skia2/tests/ICCTest.cpp
Brian Osman a12f795f4a Fix Adobe RGB color space in Skia
Our runtime definition of the XYZ matrix was fairly inaccurate. It also
didn't round-trip through ICC fixed point correctly. Now, constructing the
color space at runtime produces exactly the same matrix as constructing
the space from the ICC profile. And the values can then be serialized back
to ICC exactly. This eliminates the need for the snapping logic, too.

Bug: skia:
Change-Id: I69f4a9bfec3eeef153935e21ab3a0630794b1607
Reviewed-on: https://skia-review.googlesource.com/84840
Reviewed-by: Brian Osman <brianosman@google.com>
Reviewed-by: Mike Klein <mtklein@google.com>
Reviewed-by: Mike Klein <mtklein@chromium.org>
Commit-Queue: Brian Osman <brianosman@google.com>
2017-12-20 14:09:34 +00:00

303 lines
11 KiB
C++

/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Resources.h"
#include "SkColorSpace.h"
#include "SkColorSpacePriv.h"
#include "SkColorSpace_XYZ.h"
#include "SkData.h"
#include "SkICC.h"
#include "SkICCPriv.h"
#include "SkMatrix44.h"
#include "SkStream.h"
#include "Test.h"
static bool almost_equal(float a, float b) {
return SkTAbs(a - b) < 0.001f;
}
static inline void test_to_xyz_d50(skiatest::Reporter* r, SkICC* icc, bool shouldSucceed,
const float* reference) {
SkMatrix44 result(SkMatrix44::kUninitialized_Constructor);
REPORTER_ASSERT(r, shouldSucceed == icc->toXYZD50(&result));
if (shouldSucceed) {
float resultVals[16];
result.asColMajorf(resultVals);
for (int i = 0; i < 16; i++) {
REPORTER_ASSERT(r, almost_equal(resultVals[i], reference[i]));
}
}
}
DEF_TEST(ICC_ToXYZD50, r) {
const float z30Reference[16] = {
0.59825f, 0.27103f, 0.00603f, 0.0f, 0.22243f, 0.67447f, 0.07368f, 0.0f, 0.14352f, 0.05449f,
0.74519f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
};
sk_sp<SkData> data = GetResourceAsData("icc_profiles/HP_ZR30w.icc");
sk_sp<SkICC> z30 = SkICC::Make(data->data(), data->size());
test_to_xyz_d50(r, z30.get(), true, z30Reference);
const float z32Reference[16] = {
0.61583f, 0.28789f, 0.00513f, 0.0f, 0.20428f, 0.66972f, 0.06609f, 0.0f, 0.14409f, 0.04237f,
0.75368f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
};
data = GetResourceAsData("icc_profiles/HP_Z32x.icc");
sk_sp<SkICC> z32 = SkICC::Make(data->data(), data->size());
test_to_xyz_d50(r, z32.get(), true, z32Reference);
data = GetResourceAsData("icc_profiles/upperLeft.icc");
sk_sp<SkICC> upperLeft = SkICC::Make(data->data(), data->size());
test_to_xyz_d50(r, upperLeft.get(), false, z32Reference);
data = GetResourceAsData("icc_profiles/upperRight.icc");
sk_sp<SkICC> upperRight = SkICC::Make(data->data(), data->size());
test_to_xyz_d50(r, upperRight.get(), false, z32Reference);
}
static inline void test_is_numerical_transfer_fn(skiatest::Reporter* r, SkICC* icc,
bool shouldSucceed,
const SkColorSpaceTransferFn& reference) {
SkColorSpaceTransferFn result;
REPORTER_ASSERT(r, shouldSucceed == icc->isNumericalTransferFn(&result));
if (shouldSucceed) {
REPORTER_ASSERT(r, 0 == memcmp(&result, &reference, sizeof(SkColorSpaceTransferFn)));
}
}
DEF_TEST(ICC_IsNumericalTransferFn, r) {
SkColorSpaceTransferFn referenceFn;
referenceFn.fA = 1.0f;
referenceFn.fB = 0.0f;
referenceFn.fC = 0.0f;
referenceFn.fD = 0.0f;
referenceFn.fE = 0.0f;
referenceFn.fF = 0.0f;
referenceFn.fG = 2.2f;
sk_sp<SkData> data = GetResourceAsData("icc_profiles/HP_ZR30w.icc");
sk_sp<SkICC> z30 = SkICC::Make(data->data(), data->size());
test_is_numerical_transfer_fn(r, z30.get(), true, referenceFn);
data = GetResourceAsData("icc_profiles/HP_Z32x.icc");
sk_sp<SkICC> z32 = SkICC::Make(data->data(), data->size());
test_is_numerical_transfer_fn(r, z32.get(), true, referenceFn);
data = GetResourceAsData("icc_profiles/upperLeft.icc");
sk_sp<SkICC> upperLeft = SkICC::Make(data->data(), data->size());
test_is_numerical_transfer_fn(r, upperLeft.get(), false, referenceFn);
data = GetResourceAsData("icc_profiles/upperRight.icc");
sk_sp<SkICC> upperRight = SkICC::Make(data->data(), data->size());
test_is_numerical_transfer_fn(r, upperRight.get(), false, referenceFn);
}
DEF_TEST(ICC_Adobe, r) {
// Test that the color spaces produced by our procedural Adobe factory, and the official
// Adobe ICC profile match exactly.
sk_sp<SkData> data = GetResourceAsData("icc_profiles/AdobeRGB1998.icc");
sk_sp<SkColorSpace> fromIcc = SkColorSpace::MakeICC(data->data(), data->size());
sk_sp<SkColorSpace> procedural = SkColorSpace::MakeRGB(g2Dot2_TransferFn,
SkColorSpace::kAdobeRGB_Gamut);
REPORTER_ASSERT(r, SkColorSpace::Equals(fromIcc.get(), procedural.get()));
}
static inline void test_write_icc(skiatest::Reporter* r, const SkColorSpaceTransferFn& fn,
const SkMatrix44& toXYZD50, bool writeToFile) {
sk_sp<SkData> profile = SkICC::WriteToICC(fn, toXYZD50);
if (writeToFile) {
SkFILEWStream stream("out.icc");
stream.write(profile->data(), profile->size());
}
sk_sp<SkColorSpace> colorSpace = SkColorSpace::MakeICC(profile->data(), profile->size());
sk_sp<SkColorSpace> reference = SkColorSpace::MakeRGB(fn, toXYZD50);
REPORTER_ASSERT(r, SkColorSpace::Equals(reference.get(), colorSpace.get()));
}
DEF_TEST(ICC_WriteICC, r) {
SkColorSpaceTransferFn adobeFn;
adobeFn.fA = 1.0f;
adobeFn.fB = 0.0f;
adobeFn.fC = 0.0f;
adobeFn.fD = 0.0f;
adobeFn.fE = 0.0f;
adobeFn.fF = 0.0f;
adobeFn.fG = 2.2f;
SkMatrix44 adobeMatrix(SkMatrix44::kUninitialized_Constructor);
adobeMatrix.set3x3RowMajorf(gAdobeRGB_toXYZD50);
// TODO: Restore this test once we fix our Adobe matrix to be based on the decoded ICC
// fixed point values, and once we use a rounding conversion to fixed-point.
test_write_icc(r, adobeFn, adobeMatrix, false);
SkColorSpaceTransferFn srgbFn;
srgbFn.fA = 1.0f / 1.055f;
srgbFn.fB = 0.055f / 1.055f;
srgbFn.fC = 1.0f / 12.92f;
srgbFn.fD = 0.04045f;
srgbFn.fE = 0.0f;
srgbFn.fF = 0.0f;
srgbFn.fG = 2.4f;
SkMatrix44 srgbMatrix(SkMatrix44::kUninitialized_Constructor);
srgbMatrix.set3x3RowMajorf(gSRGB_toXYZD50);
test_write_icc(r, srgbFn, srgbMatrix, false);
SkString adobeTag = SkICCGetColorProfileTag(adobeFn, adobeMatrix);
SkString srgbTag = SkICCGetColorProfileTag(srgbFn, srgbMatrix);
REPORTER_ASSERT(r, adobeTag != srgbTag);
REPORTER_ASSERT(r, srgbTag.equals("sRGB"));
REPORTER_ASSERT(r, adobeTag.equals("AdobeRGB"));
}
static inline void test_raw_transfer_fn(skiatest::Reporter* r, SkICC* icc) {
SkICC::Tables tables;
bool result = icc->rawTransferFnData(&tables);
REPORTER_ASSERT(r, result);
REPORTER_ASSERT(r, 0.0f == tables.red()[0]);
REPORTER_ASSERT(r, 0.0f == tables.green()[0]);
REPORTER_ASSERT(r, 0.0f == tables.blue()[0]);
REPORTER_ASSERT(r, 1.0f == tables.red()[tables.fRed.fCount - 1]);
REPORTER_ASSERT(r, 1.0f == tables.green()[tables.fGreen.fCount - 1]);
REPORTER_ASSERT(r, 1.0f == tables.blue()[tables.fBlue.fCount - 1]);
}
class ICCTest {
public:
static sk_sp<SkICC> MakeICC(sk_sp<SkColorSpace> space) {
return sk_sp<SkICC>(new SkICC(std::move(space)));
}
static sk_sp<SkICC> MakeICC(sk_sp<SkGammas> gammas) {
return MakeICC(sk_sp<SkColorSpace>(new SkColorSpace_XYZ(
kNonStandard_SkGammaNamed, std::move(gammas),
SkMatrix44(SkMatrix44::kIdentity_Constructor), nullptr)));
}
};
DEF_TEST(ICC_RawTransferFns, r) {
sk_sp<SkICC> srgb = ICCTest::MakeICC(SkColorSpace::MakeSRGB());
test_raw_transfer_fn(r, srgb.get());
// Lookup-table based gamma curves
constexpr size_t tableSize = 10;
void* memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(float) * tableSize);
sk_sp<SkGammas> gammas = sk_sp<SkGammas>(new (memory) SkGammas(3));
for (int i = 0; i < 3; ++i) {
gammas->fType[i] = SkGammas::Type::kTable_Type;
gammas->fData[i].fTable.fSize = tableSize;
gammas->fData[i].fTable.fOffset = 0;
}
float* table = SkTAddOffset<float>(memory, sizeof(SkGammas));
table[0] = 0.00f;
table[1] = 0.05f;
table[2] = 0.10f;
table[3] = 0.15f;
table[4] = 0.25f;
table[5] = 0.35f;
table[6] = 0.45f;
table[7] = 0.60f;
table[8] = 0.75f;
table[9] = 1.00f;
sk_sp<SkICC> tbl = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, tbl.get());
// Parametric gamma curves
memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(SkColorSpaceTransferFn));
gammas = sk_sp<SkGammas>(new (memory) SkGammas(3));
for (int i = 0; i < 3; ++i) {
gammas->fType[i] = SkGammas::Type::kParam_Type;
gammas->fData[i].fParamOffset = 0;
}
SkColorSpaceTransferFn* params = SkTAddOffset<SkColorSpaceTransferFn>
(memory, sizeof(SkGammas));
// Interval.
params->fD = 0.04045f;
// First equation:
params->fC = 1.0f / 12.92f;
params->fF = 0.0f;
// Second equation:
// Note that the function is continuous (it's actually sRGB).
params->fA = 1.0f / 1.055f;
params->fB = 0.055f / 1.055f;
params->fE = 0.0f;
params->fG = 2.4f;
sk_sp<SkICC> param = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, param.get());
// Exponential gamma curves
gammas = sk_sp<SkGammas>(new SkGammas(3));
for (int i = 0; i < 3; ++i) {
gammas->fType[i] = SkGammas::Type::kValue_Type;
gammas->fData[i].fValue = 1.4f;
}
sk_sp<SkICC> exp = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, exp.get());
gammas = sk_sp<SkGammas>(new SkGammas(3));
gammas->fType[0] = gammas->fType[1] = gammas->fType[2] = SkGammas::Type::kNamed_Type;
gammas->fData[0].fNamed = kSRGB_SkGammaNamed;
gammas->fData[1].fNamed = k2Dot2Curve_SkGammaNamed;
gammas->fData[2].fNamed = kLinear_SkGammaNamed;
sk_sp<SkICC> named = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, named.get());
memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(float) * tableSize +
sizeof(SkColorSpaceTransferFn));
gammas = sk_sp<SkGammas>(new (memory) SkGammas(3));
table = SkTAddOffset<float>(memory, sizeof(SkGammas));
table[0] = 0.00f;
table[1] = 0.15f;
table[2] = 0.20f;
table[3] = 0.25f;
table[4] = 0.35f;
table[5] = 0.45f;
table[6] = 0.55f;
table[7] = 0.70f;
table[8] = 0.85f;
table[9] = 1.00f;
params = SkTAddOffset<SkColorSpaceTransferFn>(memory,
sizeof(SkGammas) + sizeof(float) * tableSize);
params->fA = 1.0f / 1.055f;
params->fB = 0.055f / 1.055f;
params->fC = 1.0f / 12.92f;
params->fD = 0.04045f;
params->fE = 0.0f;
params->fF = 0.0f;
params->fG = 2.4f;
gammas->fType[0] = SkGammas::Type::kValue_Type;
gammas->fData[0].fValue = 1.2f;
gammas->fType[1] = SkGammas::Type::kTable_Type;
gammas->fData[1].fTable.fSize = tableSize;
gammas->fData[1].fTable.fOffset = 0;
gammas->fType[2] = SkGammas::Type::kParam_Type;
gammas->fData[2].fParamOffset = sizeof(float) * tableSize;
sk_sp<SkICC> nonstd = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, nonstd.get());
// Reverse order of table and exponent
gammas->fType[1] = SkGammas::Type::kValue_Type;
gammas->fData[1].fValue = 1.2f;
gammas->fType[0] = SkGammas::Type::kTable_Type;
gammas->fData[0].fTable.fSize = tableSize;
gammas->fData[0].fTable.fOffset = 0;
sk_sp<SkICC> nonstd2 = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, nonstd2.get());
}