skia2/tests/SkGaussFilterTest.cpp
Herb Derby 7ceb0b89f4 Remove api call from SkGaussFilter
Simplify the SkGaussFilter API to facilitate using
ranged-for loops.

Change-Id: Id853bd6bfe342ae95b7c6248c459fbf865f75d1e
Reviewed-on: https://skia-review.googlesource.com/73262
Reviewed-by: Ben Wagner <bungeman@google.com>
Commit-Queue: Ben Wagner <bungeman@google.com>
Commit-Queue: Herb Derby <herb@google.com>
2017-11-17 19:10:16 +00:00

104 lines
3.1 KiB
C++

/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkGaussFilter.h"
#include <cmath>
#include <tuple>
#include <vector>
#include "Test.h"
// one part in a million
static constexpr double kEpsilon = 0.000001;
static double careful_add(int n, double* gauss) {
// Sum smallest to largest to retain precision.
double sum = 0;
for (int i = n - 1; i >= 1; i--) {
sum += 2.0 * gauss[i];
}
sum += gauss[0];
return sum;
}
DEF_TEST(SkGaussFilterCommon, r) {
using Test = std::tuple<double, SkGaussFilter::Type, std::vector<double>>;
auto golden_check = [&](const Test& test) {
double sigma; SkGaussFilter::Type type; std::vector<double> golden;
std::tie(sigma, type, golden) = test;
SkGaussFilter filter{sigma, type};
double result[SkGaussFilter::kGaussArrayMax];
int n = 0;
for (auto d : filter) {
result[n++] = d;
}
REPORTER_ASSERT(r, static_cast<size_t>(n) == golden.size());
double sum = careful_add(n, result);
REPORTER_ASSERT(r, sum == 1.0);
for (size_t i = 0; i < golden.size(); i++) {
REPORTER_ASSERT(r, std::abs(golden[i] - result[i]) < kEpsilon);
}
};
// The following two sigmas account for about 85% of all sigmas used for masks.
// Golden values generated using Mathematica.
auto tests = {
// 0.788675 - most common mask sigma.
// GaussianMatrix[{{Automatic}, {.788675}}, Method -> "Gaussian"]
Test{0.788675, SkGaussFilter::Type::Gaussian, {0.506205, 0.226579, 0.0203189}},
// GaussianMatrix[{{Automatic}, {.788675}}]
Test{0.788675, SkGaussFilter::Type::Bessel, {0.593605, 0.176225, 0.0269721}},
// 1.07735 - second most common mask sigma.
// GaussianMatrix[{{Automatic}, {1.07735}}, Method -> "Gaussian"]
Test{1.07735, SkGaussFilter::Type::Gaussian, {0.376362, 0.244636, 0.0671835}},
// GaussianMatrix[{{4}, {1.07735}}, Method -> "Bessel"]
Test{1.07735, SkGaussFilter::Type::Bessel, {0.429537, 0.214955, 0.059143, 0.0111337}},
};
for (auto& test : tests) {
golden_check(test);
}
}
DEF_TEST(SkGaussFilterSweep, r) {
// The double just before 2.0.
const double maxSigma = nextafter(2.0, 0.0);
auto check = [&](double sigma, SkGaussFilter::Type type) {
SkGaussFilter filter{sigma, type};
double result[SkGaussFilter::kGaussArrayMax];
int n = 0;
for (auto d : filter) {
result[n++] = d;
}
REPORTER_ASSERT(r, n <= SkGaussFilter::kGaussArrayMax);
double sum = careful_add(n, result);
REPORTER_ASSERT(r, sum == 1.0);
};
{
for (double sigma = 0.0; sigma < 2.0; sigma += 0.1) {
check(sigma, SkGaussFilter::Type::Gaussian);
}
check(maxSigma, SkGaussFilter::Type::Gaussian);
}
{
for (double sigma = 0.0; sigma < 2.0; sigma += 0.1) {
check(sigma, SkGaussFilter::Type::Bessel);
}
check(maxSigma, SkGaussFilter::Type::Bessel);
}
}