fImages[opaque][cs][format] = make_yuv_gen_image(ii,
(SkYUVColorSpace) cs,
yuvaIndices,
resultBMs);
}
}
}
}
}
void onDraw(SkCanvas* canvas) override {
this->createImages(canvas->getGrContext());
float cellWidth = kTileWidthHeight, cellHeight = kTileWidthHeight;
if (fUseDomain) {
cellWidth *= 1.5f;
cellHeight *= 1.5f;
}
SkRect origSrcRect = SkRect::MakeWH(fOriginalBMs[0].width(), fOriginalBMs[0].height());
SkRect srcRect = SkRect::MakeWH(fOriginalBMs[0].width(), fOriginalBMs[0].height());
SkRect dstRect = SkRect::MakeXYWH(kLabelWidth, 0.f, srcRect.width(), srcRect.height());
if (fQuarterSize) {
if (canvas->getGrContext()) {
// The src is only shrunk on the GPU
srcRect = SkRect::MakeWH(fOriginalBMs[0].width()/2.0f,
fOriginalBMs[0].height()/2.0f);
}
// but the dest is always drawn smaller
dstRect = SkRect::MakeXYWH(kLabelWidth, 0.f,
fOriginalBMs[0].width()/2.0f,
fOriginalBMs[0].height()/2.0f);
}
SkCanvas::SrcRectConstraint constraint = SkCanvas::kFast_SrcRectConstraint;
if (fUseDomain) {
srcRect.inset(kDomainPadding, kDomainPadding);
origSrcRect.inset(kDomainPadding, kDomainPadding);
// Draw a larger rectangle to ensure bilerp filtering would normally read outside the
// srcRect and hit the red pixels, if strict constraint weren't used.
dstRect.fRight = kLabelWidth + 1.5f * srcRect.width();
dstRect.fBottom = 1.5f * srcRect.height();
constraint = SkCanvas::kStrict_SrcRectConstraint;
}
for (int cs = kJPEG_SkYUVColorSpace; cs <= kLastEnum_SkYUVColorSpace; ++cs) {
SkPaint paint;
paint.setFilterQuality(kLow_SkFilterQuality);
if (kIdentity_SkYUVColorSpace == cs) {
// The identity color space needs post processing to appear correctly
paint.setColorFilter(yuv_to_rgb_colorfilter());
}
for (int opaque : { 0, 1 }) {
dstRect.offsetTo(dstRect.fLeft, kLabelHeight);
draw_col_label(canvas, dstRect.fLeft + cellWidth / 2, cs, opaque);
canvas->drawBitmapRect(fOriginalBMs[opaque], origSrcRect, dstRect,
nullptr, constraint);
dstRect.offset(0.f, cellHeight + kPad);
for (int format = kP016_YUVFormat; format <= kLast_YUVFormat; ++format) {
draw_row_label(canvas, dstRect.fTop, format);
if (fUseTargetColorSpace && fImages[opaque][cs][format]) {
// Making a CS-specific version of a kIdentity_SkYUVColorSpace YUV image
// doesn't make a whole lot of sense. The colorSpace conversion will
// operate on the YUV components rather than the RGB components.
sk_sp<SkImage> csImage =
fImages[opaque][cs][format]->makeColorSpace(fTargetColorSpace);
canvas->drawImageRect(csImage, srcRect, dstRect, &paint, constraint);
} else {
canvas->drawImageRect(fImages[opaque][cs][format], srcRect, dstRect,
&paint, constraint);
}
dstRect.offset(0.f, cellHeight + kPad);
}
dstRect.offset(cellWidth + kPad, 0.f);
}
}
if (auto context = canvas->getGrContext()) {
if (!context->abandoned()) {
context->flush();
GrGpu* gpu = context->priv().getGpu();
SkASSERT(gpu);
gpu->testingOnly_flushGpuAndSync();
for (const auto& tex : fBackendTextures) {
context->deleteBackendTexture(tex);
}
fBackendTextures.reset();
}
}
SkASSERT(!fBackendTextures.count());
}
private:
SkBitmap fOriginalBMs[2];
sk_sp<SkImage> fImages[2][kLastEnum_SkYUVColorSpace + 1][kLast_YUVFormat + 1];
SkTArray<GrBackendTexture> fBackendTextures;
bool fUseTargetColorSpace;
bool fUseDomain;
bool fQuarterSize;
sk_sp<SkColorSpace> fTargetColorSpace;
typedef GM INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
DEF_GM(return new WackyYUVFormatsGM(/* cs */ false, /* domain */ false, /* quarterSize */ false);)
DEF_GM(return new WackyYUVFormatsGM(/* cs */ false, /* domain */ false, /* quarterSize */ true);)
DEF_GM(return new WackyYUVFormatsGM(/* cs */ true, /* domain */ false, /* quarterSize */ false);)
DEF_GM(return new WackyYUVFormatsGM(/* cs */ false, /* domain */ true, /* quarterSize */ false);)
class YUVMakeColorSpaceGM : public GpuGM {
public:
YUVMakeColorSpaceGM() {
this->setBGColor(0xFFCCCCCC);
}
protected:
SkString onShortName() override {
return SkString("yuv_make_color_space");
}
SkISize onISize() override {
int numCols = 4; // (transparent, opaque) x (untagged, tagged)
int numRows = 5; // original, YUV, subset, readPixels, makeNonTextureImage
return SkISize::Make(numCols * (kTileWidthHeight + kPad) + kPad,
numRows * (kTileWidthHeight + kPad) + kPad);
}
void onOnceBeforeDraw() override {
SkPoint origin = { kTileWidthHeight/2.0f, kTileWidthHeight/2.0f };
float outerRadius = kTileWidthHeight/2.0f - 20.0f;
float innerRadius = 20.0f;
{
// transparent
SkTDArray<SkRect> circles;
SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 5, &circles);
fOriginalBMs[0] = make_bitmap(kN32_SkColorType, path, circles, false, false);
}
{
// opaque
SkTDArray<SkRect> circles;
SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 7, &circles);
fOriginalBMs[1] = make_bitmap(kN32_SkColorType, path, circles, true, false);
}
fTargetColorSpace = SkColorSpace::MakeSRGB()->makeColorSpin();
}
void createImages(GrContext* context) {
for (bool opaque : { false, true }) {
PlaneData planes;
extract_planes(fOriginalBMs[opaque], kJPEG_SkYUVColorSpace, &planes);
SkBitmap resultBMs[4];
SkYUVAIndex yuvaIndices[4];
create_YUV(planes, kAYUV_YUVFormat, resultBMs, yuvaIndices, opaque);
int numTextures;
if (!SkYUVAIndex::AreValidIndices(yuvaIndices, &numTextures)) {
continue;
}
GrBackendTexture yuvaTextures[4];
for (int i = 0; i < numTextures; ++i) {
yuvaTextures[i] = create_yuva_texture(context, resultBMs[i], yuvaIndices, i,
kAYUV_YUVFormat);
if (yuvaTextures[i].isValid()) {
fBackendTextures.push_back(yuvaTextures[i]);
}
}
fImages[opaque][0] = SkImage::MakeFromYUVATextures(
context,
kJPEG_SkYUVColorSpace,
yuvaTextures,
yuvaIndices,
{ fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() },
kTopLeft_GrSurfaceOrigin);
fImages[opaque][1] = SkImage::MakeFromYUVATextures(
context,
kJPEG_SkYUVColorSpace,
yuvaTextures,
yuvaIndices,
{ fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() },
kTopLeft_GrSurfaceOrigin,
SkColorSpace::MakeSRGB());
}
}
void onDraw(GrContext* context, GrRenderTargetContext*, SkCanvas* canvas) override {
this->createImages(context);
int x = kPad;
for (int tagged : { 0, 1 }) {
for (int opaque : { 0, 1 }) {
int y = kPad;
auto raster = SkImage::MakeFromBitmap(fOriginalBMs[opaque])
->makeColorSpace(fTargetColorSpace);
canvas->drawImage(raster, x, y);
y += kTileWidthHeight + kPad;
if (fImages[opaque][tagged]) {
auto yuv = fImages[opaque][tagged]->makeColorSpace(fTargetColorSpace);
SkASSERT(SkColorSpace::Equals(yuv->colorSpace(), fTargetColorSpace.get()));
canvas->drawImage(yuv, x, y);
y += kTileWidthHeight + kPad;
auto subset = yuv->makeSubset(SkIRect::MakeWH(kTileWidthHeight / 2,
kTileWidthHeight / 2));
canvas->drawImage(subset, x, y);
y += kTileWidthHeight + kPad;
auto nonTexture = yuv->makeNonTextureImage();
canvas->drawImage(nonTexture, x, y);
y += kTileWidthHeight + kPad;
SkBitmap readBack;
readBack.allocPixels(yuv->imageInfo());
yuv->readPixels(readBack.pixmap(), 0, 0);
canvas->drawBitmap(readBack, x, y);
}
x += kTileWidthHeight + kPad;
}
}
context->flush();
GrGpu* gpu = context->priv().getGpu();
SkASSERT(gpu);
gpu->testingOnly_flushGpuAndSync();
for (const auto& tex : fBackendTextures) {
context->deleteBackendTexture(tex);
}
fBackendTextures.reset();
}
private:
SkBitmap fOriginalBMs[2];
sk_sp<SkImage> fImages[2][2];
SkTArray<GrBackendTexture> fBackendTextures;
sk_sp<SkColorSpace> fTargetColorSpace;
typedef GM INHERITED;
};
DEF_GM(return new YUVMakeColorSpaceGM();)
}
///////////////
#include "include/effects/SkColorMatrix.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "tools/Resources.h"
static void draw_into_alpha(const SkImage* img, sk_sp<SkColorFilter> cf, const SkPixmap& dst) {
auto canvas = SkCanvas::MakeRasterDirect(dst.info(), dst.writable_addr(), dst.rowBytes());
canvas->scale(1.0f * dst.width() / img->width(), 1.0f * dst.height() / img->height());
SkPaint paint;
paint.setFilterQuality(kLow_SkFilterQuality);
paint.setColorFilter(cf);
paint.setBlendMode(SkBlendMode::kSrc);
canvas->drawImage(img, 0, 0, &paint);
}
static void split_into_yuv(const SkImage* img, SkYUVColorSpace cs, const SkPixmap dst[3]) {
float m[20];
SkColorMatrix_RGB2YUV(cs, m);
memcpy(m + 15, m + 0, 5 * sizeof(float)); // copy Y into A
draw_into_alpha(img, SkColorFilters::Matrix(m), dst[0]);
memcpy(m + 15, m + 5, 5 * sizeof(float)); // copy U into A
draw_into_alpha(img, SkColorFilters::Matrix(m), dst[1]);
memcpy(m + 15, m + 10, 5 * sizeof(float)); // copy V into A
draw_into_alpha(img, SkColorFilters::Matrix(m), dst[2]);
}
static void draw_diff(SkCanvas* canvas, SkScalar x, SkScalar y,
const SkImage* a, const SkImage* b) {
auto sh = SkShaders::Blend(SkBlendMode::kDifference, a->makeShader(), b->makeShader());
SkPaint paint;
paint.setShader(sh);
canvas->save();
canvas->translate(x, y);
canvas->drawRect(SkRect::MakeWH(a->width(), a->height()), paint);
SkColorMatrix cm;
cm.setScale(64, 64, 64);
paint.setShader(sh->makeWithColorFilter(SkColorFilters::Matrix(cm)));
canvas->translate(0, a->height());
canvas->drawRect(SkRect::MakeWH(a->width(), a->height()), paint);
canvas->restore();
}
// Exercises SkColorMatrix_RGB2YUV for yuv colorspaces, showing the planes, and the
// resulting (recombined) images (gpu only for now).
//
class YUVSplitterGM : public skiagm::GM {
sk_sp<SkImage> fOrig;
SkAutoPixmapStorage fStorage[3];
SkPixmap fPM[3];
public:
YUVSplitterGM() {}
protected:
SkString onShortName() override {
return SkString("yuv_splitter");
}
SkISize onISize() override {
return SkISize::Make(1280, 768);
}
void onOnceBeforeDraw() override {
fOrig = GetResourceAsImage("images/mandrill_256.png");
SkImageInfo info = SkImageInfo::Make(fOrig->width(), fOrig->height(), kAlpha_8_SkColorType,
kPremul_SkAlphaType);
fStorage[0].alloc(info);
if (0) {
// if you want to scale U,V down by 1/2
info = info.makeWH(info.width()/2, info.height()/2);
}
fStorage[1].alloc(info);
fStorage[2].alloc(info);
for (int i = 0; i < 3; ++i) {
fPM[i] = fStorage[i];
}
}
void onDraw(SkCanvas* canvas) override {
SkYUVAIndex indices[4];
indices[SkYUVAIndex::kY_Index] = {0, SkColorChannel::kR};
indices[SkYUVAIndex::kU_Index] = {1, SkColorChannel::kR};
indices[SkYUVAIndex::kV_Index] = {2, SkColorChannel::kR};
indices[SkYUVAIndex::kA_Index] = {-1, SkColorChannel::kR};
canvas->translate(fOrig->width(), 0);
canvas->save();
for (auto cs : {kRec709_SkYUVColorSpace, kRec601_SkYUVColorSpace, kJPEG_SkYUVColorSpace,
kBT2020_SkYUVColorSpace}) {
split_into_yuv(fOrig.get(), cs, fPM);
auto img = SkImage::MakeFromYUVAPixmaps(canvas->getGrContext(), cs, fPM, indices,
fPM[0].info().dimensions(),
kTopLeft_GrSurfaceOrigin,
false, false, nullptr);
if (img) {
canvas->drawImage(img, 0, 0, nullptr);
draw_diff(canvas, 0, fOrig->height(), fOrig.get(), img.get());
}
canvas->translate(fOrig->width(), 0);
}
canvas->restore();
canvas->translate(-fOrig->width(), 0);
canvas->drawImage(SkImage::MakeRasterCopy(fPM[0]), 0, 0, nullptr);
canvas->drawImage(SkImage::MakeRasterCopy(fPM[1]), 0, fPM[0].height(), nullptr);
canvas->drawImage(SkImage::MakeRasterCopy(fPM[2]),
0, fPM[0].height() + fPM[1].height(), nullptr);
}
private:
typedef GM INHERITED;
};
DEF_GM( return new YUVSplitterGM; )