7ceb0b89f4
Simplify the SkGaussFilter API to facilitate using ranged-for loops. Change-Id: Id853bd6bfe342ae95b7c6248c459fbf865f75d1e Reviewed-on: https://skia-review.googlesource.com/73262 Reviewed-by: Ben Wagner <bungeman@google.com> Commit-Queue: Ben Wagner <bungeman@google.com> Commit-Queue: Herb Derby <herb@google.com>
104 lines
3.1 KiB
C++
104 lines
3.1 KiB
C++
/*
|
|
* Copyright 2017 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "SkGaussFilter.h"
|
|
|
|
#include <cmath>
|
|
#include <tuple>
|
|
#include <vector>
|
|
#include "Test.h"
|
|
|
|
// one part in a million
|
|
static constexpr double kEpsilon = 0.000001;
|
|
|
|
static double careful_add(int n, double* gauss) {
|
|
// Sum smallest to largest to retain precision.
|
|
double sum = 0;
|
|
for (int i = n - 1; i >= 1; i--) {
|
|
sum += 2.0 * gauss[i];
|
|
}
|
|
sum += gauss[0];
|
|
return sum;
|
|
}
|
|
|
|
DEF_TEST(SkGaussFilterCommon, r) {
|
|
using Test = std::tuple<double, SkGaussFilter::Type, std::vector<double>>;
|
|
|
|
auto golden_check = [&](const Test& test) {
|
|
double sigma; SkGaussFilter::Type type; std::vector<double> golden;
|
|
std::tie(sigma, type, golden) = test;
|
|
SkGaussFilter filter{sigma, type};
|
|
double result[SkGaussFilter::kGaussArrayMax];
|
|
int n = 0;
|
|
for (auto d : filter) {
|
|
result[n++] = d;
|
|
}
|
|
REPORTER_ASSERT(r, static_cast<size_t>(n) == golden.size());
|
|
double sum = careful_add(n, result);
|
|
REPORTER_ASSERT(r, sum == 1.0);
|
|
for (size_t i = 0; i < golden.size(); i++) {
|
|
REPORTER_ASSERT(r, std::abs(golden[i] - result[i]) < kEpsilon);
|
|
}
|
|
};
|
|
|
|
// The following two sigmas account for about 85% of all sigmas used for masks.
|
|
// Golden values generated using Mathematica.
|
|
auto tests = {
|
|
// 0.788675 - most common mask sigma.
|
|
// GaussianMatrix[{{Automatic}, {.788675}}, Method -> "Gaussian"]
|
|
Test{0.788675, SkGaussFilter::Type::Gaussian, {0.506205, 0.226579, 0.0203189}},
|
|
|
|
// GaussianMatrix[{{Automatic}, {.788675}}]
|
|
Test{0.788675, SkGaussFilter::Type::Bessel, {0.593605, 0.176225, 0.0269721}},
|
|
|
|
// 1.07735 - second most common mask sigma.
|
|
// GaussianMatrix[{{Automatic}, {1.07735}}, Method -> "Gaussian"]
|
|
Test{1.07735, SkGaussFilter::Type::Gaussian, {0.376362, 0.244636, 0.0671835}},
|
|
|
|
// GaussianMatrix[{{4}, {1.07735}}, Method -> "Bessel"]
|
|
Test{1.07735, SkGaussFilter::Type::Bessel, {0.429537, 0.214955, 0.059143, 0.0111337}},
|
|
};
|
|
|
|
for (auto& test : tests) {
|
|
golden_check(test);
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkGaussFilterSweep, r) {
|
|
// The double just before 2.0.
|
|
const double maxSigma = nextafter(2.0, 0.0);
|
|
auto check = [&](double sigma, SkGaussFilter::Type type) {
|
|
SkGaussFilter filter{sigma, type};
|
|
double result[SkGaussFilter::kGaussArrayMax];
|
|
int n = 0;
|
|
for (auto d : filter) {
|
|
result[n++] = d;
|
|
}
|
|
REPORTER_ASSERT(r, n <= SkGaussFilter::kGaussArrayMax);
|
|
double sum = careful_add(n, result);
|
|
REPORTER_ASSERT(r, sum == 1.0);
|
|
};
|
|
|
|
{
|
|
|
|
for (double sigma = 0.0; sigma < 2.0; sigma += 0.1) {
|
|
check(sigma, SkGaussFilter::Type::Gaussian);
|
|
}
|
|
|
|
check(maxSigma, SkGaussFilter::Type::Gaussian);
|
|
}
|
|
|
|
{
|
|
|
|
for (double sigma = 0.0; sigma < 2.0; sigma += 0.1) {
|
|
check(sigma, SkGaussFilter::Type::Bessel);
|
|
}
|
|
|
|
check(maxSigma, SkGaussFilter::Type::Bessel);
|
|
}
|
|
}
|