skia2/bench/nanobench.cpp
kkinnunen 9e61bb7815 Make the Sk GL context class an abstract base class
Make the Sk GL context class, SkGLNativeContext, an abstract base class. Before,
it depended on ifdefs to implement the platform dependent polymorphism.  Move
the logic to subclasses of the various platform implementations.

This a step to enable Skia embedders to compile dm and bench_pictures. The
concrete goal is to support running these test apps with Chromium command buffer.

With this change, Chromium can implement its own version of SkGLNativeContext
that uses command buffer, and host the implementation in its own repository.

Implements the above by renaming the SkGLContextHelper to SkGLContext and
removing the unneeded SkGLNativeContext. Also removes
SkGLNativeContext::AutoRestoreContext functionality, it appeared to be unused:
no use in Skia code, and no tests.

BUG=skia:2992

Committed: https://skia.googlesource.com/skia/+/a90ed4e83897b45d6331ee4c54e1edd4054de9a8

Review URL: https://codereview.chromium.org/630843002
2014-10-09 05:24:15 -07:00

727 lines
25 KiB
C++

/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <ctype.h>
#include "Benchmark.h"
#include "CrashHandler.h"
#include "GMBench.h"
#include "ProcStats.h"
#include "ResultsWriter.h"
#include "RecordingBench.h"
#include "SKPBench.h"
#include "Stats.h"
#include "Timer.h"
#include "SkBBHFactory.h"
#include "SkCanvas.h"
#include "SkCommonFlags.h"
#include "SkForceLinking.h"
#include "SkGraphics.h"
#include "SkOSFile.h"
#include "SkPictureRecorder.h"
#include "SkString.h"
#include "SkSurface.h"
#if SK_SUPPORT_GPU
#include "gl/GrGLDefines.h"
#include "GrContextFactory.h"
SkAutoTDelete<GrContextFactory> gGrFactory;
#endif
__SK_FORCE_IMAGE_DECODER_LINKING;
static const int kAutoTuneLoops = -1;
static const int kDefaultLoops =
#ifdef SK_DEBUG
1;
#else
kAutoTuneLoops;
#endif
static SkString loops_help_txt() {
SkString help;
help.printf("Number of times to run each bench. Set this to %d to auto-"
"tune for each bench. Timings are only reported when auto-tuning.",
kAutoTuneLoops);
return help;
}
DEFINE_int32(loops, kDefaultLoops, loops_help_txt().c_str());
DEFINE_int32(samples, 10, "Number of samples to measure for each bench.");
DEFINE_int32(overheadLoops, 100000, "Loops to estimate timer overhead.");
DEFINE_double(overheadGoal, 0.0001,
"Loop until timer overhead is at most this fraction of our measurments.");
DEFINE_double(gpuMs, 5, "Target bench time in millseconds for GPU.");
DEFINE_int32(gpuFrameLag, 5, "Overestimate of maximum number of frames GPU allows to lag.");
DEFINE_bool(gpuCompressAlphaMasks, false, "Compress masks generated from falling back to "
"software path rendering.");
DEFINE_string(outResultsFile, "", "If given, write results here as JSON.");
DEFINE_int32(maxCalibrationAttempts, 3,
"Try up to this many times to guess loops for a bench, or skip the bench.");
DEFINE_int32(maxLoops, 1000000, "Never run a bench more times than this.");
DEFINE_string(clip, "0,0,1000,1000", "Clip for SKPs.");
DEFINE_string(scales, "1.0", "Space-separated scales for SKPs.");
DEFINE_bool(bbh, true, "Build a BBH for SKPs?");
static SkString humanize(double ms) {
if (FLAGS_verbose) return SkStringPrintf("%llu", (uint64_t)(ms*1e6));
if (ms > 1e+3) return SkStringPrintf("%.3gs", ms/1e3);
if (ms < 1e-3) return SkStringPrintf("%.3gns", ms*1e6);
#ifdef SK_BUILD_FOR_WIN
if (ms < 1) return SkStringPrintf("%.3gus", ms*1e3);
#else
if (ms < 1) return SkStringPrintf("%.3gµs", ms*1e3);
#endif
return SkStringPrintf("%.3gms", ms);
}
#define HUMANIZE(ms) humanize(ms).c_str()
static double time(int loops, Benchmark* bench, SkCanvas* canvas, SkGLContext* gl) {
if (canvas) {
canvas->clear(SK_ColorWHITE);
}
WallTimer timer;
timer.start();
if (bench) {
bench->draw(loops, canvas);
}
if (canvas) {
canvas->flush();
}
#if SK_SUPPORT_GPU
if (gl) {
SK_GL(*gl, Flush());
gl->swapBuffers();
}
#endif
timer.end();
return timer.fWall;
}
static double estimate_timer_overhead() {
double overhead = 0;
for (int i = 0; i < FLAGS_overheadLoops; i++) {
overhead += time(1, NULL, NULL, NULL);
}
return overhead / FLAGS_overheadLoops;
}
static int clamp_loops(int loops) {
if (loops < 1) {
SkDebugf("ERROR: clamping loops from %d to 1.\n", loops);
return 1;
}
if (loops > FLAGS_maxLoops) {
SkDebugf("WARNING: clamping loops from %d to FLAGS_maxLoops, %d.\n", loops, FLAGS_maxLoops);
return FLAGS_maxLoops;
}
return loops;
}
static bool write_canvas_png(SkCanvas* canvas, const SkString& filename) {
if (filename.isEmpty()) {
return false;
}
if (kUnknown_SkColorType == canvas->imageInfo().colorType()) {
return false;
}
SkBitmap bmp;
bmp.setInfo(canvas->imageInfo());
if (!canvas->readPixels(&bmp, 0, 0)) {
SkDebugf("Can't read canvas pixels.\n");
return false;
}
SkString dir = SkOSPath::Dirname(filename.c_str());
if (!sk_mkdir(dir.c_str())) {
SkDebugf("Can't make dir %s.\n", dir.c_str());
return false;
}
SkFILEWStream stream(filename.c_str());
if (!stream.isValid()) {
SkDebugf("Can't write %s.\n", filename.c_str());
return false;
}
if (!SkImageEncoder::EncodeStream(&stream, bmp, SkImageEncoder::kPNG_Type, 100)) {
SkDebugf("Can't encode a PNG.\n");
return false;
}
return true;
}
static int kFailedLoops = -2;
static int cpu_bench(const double overhead, Benchmark* bench, SkCanvas* canvas, double* samples) {
// First figure out approximately how many loops of bench it takes to make overhead negligible.
double bench_plus_overhead = 0.0;
int round = 0;
if (kAutoTuneLoops == FLAGS_loops) {
while (bench_plus_overhead < overhead) {
if (round++ == FLAGS_maxCalibrationAttempts) {
SkDebugf("WARNING: Can't estimate loops for %s (%s vs. %s); skipping.\n",
bench->getUniqueName(), HUMANIZE(bench_plus_overhead), HUMANIZE(overhead));
return kFailedLoops;
}
bench_plus_overhead = time(1, bench, canvas, NULL);
}
}
// Later we'll just start and stop the timer once but loop N times.
// We'll pick N to make timer overhead negligible:
//
// overhead
// ------------------------- < FLAGS_overheadGoal
// overhead + N * Bench Time
//
// where bench_plus_overhead ≈ overhead + Bench Time.
//
// Doing some math, we get:
//
// (overhead / FLAGS_overheadGoal) - overhead
// ------------------------------------------ < N
// bench_plus_overhead - overhead)
//
// Luckily, this also works well in practice. :)
int loops = FLAGS_loops;
if (kAutoTuneLoops == loops) {
const double numer = overhead / FLAGS_overheadGoal - overhead;
const double denom = bench_plus_overhead - overhead;
loops = (int)ceil(numer / denom);
}
loops = clamp_loops(loops);
for (int i = 0; i < FLAGS_samples; i++) {
samples[i] = time(loops, bench, canvas, NULL) / loops;
}
return loops;
}
#if SK_SUPPORT_GPU
static int gpu_bench(SkGLContext* gl,
Benchmark* bench,
SkCanvas* canvas,
double* samples) {
gl->makeCurrent();
// Make sure we're done with whatever came before.
SK_GL(*gl, Finish());
// First, figure out how many loops it'll take to get a frame up to FLAGS_gpuMs.
int loops = FLAGS_loops;
if (kAutoTuneLoops == loops) {
loops = 1;
double elapsed = 0;
do {
loops *= 2;
// If the GPU lets frames lag at all, we need to make sure we're timing
// _this_ round, not still timing last round. We force this by looping
// more times than any reasonable GPU will allow frames to lag.
for (int i = 0; i < FLAGS_gpuFrameLag; i++) {
elapsed = time(loops, bench, canvas, gl);
}
} while (elapsed < FLAGS_gpuMs);
// We've overshot at least a little. Scale back linearly.
loops = (int)ceil(loops * FLAGS_gpuMs / elapsed);
// Might as well make sure we're not still timing our calibration.
SK_GL(*gl, Finish());
}
loops = clamp_loops(loops);
// Pretty much the same deal as the calibration: do some warmup to make
// sure we're timing steady-state pipelined frames.
for (int i = 0; i < FLAGS_gpuFrameLag; i++) {
time(loops, bench, canvas, gl);
}
// Now, actually do the timing!
for (int i = 0; i < FLAGS_samples; i++) {
samples[i] = time(loops, bench, canvas, gl) / loops;
}
return loops;
}
#endif
static SkString to_lower(const char* str) {
SkString lower(str);
for (size_t i = 0; i < lower.size(); i++) {
lower[i] = tolower(lower[i]);
}
return lower;
}
struct Config {
const char* name;
Benchmark::Backend backend;
SkColorType color;
SkAlphaType alpha;
int samples;
#if SK_SUPPORT_GPU
GrContextFactory::GLContextType ctxType;
#else
int bogusInt;
#endif
};
struct Target {
explicit Target(const Config& c) : config(c) {}
const Config config;
SkAutoTDelete<SkSurface> surface;
#if SK_SUPPORT_GPU
SkGLContext* gl;
#endif
};
static bool is_cpu_config_allowed(const char* name) {
for (int i = 0; i < FLAGS_config.count(); i++) {
if (to_lower(FLAGS_config[i]).equals(name)) {
return true;
}
}
return false;
}
#if SK_SUPPORT_GPU
static bool is_gpu_config_allowed(const char* name, GrContextFactory::GLContextType ctxType,
int sampleCnt) {
if (!is_cpu_config_allowed(name)) {
return false;
}
if (const GrContext* ctx = gGrFactory->get(ctxType)) {
return sampleCnt <= ctx->getMaxSampleCount();
}
return false;
}
#endif
#if SK_SUPPORT_GPU
#define kBogusGLContextType GrContextFactory::kNative_GLContextType
#else
#define kBogusGLContextType 0
#endif
// Append all configs that are enabled and supported.
static void create_configs(SkTDArray<Config>* configs) {
#define CPU_CONFIG(name, backend, color, alpha) \
if (is_cpu_config_allowed(#name)) { \
Config config = { #name, Benchmark::backend, color, alpha, 0, kBogusGLContextType }; \
configs->push(config); \
}
if (FLAGS_cpu) {
CPU_CONFIG(nonrendering, kNonRendering_Backend, kUnknown_SkColorType, kUnpremul_SkAlphaType)
CPU_CONFIG(8888, kRaster_Backend, kN32_SkColorType, kPremul_SkAlphaType)
CPU_CONFIG(565, kRaster_Backend, kRGB_565_SkColorType, kOpaque_SkAlphaType)
}
#if SK_SUPPORT_GPU
#define GPU_CONFIG(name, ctxType, samples) \
if (is_gpu_config_allowed(#name, GrContextFactory::ctxType, samples)) { \
Config config = { \
#name, \
Benchmark::kGPU_Backend, \
kN32_SkColorType, \
kPremul_SkAlphaType, \
samples, \
GrContextFactory::ctxType }; \
configs->push(config); \
}
if (FLAGS_gpu) {
GPU_CONFIG(gpu, kNative_GLContextType, 0)
GPU_CONFIG(msaa4, kNative_GLContextType, 4)
GPU_CONFIG(msaa16, kNative_GLContextType, 16)
GPU_CONFIG(nvprmsaa4, kNVPR_GLContextType, 4)
GPU_CONFIG(nvprmsaa16, kNVPR_GLContextType, 16)
GPU_CONFIG(debug, kDebug_GLContextType, 0)
GPU_CONFIG(nullgpu, kNull_GLContextType, 0)
#ifdef SK_ANGLE
GPU_CONFIG(angle, kANGLE_GLContextType, 0)
#endif
}
#endif
}
// If bench is enabled for config, returns a Target* for it, otherwise NULL.
static Target* is_enabled(Benchmark* bench, const Config& config) {
if (!bench->isSuitableFor(config.backend)) {
return NULL;
}
SkImageInfo info = SkImageInfo::Make(bench->getSize().fX, bench->getSize().fY,
config.color, config.alpha);
Target* target = new Target(config);
if (Benchmark::kRaster_Backend == config.backend) {
target->surface.reset(SkSurface::NewRaster(info));
}
#if SK_SUPPORT_GPU
else if (Benchmark::kGPU_Backend == config.backend) {
target->surface.reset(SkSurface::NewRenderTarget(gGrFactory->get(config.ctxType), info,
config.samples));
target->gl = gGrFactory->getGLContext(config.ctxType);
}
#endif
if (Benchmark::kNonRendering_Backend != config.backend && !target->surface.get()) {
delete target;
return NULL;
}
return target;
}
// Creates targets for a benchmark and a set of configs.
static void create_targets(SkTDArray<Target*>* targets, Benchmark* b,
const SkTDArray<Config>& configs) {
for (int i = 0; i < configs.count(); ++i) {
if (Target* t = is_enabled(b, configs[i])) {
targets->push(t);
}
}
}
#if SK_SUPPORT_GPU
static void fill_gpu_options(ResultsWriter* log, SkGLContext* ctx) {
const GrGLubyte* version;
SK_GL_RET(*ctx, version, GetString(GR_GL_VERSION));
log->configOption("GL_VERSION", (const char*)(version));
SK_GL_RET(*ctx, version, GetString(GR_GL_RENDERER));
log->configOption("GL_RENDERER", (const char*) version);
SK_GL_RET(*ctx, version, GetString(GR_GL_VENDOR));
log->configOption("GL_VENDOR", (const char*) version);
SK_GL_RET(*ctx, version, GetString(GR_GL_SHADING_LANGUAGE_VERSION));
log->configOption("GL_SHADING_LANGUAGE_VERSION", (const char*) version);
}
#endif
class BenchmarkStream {
public:
BenchmarkStream() : fBenches(BenchRegistry::Head())
, fGMs(skiagm::GMRegistry::Head())
, fCurrentRecording(0)
, fCurrentScale(0)
, fCurrentSKP(0) {
for (int i = 0; i < FLAGS_skps.count(); i++) {
if (SkStrEndsWith(FLAGS_skps[i], ".skp")) {
fSKPs.push_back() = FLAGS_skps[i];
} else {
SkOSFile::Iter it(FLAGS_skps[i], ".skp");
SkString path;
while (it.next(&path)) {
fSKPs.push_back() = SkOSPath::Join(FLAGS_skps[0], path.c_str());
}
}
}
if (4 != sscanf(FLAGS_clip[0], "%d,%d,%d,%d",
&fClip.fLeft, &fClip.fTop, &fClip.fRight, &fClip.fBottom)) {
SkDebugf("Can't parse %s from --clip as an SkIRect.\n", FLAGS_clip[0]);
exit(1);
}
for (int i = 0; i < FLAGS_scales.count(); i++) {
if (1 != sscanf(FLAGS_scales[i], "%f", &fScales.push_back())) {
SkDebugf("Can't parse %s from --scales as an SkScalar.\n", FLAGS_scales[i]);
exit(1);
}
}
}
static bool ReadPicture(const char* path, SkAutoTUnref<SkPicture>* pic) {
// Not strictly necessary, as it will be checked again later,
// but helps to avoid a lot of pointless work if we're going to skip it.
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path)) {
return false;
}
SkAutoTUnref<SkStream> stream(SkStream::NewFromFile(path));
if (stream.get() == NULL) {
SkDebugf("Could not read %s.\n", path);
return false;
}
pic->reset(SkPicture::CreateFromStream(stream.get()));
if (pic->get() == NULL) {
SkDebugf("Could not read %s as an SkPicture.\n", path);
return false;
}
return true;
}
Benchmark* next() {
if (fBenches) {
Benchmark* bench = fBenches->factory()(NULL);
fBenches = fBenches->next();
fSourceType = "bench";
fBenchType = "micro";
return bench;
}
while (fGMs) {
SkAutoTDelete<skiagm::GM> gm(fGMs->factory()(NULL));
fGMs = fGMs->next();
if (gm->getFlags() & skiagm::GM::kAsBench_Flag) {
fSourceType = "gm";
fBenchType = "micro";
return SkNEW_ARGS(GMBench, (gm.detach()));
}
}
// First add all .skps as RecordingBenches.
while (fCurrentRecording < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentRecording++];
SkAutoTUnref<SkPicture> pic;
if (!ReadPicture(path.c_str(), &pic)) {
continue;
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "recording";
return SkNEW_ARGS(RecordingBench, (name.c_str(), pic.get(), FLAGS_bbh));
}
// Then once each for each scale as SKPBenches (playback).
while (fCurrentScale < fScales.count()) {
while (fCurrentSKP < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentSKP++];
SkAutoTUnref<SkPicture> pic;
if (!ReadPicture(path.c_str(), &pic)) {
continue;
}
if (FLAGS_bbh) {
// The SKP we read off disk doesn't have a BBH. Re-record so it grows one.
// Here we use an SkTileGrid with parameters optimized for FLAGS_clip.
const SkTileGridFactory::TileGridInfo info = {
SkISize::Make(fClip.width(), fClip.height()), // tile interval
SkISize::Make(0,0), // margin
SkIPoint::Make(fClip.left(), fClip.top()), // offset
};
SkTileGridFactory factory(info);
SkPictureRecorder recorder;
pic->playback(recorder.beginRecording(pic->cullRect().width(),
pic->cullRect().height(),
&factory));
pic.reset(recorder.endRecording());
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "playback";
return SkNEW_ARGS(SKPBench,
(name.c_str(), pic.get(), fClip, fScales[fCurrentScale]));
}
fCurrentSKP = 0;
fCurrentScale++;
}
return NULL;
}
void fillCurrentOptions(ResultsWriter* log) const {
log->configOption("source_type", fSourceType);
log->configOption("bench_type", fBenchType);
if (0 == strcmp(fSourceType, "skp")) {
log->configOption("clip",
SkStringPrintf("%d %d %d %d", fClip.fLeft, fClip.fTop,
fClip.fRight, fClip.fBottom).c_str());
log->configOption("scale", SkStringPrintf("%.2g", fScales[fCurrentScale]).c_str());
}
}
private:
const BenchRegistry* fBenches;
const skiagm::GMRegistry* fGMs;
SkIRect fClip;
SkTArray<SkScalar> fScales;
SkTArray<SkString> fSKPs;
const char* fSourceType; // What we're benching: bench, GM, SKP, ...
const char* fBenchType; // How we bench it: micro, recording, playback, ...
int fCurrentRecording;
int fCurrentScale;
int fCurrentSKP;
};
int nanobench_main();
int nanobench_main() {
SetupCrashHandler();
SkAutoGraphics ag;
#if SK_SUPPORT_GPU
GrContext::Options grContextOpts;
grContextOpts.fDrawPathToCompressedTexture = FLAGS_gpuCompressAlphaMasks;
gGrFactory.reset(SkNEW_ARGS(GrContextFactory, (grContextOpts)));
#endif
if (kAutoTuneLoops != FLAGS_loops) {
FLAGS_samples = 1;
FLAGS_gpuFrameLag = 0;
}
if (!FLAGS_writePath.isEmpty()) {
SkDebugf("Writing files to %s.\n", FLAGS_writePath[0]);
if (!sk_mkdir(FLAGS_writePath[0])) {
SkDebugf("Could not create %s. Files won't be written.\n", FLAGS_writePath[0]);
FLAGS_writePath.set(0, NULL);
}
}
SkAutoTDelete<ResultsWriter> log(SkNEW(ResultsWriter));
if (!FLAGS_outResultsFile.isEmpty()) {
log.reset(SkNEW(NanoJSONResultsWriter(FLAGS_outResultsFile[0])));
}
if (1 == FLAGS_properties.count() % 2) {
SkDebugf("ERROR: --properties must be passed with an even number of arguments.\n");
return 1;
}
for (int i = 1; i < FLAGS_properties.count(); i += 2) {
log->property(FLAGS_properties[i-1], FLAGS_properties[i]);
}
if (1 == FLAGS_key.count() % 2) {
SkDebugf("ERROR: --key must be passed with an even number of arguments.\n");
return 1;
}
for (int i = 1; i < FLAGS_key.count(); i += 2) {
log->key(FLAGS_key[i-1], FLAGS_key[i]);
}
const double overhead = estimate_timer_overhead();
SkDebugf("Timer overhead: %s\n", HUMANIZE(overhead));
SkAutoTMalloc<double> samples(FLAGS_samples);
if (kAutoTuneLoops != FLAGS_loops) {
SkDebugf("Fixed number of loops; times would only be misleading so we won't print them.\n");
} else if (FLAGS_verbose) {
// No header.
} else if (FLAGS_quiet) {
SkDebugf("median\tbench\tconfig\n");
} else {
SkDebugf("maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\t%-*s\tconfig\tbench\n",
FLAGS_samples, "samples");
}
SkTDArray<Config> configs;
create_configs(&configs);
BenchmarkStream benchStream;
while (Benchmark* b = benchStream.next()) {
SkAutoTDelete<Benchmark> bench(b);
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, bench->getUniqueName())) {
continue;
}
SkTDArray<Target*> targets;
create_targets(&targets, bench.get(), configs);
if (!targets.isEmpty()) {
log->bench(bench->getUniqueName(), bench->getSize().fX, bench->getSize().fY);
bench->preDraw();
}
for (int j = 0; j < targets.count(); j++) {
SkCanvas* canvas = targets[j]->surface.get() ? targets[j]->surface->getCanvas() : NULL;
const char* config = targets[j]->config.name;
const int loops =
#if SK_SUPPORT_GPU
Benchmark::kGPU_Backend == targets[j]->config.backend
? gpu_bench(targets[j]->gl, bench.get(), canvas, samples.get())
:
#endif
cpu_bench( overhead, bench.get(), canvas, samples.get());
if (canvas && !FLAGS_writePath.isEmpty() && FLAGS_writePath[0]) {
SkString pngFilename = SkOSPath::Join(FLAGS_writePath[0], config);
pngFilename = SkOSPath::Join(pngFilename.c_str(), bench->getUniqueName());
pngFilename.append(".png");
write_canvas_png(canvas, pngFilename);
}
if (kFailedLoops == loops) {
// Can't be timed. A warning note has already been printed.
continue;
}
Stats stats(samples.get(), FLAGS_samples);
log->config(config);
log->configOption("name", bench->getName());
benchStream.fillCurrentOptions(log.get());
#if SK_SUPPORT_GPU
if (Benchmark::kGPU_Backend == targets[j]->config.backend) {
fill_gpu_options(log.get(), targets[j]->gl);
}
#endif
log->timer("min_ms", stats.min);
log->timer("median_ms", stats.median);
log->timer("mean_ms", stats.mean);
log->timer("max_ms", stats.max);
log->timer("stddev_ms", sqrt(stats.var));
if (kAutoTuneLoops != FLAGS_loops) {
if (targets.count() == 1) {
config = ""; // Only print the config if we run the same bench on more than one.
}
SkDebugf("%4dM\t%s\t%s\n"
, sk_tools::getMaxResidentSetSizeMB()
, bench->getUniqueName()
, config);
} else if (FLAGS_verbose) {
for (int i = 0; i < FLAGS_samples; i++) {
SkDebugf("%s ", HUMANIZE(samples[i]));
}
SkDebugf("%s\n", bench->getUniqueName());
} else if (FLAGS_quiet) {
if (targets.count() == 1) {
config = ""; // Only print the config if we run the same bench on more than one.
}
SkDebugf("%s\t%s\t%s\n", HUMANIZE(stats.median), bench->getUniqueName(), config);
} else {
const double stddev_percent = 100 * sqrt(stats.var) / stats.mean;
SkDebugf("%4dM\t%d\t%s\t%s\t%s\t%s\t%.0f%%\t%s\t%s\t%s\n"
, sk_tools::getMaxResidentSetSizeMB()
, loops
, HUMANIZE(stats.min)
, HUMANIZE(stats.median)
, HUMANIZE(stats.mean)
, HUMANIZE(stats.max)
, stddev_percent
, stats.plot.c_str()
, config
, bench->getUniqueName()
);
}
}
targets.deleteAll();
#if SK_SUPPORT_GPU
if (FLAGS_abandonGpuContext) {
gGrFactory->abandonContexts();
}
if (FLAGS_resetGpuContext || FLAGS_abandonGpuContext) {
gGrFactory->destroyContexts();
}
#endif
}
return 0;
}
#if !defined SK_BUILD_FOR_IOS
int main(int argc, char** argv) {
SkCommandLineFlags::Parse(argc, argv);
return nanobench_main();
}
#endif