skia2/experimental/skotty/Skotty.cpp
Florin Malita 2a8275b782 [skotty] Improved shape & layer paint order
Closer to what I think the docs are trying to articulate.

Change-Id: I784c4daaf3f6f2c70b2e9636c30a763ab0c711e7
Reviewed-on: https://skia-review.googlesource.com/90242
Reviewed-by: Mike Reed <reed@google.com>
Commit-Queue: Florin Malita <fmalita@chromium.org>
2018-01-02 18:14:31 +00:00

574 lines
19 KiB
C++

/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Skotty.h"
#include "SkCanvas.h"
#include "SkottyAnimator.h"
#include "SkottyPriv.h"
#include "SkottyProperties.h"
#include "SkData.h"
#include "SkMakeUnique.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkPoint.h"
#include "SkSGColor.h"
#include "SkSGDraw.h"
#include "SkSGInvalidationController.h"
#include "SkSGGroup.h"
#include "SkSGPath.h"
#include "SkSGRect.h"
#include "SkSGTransform.h"
#include "SkStream.h"
#include "SkTArray.h"
#include "SkTHash.h"
#include <cmath>
#include "stdlib.h"
namespace skotty {
namespace {
using AssetMap = SkTHashMap<SkString, const Json::Value*>;
struct AttachContext {
const AssetMap& fAssets;
SkTArray<std::unique_ptr<AnimatorBase>>& fAnimators;
};
bool LogFail(const Json::Value& json, const char* msg) {
const auto dump = json.toStyledString();
LOG("!! %s: %s", msg, dump.c_str());
return false;
}
// This is the workhorse for binding properties: depending on whether the property is animated,
// it will either apply immediately or instantiate and attach a keyframe animator.
template <typename ValueT, typename AttrT, typename NodeT, typename ApplyFuncT>
bool AttachProperty(const Json::Value& jprop, AttachContext* ctx, const sk_sp<NodeT>& node,
ApplyFuncT&& apply) {
if (!jprop.isObject())
return false;
if (!ParseBool(jprop["a"], false)) {
// Static property.
ValueT val;
if (!ValueT::Parse(jprop["k"], &val)) {
return LogFail(jprop, "Could not parse static property");
}
apply(node, val.template as<AttrT>());
} else {
// Keyframe property.
using AnimatorT = Animator<ValueT, AttrT, NodeT>;
auto animator = AnimatorT::Make(jprop["k"], node, std::move(apply));
if (!animator) {
return LogFail(jprop, "Could not instantiate keyframe animator");
}
ctx->fAnimators.push_back(std::move(animator));
}
return true;
}
sk_sp<sksg::RenderNode> AttachTransform(const Json::Value& t, AttachContext* ctx,
sk_sp<sksg::RenderNode> wrapped_node) {
if (!t.isObject() || !wrapped_node)
return wrapped_node;
auto xform = sk_make_sp<CompositeTransform>(wrapped_node);
auto anchor_attached = AttachProperty<VectorValue, SkPoint>(t["a"], ctx, xform,
[](const sk_sp<CompositeTransform>& node, const SkPoint& a) {
node->setAnchorPoint(a);
});
auto position_attached = AttachProperty<VectorValue, SkPoint>(t["p"], ctx, xform,
[](const sk_sp<CompositeTransform>& node, const SkPoint& p) {
node->setPosition(p);
});
auto scale_attached = AttachProperty<VectorValue, SkVector>(t["s"], ctx, xform,
[](const sk_sp<CompositeTransform>& node, const SkVector& s) {
node->setScale(s);
});
auto rotation_attached = AttachProperty<ScalarValue, SkScalar>(t["r"], ctx, xform,
[](const sk_sp<CompositeTransform>& node, SkScalar r) {
node->setRotation(r);
});
auto skew_attached = AttachProperty<ScalarValue, SkScalar>(t["sk"], ctx, xform,
[](const sk_sp<CompositeTransform>& node, SkScalar sk) {
node->setSkew(sk);
});
auto skewaxis_attached = AttachProperty<ScalarValue, SkScalar>(t["sa"], ctx, xform,
[](const sk_sp<CompositeTransform>& node, SkScalar sa) {
node->setSkewAxis(sa);
});
if (!anchor_attached &&
!position_attached &&
!scale_attached &&
!rotation_attached &&
!skew_attached &&
!skewaxis_attached) {
LogFail(t, "Could not parse transform");
return wrapped_node;
}
return xform->node();
}
sk_sp<sksg::RenderNode> AttachShape(const Json::Value&, AttachContext* ctx);
sk_sp<sksg::RenderNode> AttachComposition(const Json::Value&, AttachContext* ctx);
sk_sp<sksg::RenderNode> AttachShapeGroup(const Json::Value& jgroup, AttachContext* ctx) {
SkASSERT(jgroup.isObject());
return AttachShape(jgroup["it"], ctx);
}
sk_sp<sksg::GeometryNode> AttachPathGeometry(const Json::Value& jpath, AttachContext* ctx) {
SkASSERT(jpath.isObject());
auto path_node = sksg::Path::Make();
auto path_attached = AttachProperty<ShapeValue, SkPath>(jpath["ks"], ctx, path_node,
[](const sk_sp<sksg::Path>& node, const SkPath& p) { node->setPath(p); });
if (path_attached)
LOG("** Attached path geometry - verbs: %d\n", path_node->getPath().countVerbs());
return path_attached ? path_node : nullptr;
}
sk_sp<sksg::GeometryNode> AttachRRectGeometry(const Json::Value& jrect, AttachContext* ctx) {
SkASSERT(jrect.isObject());
auto rect_node = sksg::RRect::Make();
auto composite = sk_make_sp<CompositeRRect>(rect_node);
auto p_attached = AttachProperty<VectorValue, SkPoint>(jrect["p"], ctx, composite,
[](const sk_sp<CompositeRRect>& node, const SkPoint& pos) { node->setPosition(pos); });
auto s_attached = AttachProperty<VectorValue, SkSize>(jrect["s"], ctx, composite,
[](const sk_sp<CompositeRRect>& node, const SkSize& sz) { node->setSize(sz); });
auto r_attached = AttachProperty<ScalarValue, SkScalar>(jrect["r"], ctx, composite,
[](const sk_sp<CompositeRRect>& node, SkScalar radius) { node->setRadius(radius); });
if (!p_attached && !s_attached && !r_attached) {
return nullptr;
}
return rect_node;
}
sk_sp<sksg::Color> AttachColorPaint(const Json::Value& obj, AttachContext* ctx) {
SkASSERT(obj.isObject());
auto color_node = sksg::Color::Make(SK_ColorBLACK);
color_node->setAntiAlias(true);
auto color_attached = AttachProperty<VectorValue, SkColor>(obj["c"], ctx, color_node,
[](const sk_sp<sksg::Color>& node, SkColor c) { node->setColor(c); });
return color_attached ? color_node : nullptr;
}
sk_sp<sksg::PaintNode> AttachFillPaint(const Json::Value& jfill, AttachContext* ctx) {
SkASSERT(jfill.isObject());
auto color = AttachColorPaint(jfill, ctx);
if (color) {
LOG("** Attached color fill: 0x%x\n", color->getColor());
}
return color;
}
sk_sp<sksg::PaintNode> AttachStrokePaint(const Json::Value& jstroke, AttachContext* ctx) {
SkASSERT(jstroke.isObject());
auto stroke_node = AttachColorPaint(jstroke, ctx);
if (!stroke_node)
return nullptr;
LOG("** Attached color stroke: 0x%x\n", stroke_node->getColor());
stroke_node->setStyle(SkPaint::kStroke_Style);
auto width_attached = AttachProperty<ScalarValue, SkScalar>(jstroke["w"], ctx, stroke_node,
[](const sk_sp<sksg::Color>& node, SkScalar width) { node->setStrokeWidth(width); });
if (!width_attached)
return nullptr;
stroke_node->setStrokeMiter(ParseScalar(jstroke["ml"], 4));
static constexpr SkPaint::Join gJoins[] = {
SkPaint::kMiter_Join,
SkPaint::kRound_Join,
SkPaint::kBevel_Join,
};
stroke_node->setStrokeJoin(gJoins[SkTPin<int>(ParseInt(jstroke["lj"], 1) - 1,
0, SK_ARRAY_COUNT(gJoins) - 1)]);
static constexpr SkPaint::Cap gCaps[] = {
SkPaint::kButt_Cap,
SkPaint::kRound_Cap,
SkPaint::kSquare_Cap,
};
stroke_node->setStrokeCap(gCaps[SkTPin<int>(ParseInt(jstroke["lc"], 1) - 1,
0, SK_ARRAY_COUNT(gCaps) - 1)]);
return stroke_node;
}
using GeometryAttacherT = sk_sp<sksg::GeometryNode> (*)(const Json::Value&, AttachContext*);
static constexpr GeometryAttacherT gGeometryAttachers[] = {
AttachPathGeometry,
AttachRRectGeometry,
};
using PaintAttacherT = sk_sp<sksg::PaintNode> (*)(const Json::Value&, AttachContext*);
static constexpr PaintAttacherT gPaintAttachers[] = {
AttachFillPaint,
AttachStrokePaint,
};
using GroupAttacherT = sk_sp<sksg::RenderNode> (*)(const Json::Value&, AttachContext*);
static constexpr GroupAttacherT gGroupAttachers[] = {
AttachShapeGroup,
};
using TransformAttacherT = sk_sp<sksg::RenderNode> (*)(const Json::Value&, AttachContext*,
sk_sp<sksg::RenderNode>);
static constexpr TransformAttacherT gTransformAttachers[] = {
AttachTransform,
};
enum class ShapeType {
kGeometry,
kPaint,
kGroup,
kTransform,
};
struct ShapeInfo {
const char* fTypeString;
ShapeType fShapeType;
uint32_t fAttacherIndex; // index into respective attacher tables
};
const ShapeInfo* FindShapeInfo(const Json::Value& shape) {
static constexpr ShapeInfo gShapeInfo[] = {
{ "fl", ShapeType::kPaint , 0 }, // fill -> AttachFillPaint
{ "gr", ShapeType::kGroup , 0 }, // group -> AttachShapeGroup
{ "rc", ShapeType::kGeometry , 1 }, // shape -> AttachRRectGeometry
{ "sh", ShapeType::kGeometry , 0 }, // shape -> AttachPathGeometry
{ "st", ShapeType::kPaint , 1 }, // stroke -> AttachStrokePaint
{ "tr", ShapeType::kTransform, 0 }, // transform -> AttachTransform
};
if (!shape.isObject())
return nullptr;
const auto& type = shape["ty"];
if (!type.isString())
return nullptr;
const auto* info = bsearch(type.asCString(),
gShapeInfo,
SK_ARRAY_COUNT(gShapeInfo),
sizeof(ShapeInfo),
[](const void* key, const void* info) {
return strcmp(static_cast<const char*>(key),
static_cast<const ShapeInfo*>(info)->fTypeString);
});
return static_cast<const ShapeInfo*>(info);
}
sk_sp<sksg::RenderNode> AttachShape(const Json::Value& shapeArray, AttachContext* ctx) {
if (!shapeArray.isArray())
return nullptr;
// (https://helpx.adobe.com/after-effects/using/overview-shape-layers-paths-vector.html#groups_and_render_order_for_shapes_and_shape_attributes)
//
// Render order for shapes within a shape layer
//
// The rules for rendering a shape layer are similar to the rules for rendering a composition
// that contains nested compositions:
//
// * Within a group, the shape at the bottom of the Timeline panel stacking order is rendered
// first.
//
// * All path operations within a group are performed before paint operations. This means,
// for example, that the stroke follows the distortions in the path made by the Wiggle Paths
// path operation. Path operations within a group are performed from top to bottom.
//
// * Paint operations within a group are performed from the bottom to the top in the Timeline
// panel stacking order. This means, for example, that a stroke is rendered on top of
// (in front of) a stroke that appears after it in the Timeline panel.
//
sk_sp<sksg::Group> shape_group = sksg::Group::Make();
sk_sp<sksg::RenderNode> xformed_group = shape_group;
SkSTArray<16, sk_sp<sksg::GeometryNode>, true> geos;
SkSTArray<16, sk_sp<sksg::RenderNode> , true> draws;
for (const auto& s : shapeArray) {
const auto* info = FindShapeInfo(s);
if (!info) {
LogFail(s.isObject() ? s["ty"] : s, "Unknown shape");
continue;
}
switch (info->fShapeType) {
case ShapeType::kGeometry: {
SkASSERT(info->fAttacherIndex < SK_ARRAY_COUNT(gGeometryAttachers));
if (auto geo = gGeometryAttachers[info->fAttacherIndex](s, ctx)) {
geos.push_back(std::move(geo));
}
} break;
case ShapeType::kPaint: {
SkASSERT(info->fAttacherIndex < SK_ARRAY_COUNT(gPaintAttachers));
if (auto paint = gPaintAttachers[info->fAttacherIndex](s, ctx)) {
for (const auto& geo : geos) {
draws.push_back(sksg::Draw::Make(geo, paint));
}
}
} break;
case ShapeType::kGroup: {
SkASSERT(info->fAttacherIndex < SK_ARRAY_COUNT(gGroupAttachers));
if (auto group = gGroupAttachers[info->fAttacherIndex](s, ctx)) {
draws.push_back(std::move(group));
}
} break;
case ShapeType::kTransform: {
// TODO: BM appears to transform the geometry, not the draw op itself.
SkASSERT(info->fAttacherIndex < SK_ARRAY_COUNT(gTransformAttachers));
xformed_group = gTransformAttachers[info->fAttacherIndex](s, ctx, xformed_group);
} break;
}
}
if (draws.empty()) {
return nullptr;
}
for (int i = draws.count() - 1; i >= 0; --i) {
shape_group->addChild(std::move(draws[i]));
}
LOG("** Attached shape: %d draws.\n", draws.count());
return xformed_group;
}
sk_sp<sksg::RenderNode> AttachCompLayer(const Json::Value& layer, AttachContext* ctx) {
SkASSERT(layer.isObject());
auto refId = ParseString(layer["refId"], "");
if (refId.isEmpty()) {
LOG("!! Comp layer missing refId\n");
return nullptr;
}
const auto* comp = ctx->fAssets.find(refId);
if (!comp) {
LOG("!! Pre-comp not found: '%s'\n", refId.c_str());
return nullptr;
}
// TODO: cycle detection
return AttachComposition(**comp, ctx);
}
sk_sp<sksg::RenderNode> AttachSolidLayer(const Json::Value& layer, AttachContext*) {
SkASSERT(layer.isObject());
LOG("?? Solid layer stub\n");
return nullptr;
}
sk_sp<sksg::RenderNode> AttachImageLayer(const Json::Value& layer, AttachContext*) {
SkASSERT(layer.isObject());
LOG("?? Image layer stub\n");
return nullptr;
}
sk_sp<sksg::RenderNode> AttachNullLayer(const Json::Value& layer, AttachContext*) {
SkASSERT(layer.isObject());
LOG("?? Null layer stub\n");
return nullptr;
}
sk_sp<sksg::RenderNode> AttachShapeLayer(const Json::Value& layer, AttachContext* ctx) {
SkASSERT(layer.isObject());
LOG("** Attaching shape layer ind: %d\n", ParseInt(layer["ind"], 0));
return AttachShape(layer["shapes"], ctx);
}
sk_sp<sksg::RenderNode> AttachTextLayer(const Json::Value& layer, AttachContext*) {
SkASSERT(layer.isObject());
LOG("?? Text layer stub\n");
return nullptr;
}
sk_sp<sksg::RenderNode> AttachLayer(const Json::Value& layer, AttachContext* ctx) {
if (!layer.isObject())
return nullptr;
using LayerAttacher = sk_sp<sksg::RenderNode> (*)(const Json::Value&, AttachContext*);
static constexpr LayerAttacher gLayerAttachers[] = {
AttachCompLayer, // 'ty': 0
AttachSolidLayer, // 'ty': 1
AttachImageLayer, // 'ty': 2
AttachNullLayer, // 'ty': 3
AttachShapeLayer, // 'ty': 4
AttachTextLayer, // 'ty': 5
};
int type = ParseInt(layer["ty"], -1);
if (type < 0 || type >= SkTo<int>(SK_ARRAY_COUNT(gLayerAttachers))) {
return nullptr;
}
return AttachTransform(layer["ks"], ctx, gLayerAttachers[type](layer, ctx));
}
sk_sp<sksg::RenderNode> AttachComposition(const Json::Value& comp, AttachContext* ctx) {
if (!comp.isObject())
return nullptr;
SkSTArray<16, sk_sp<sksg::RenderNode>, true> layers;
for (const auto& l : comp["layers"]) {
if (auto layer_fragment = AttachLayer(l, ctx)) {
layers.push_back(std::move(layer_fragment));
}
}
if (layers.empty()) {
return nullptr;
}
// Layers are painted in bottom->top order.
auto comp_group = sksg::Group::Make();
for (int i = layers.count() - 1; i >= 0; --i) {
comp_group->addChild(std::move(layers[i]));
}
LOG("** Attached composition '%s': %d layers.\n",
ParseString(comp["id"], "").c_str(), layers.count());
return comp_group;
}
} // namespace
std::unique_ptr<Animation> Animation::Make(SkStream* stream) {
if (!stream->hasLength()) {
// TODO: handle explicit buffering?
LOG("!! cannot parse streaming content\n");
return nullptr;
}
Json::Value json;
{
auto data = SkData::MakeFromStream(stream, stream->getLength());
if (!data) {
LOG("!! could not read stream\n");
return nullptr;
}
Json::Reader reader;
auto dataStart = static_cast<const char*>(data->data());
if (!reader.parse(dataStart, dataStart + data->size(), json, false) || !json.isObject()) {
LOG("!! failed to parse json: %s\n", reader.getFormattedErrorMessages().c_str());
return nullptr;
}
}
const auto version = ParseString(json["v"], "");
const auto size = SkSize::Make(ParseScalar(json["w"], -1), ParseScalar(json["h"], -1));
const auto fps = ParseScalar(json["fr"], -1);
if (size.isEmpty() || version.isEmpty() || fps < 0) {
LOG("!! invalid animation params (version: %s, size: [%f %f], frame rate: %f)",
version.c_str(), size.width(), size.height(), fps);
return nullptr;
}
return std::unique_ptr<Animation>(new Animation(std::move(version), size, fps, json));
}
Animation::Animation(SkString version, const SkSize& size, SkScalar fps, const Json::Value& json)
: fVersion(std::move(version))
, fSize(size)
, fFrameRate(fps)
, fInPoint(ParseScalar(json["ip"], 0))
, fOutPoint(SkTMax(ParseScalar(json["op"], SK_ScalarMax), fInPoint)) {
AssetMap assets;
for (const auto& asset : json["assets"]) {
if (!asset.isObject()) {
continue;
}
assets.set(ParseString(asset["id"], ""), &asset);
}
AttachContext ctx = { assets, fAnimators };
fDom = AttachComposition(json, &ctx);
LOG("** Attached %d animators\n", fAnimators.count());
}
Animation::~Animation() = default;
void Animation::render(SkCanvas* canvas) const {
if (!fDom)
return;
sksg::InvalidationController ic;
fDom->revalidate(&ic, SkMatrix::I());
// TODO: proper inval
fDom->render(canvas);
if (!fShowInval)
return;
SkPaint fill, stroke;
fill.setAntiAlias(true);
fill.setColor(0x40ff0000);
stroke.setAntiAlias(true);
stroke.setColor(0xffff0000);
stroke.setStyle(SkPaint::kStroke_Style);
for (const auto& r : ic) {
canvas->drawRect(r, fill);
canvas->drawRect(r, stroke);
}
}
void Animation::animationTick(SkMSec ms) {
// 't' in the BM model really means 'frame #'
auto t = static_cast<float>(ms) * fFrameRate / 1000;
t = fInPoint + std::fmod(t, fOutPoint - fInPoint);
// TODO: this can be optimized quite a bit with some sorting/state tracking.
for (const auto& a : fAnimators) {
a->tick(t);
}
}
} // namespace skotty