skia2/tests/ImageTest.cpp
Brian Osman ed182d7c90 Remove SkImage::MakeTextureFromPixmap
Slight variation on https://skia-review.googlesource.com/c/7346/,
which had to be reverted. This version also changes the non-mip
upload path to use a GrTextureProxy. Hopefully this doesn't trigger
the same perf regression that we saw last time.

BUG=skia:

Change-Id: Ic99bdd93904089942fb680c3af9c4c36310074c0
Reviewed-on: https://skia-review.googlesource.com/9892
Reviewed-by: Brian Salomon <bsalomon@google.com>
Commit-Queue: Brian Osman <brianosman@google.com>
2017-03-20 16:42:44 +00:00

1138 lines
45 KiB
C++

/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <functional>
#include <initializer_list>
#include <vector>
#include "SkAutoPixmapStorage.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkColorSpacePriv.h"
#include "SkData.h"
#include "SkImageEncoder.h"
#include "SkImageGenerator.h"
#include "SkImage_Base.h"
#include "SkImagePriv.h"
#include "SkMakeUnique.h"
#include "SkPicture.h"
#include "SkPictureRecorder.h"
#include "SkPixelSerializer.h"
#include "SkRRect.h"
#include "SkStream.h"
#include "SkSurface.h"
#include "SkUtils.h"
#include "Test.h"
#include "Resources.h"
#include "sk_tool_utils.h"
#if SK_SUPPORT_GPU
#include "GrGpu.h"
#endif
using namespace sk_gpu_test;
SkImageInfo read_pixels_info(SkImage* image) {
if (as_IB(image)->onImageInfo().colorSpace()) {
return SkImageInfo::MakeS32(image->width(), image->height(), image->alphaType());
}
return SkImageInfo::MakeN32(image->width(), image->height(), image->alphaType());
}
static void assert_equal(skiatest::Reporter* reporter, SkImage* a, const SkIRect* subsetA,
SkImage* b) {
const int widthA = subsetA ? subsetA->width() : a->width();
const int heightA = subsetA ? subsetA->height() : a->height();
REPORTER_ASSERT(reporter, widthA == b->width());
REPORTER_ASSERT(reporter, heightA == b->height());
// see https://bug.skia.org/3965
//REPORTER_ASSERT(reporter, a->isOpaque() == b->isOpaque());
SkAutoPixmapStorage pmapA, pmapB;
pmapA.alloc(read_pixels_info(a));
pmapB.alloc(read_pixels_info(b));
const int srcX = subsetA ? subsetA->x() : 0;
const int srcY = subsetA ? subsetA->y() : 0;
REPORTER_ASSERT(reporter, a->readPixels(pmapA, srcX, srcY));
REPORTER_ASSERT(reporter, b->readPixels(pmapB, 0, 0));
const size_t widthBytes = widthA * 4;
for (int y = 0; y < heightA; ++y) {
REPORTER_ASSERT(reporter, !memcmp(pmapA.addr32(0, y), pmapB.addr32(0, y), widthBytes));
}
}
static void draw_image_test_pattern(SkCanvas* canvas) {
canvas->clear(SK_ColorWHITE);
SkPaint paint;
paint.setColor(SK_ColorBLACK);
canvas->drawRect(SkRect::MakeXYWH(5, 5, 10, 10), paint);
}
static sk_sp<SkImage> create_image() {
const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
auto surface(SkSurface::MakeRaster(info));
draw_image_test_pattern(surface->getCanvas());
return surface->makeImageSnapshot();
}
static sk_sp<SkData> create_image_data(SkImageInfo* info) {
*info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
const size_t rowBytes = info->minRowBytes();
sk_sp<SkData> data(SkData::MakeUninitialized(rowBytes * info->height()));
{
SkBitmap bm;
bm.installPixels(*info, data->writable_data(), rowBytes);
SkCanvas canvas(bm);
draw_image_test_pattern(&canvas);
}
return data;
}
static sk_sp<SkImage> create_data_image() {
SkImageInfo info;
sk_sp<SkData> data(create_image_data(&info));
return SkImage::MakeRasterData(info, std::move(data), info.minRowBytes());
}
#if SK_SUPPORT_GPU // not gpu-specific but currently only used in GPU tests
static sk_sp<SkImage> create_image_large(int maxTextureSize) {
const SkImageInfo info = SkImageInfo::MakeN32(maxTextureSize + 1, 32, kOpaque_SkAlphaType);
auto surface(SkSurface::MakeRaster(info));
surface->getCanvas()->clear(SK_ColorWHITE);
SkPaint paint;
paint.setColor(SK_ColorBLACK);
surface->getCanvas()->drawRect(SkRect::MakeXYWH(4000, 2, 28000, 30), paint);
return surface->makeImageSnapshot();
}
static sk_sp<SkImage> create_picture_image() {
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->clear(SK_ColorCYAN);
return SkImage::MakeFromPicture(recorder.finishRecordingAsPicture(), SkISize::Make(10, 10),
nullptr, nullptr, SkImage::BitDepth::kU8,
SkColorSpace::MakeSRGB());
};
#endif
// Want to ensure that our Release is called when the owning image is destroyed
struct RasterDataHolder {
RasterDataHolder() : fReleaseCount(0) {}
sk_sp<SkData> fData;
int fReleaseCount;
static void Release(const void* pixels, void* context) {
RasterDataHolder* self = static_cast<RasterDataHolder*>(context);
self->fReleaseCount++;
self->fData.reset();
}
};
static sk_sp<SkImage> create_rasterproc_image(RasterDataHolder* dataHolder) {
SkASSERT(dataHolder);
SkImageInfo info;
dataHolder->fData = create_image_data(&info);
return SkImage::MakeFromRaster(SkPixmap(info, dataHolder->fData->data(), info.minRowBytes()),
RasterDataHolder::Release, dataHolder);
}
static sk_sp<SkImage> create_codec_image() {
SkImageInfo info;
sk_sp<SkData> data(create_image_data(&info));
SkBitmap bitmap;
bitmap.installPixels(info, data->writable_data(), info.minRowBytes());
sk_sp<SkData> src(sk_tool_utils::EncodeImageToData(bitmap, SkEncodedImageFormat::kPNG, 100));
return SkImage::MakeFromEncoded(std::move(src));
}
#if SK_SUPPORT_GPU
static sk_sp<SkImage> create_gpu_image(GrContext* context) {
const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
auto surface(SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info));
draw_image_test_pattern(surface->getCanvas());
return surface->makeImageSnapshot();
}
#endif
static void test_encode(skiatest::Reporter* reporter, SkImage* image) {
const SkIRect ir = SkIRect::MakeXYWH(5, 5, 10, 10);
sk_sp<SkData> origEncoded(image->encode());
REPORTER_ASSERT(reporter, origEncoded);
REPORTER_ASSERT(reporter, origEncoded->size() > 0);
sk_sp<SkImage> decoded(SkImage::MakeFromEncoded(origEncoded));
if (!decoded) {
ERRORF(reporter, "failed to decode image!");
return;
}
REPORTER_ASSERT(reporter, decoded);
assert_equal(reporter, image, nullptr, decoded.get());
// Now see if we can instantiate an image from a subset of the surface/origEncoded
decoded = SkImage::MakeFromEncoded(origEncoded, &ir);
REPORTER_ASSERT(reporter, decoded);
assert_equal(reporter, image, &ir, decoded.get());
}
DEF_TEST(ImageEncode, reporter) {
test_encode(reporter, create_image().get());
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageEncode_Gpu, reporter, ctxInfo) {
test_encode(reporter, create_gpu_image(ctxInfo.grContext()).get());
}
#endif
DEF_TEST(Image_MakeFromRasterBitmap, reporter) {
const struct {
SkCopyPixelsMode fCPM;
bool fExpectSameAsMutable;
bool fExpectSameAsImmutable;
} recs[] = {
{ kIfMutable_SkCopyPixelsMode, false, true },
{ kAlways_SkCopyPixelsMode, false, false },
{ kNever_SkCopyPixelsMode, true, true },
};
for (auto rec : recs) {
SkPixmap pm;
SkBitmap bm;
bm.allocN32Pixels(100, 100);
auto img = SkMakeImageFromRasterBitmap(bm, rec.fCPM);
REPORTER_ASSERT(reporter, img->peekPixels(&pm));
const bool sameMutable = pm.addr32(0, 0) == bm.getAddr32(0, 0);
REPORTER_ASSERT(reporter, rec.fExpectSameAsMutable == sameMutable);
REPORTER_ASSERT(reporter, (bm.getGenerationID() == img->uniqueID()) == sameMutable);
bm.notifyPixelsChanged(); // force a new generation ID
bm.setImmutable();
img = SkMakeImageFromRasterBitmap(bm, rec.fCPM);
REPORTER_ASSERT(reporter, img->peekPixels(&pm));
const bool sameImmutable = pm.addr32(0, 0) == bm.getAddr32(0, 0);
REPORTER_ASSERT(reporter, rec.fExpectSameAsImmutable == sameImmutable);
REPORTER_ASSERT(reporter, (bm.getGenerationID() == img->uniqueID()) == sameImmutable);
}
}
namespace {
const char* kSerializedData = "serialized";
class MockSerializer : public SkPixelSerializer {
public:
MockSerializer(sk_sp<SkData> (*func)()) : fFunc(func), fDidEncode(false) { }
bool didEncode() const { return fDidEncode; }
protected:
bool onUseEncodedData(const void*, size_t) override {
return false;
}
SkData* onEncode(const SkPixmap&) override {
fDidEncode = true;
return fFunc().release();
}
private:
sk_sp<SkData> (*fFunc)();
bool fDidEncode;
typedef SkPixelSerializer INHERITED;
};
} // anonymous namespace
// Test that SkImage encoding observes custom pixel serializers.
DEF_TEST(Image_Encode_Serializer, reporter) {
MockSerializer serializer([]() -> sk_sp<SkData> {
return SkData::MakeWithCString(kSerializedData);
});
sk_sp<SkImage> image(create_image());
sk_sp<SkData> encoded(image->encode(&serializer));
sk_sp<SkData> reference(SkData::MakeWithCString(kSerializedData));
REPORTER_ASSERT(reporter, serializer.didEncode());
REPORTER_ASSERT(reporter, encoded);
REPORTER_ASSERT(reporter, encoded->size() > 0);
REPORTER_ASSERT(reporter, encoded->equals(reference.get()));
}
// Test that image encoding failures do not break picture serialization/deserialization.
DEF_TEST(Image_Serialize_Encoding_Failure, reporter) {
auto surface(SkSurface::MakeRasterN32Premul(100, 100));
surface->getCanvas()->clear(SK_ColorGREEN);
sk_sp<SkImage> image(surface->makeImageSnapshot());
REPORTER_ASSERT(reporter, image);
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(100, 100);
canvas->drawImage(image, 0, 0);
sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
REPORTER_ASSERT(reporter, picture);
REPORTER_ASSERT(reporter, picture->approximateOpCount() > 0);
MockSerializer emptySerializer([]() -> sk_sp<SkData> { return SkData::MakeEmpty(); });
MockSerializer nullSerializer([]() -> sk_sp<SkData> { return nullptr; });
MockSerializer* serializers[] = { &emptySerializer, &nullSerializer };
for (size_t i = 0; i < SK_ARRAY_COUNT(serializers); ++i) {
SkDynamicMemoryWStream wstream;
REPORTER_ASSERT(reporter, !serializers[i]->didEncode());
picture->serialize(&wstream, serializers[i]);
REPORTER_ASSERT(reporter, serializers[i]->didEncode());
std::unique_ptr<SkStream> rstream(wstream.detachAsStream());
sk_sp<SkPicture> deserialized(SkPicture::MakeFromStream(rstream.get()));
REPORTER_ASSERT(reporter, deserialized);
REPORTER_ASSERT(reporter, deserialized->approximateOpCount() > 0);
}
}
DEF_TEST(Image_NewRasterCopy, reporter) {
const SkPMColor red = SkPackARGB32(0xFF, 0xFF, 0, 0);
const SkPMColor green = SkPackARGB32(0xFF, 0, 0xFF, 0);
const SkPMColor blue = SkPackARGB32(0xFF, 0, 0, 0xFF);
SkPMColor colors[] = { red, green, blue, 0 };
sk_sp<SkColorTable> ctable(new SkColorTable(colors, SK_ARRAY_COUNT(colors)));
// The colortable made a copy, so we can trash the original colors
memset(colors, 0xFF, sizeof(colors));
const SkImageInfo srcInfo = SkImageInfo::Make(2, 2, kIndex_8_SkColorType, kPremul_SkAlphaType);
const size_t srcRowBytes = 2 * sizeof(uint8_t);
uint8_t indices[] = { 0, 1, 2, 3 };
auto image = SkImage::MakeRasterCopy(SkPixmap(srcInfo, indices, srcRowBytes, ctable.get()));
// The image made a copy, so we can trash the original indices
memset(indices, 0xFF, sizeof(indices));
const SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(2, 2);
const size_t dstRowBytes = 2 * sizeof(SkPMColor);
SkPMColor pixels[4];
memset(pixels, 0xFF, sizeof(pixels)); // init with values we don't expect
image->readPixels(dstInfo, pixels, dstRowBytes, 0, 0);
REPORTER_ASSERT(reporter, red == pixels[0]);
REPORTER_ASSERT(reporter, green == pixels[1]);
REPORTER_ASSERT(reporter, blue == pixels[2]);
REPORTER_ASSERT(reporter, 0 == pixels[3]);
}
// Test that a draw that only partially covers the drawing surface isn't
// interpreted as covering the entire drawing surface (i.e., exercise one of the
// conditions of SkCanvas::wouldOverwriteEntireSurface()).
DEF_TEST(Image_RetainSnapshot, reporter) {
const SkPMColor red = SkPackARGB32(0xFF, 0xFF, 0, 0);
const SkPMColor green = SkPackARGB32(0xFF, 0, 0xFF, 0);
SkImageInfo info = SkImageInfo::MakeN32Premul(2, 2);
auto surface(SkSurface::MakeRaster(info));
surface->getCanvas()->clear(0xFF00FF00);
SkPMColor pixels[4];
memset(pixels, 0xFF, sizeof(pixels)); // init with values we don't expect
const SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(2, 2);
const size_t dstRowBytes = 2 * sizeof(SkPMColor);
sk_sp<SkImage> image1(surface->makeImageSnapshot());
REPORTER_ASSERT(reporter, image1->readPixels(dstInfo, pixels, dstRowBytes, 0, 0));
for (size_t i = 0; i < SK_ARRAY_COUNT(pixels); ++i) {
REPORTER_ASSERT(reporter, pixels[i] == green);
}
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
paint.setColor(SK_ColorRED);
surface->getCanvas()->drawRect(SkRect::MakeXYWH(1, 1, 1, 1), paint);
sk_sp<SkImage> image2(surface->makeImageSnapshot());
REPORTER_ASSERT(reporter, image2->readPixels(dstInfo, pixels, dstRowBytes, 0, 0));
REPORTER_ASSERT(reporter, pixels[0] == green);
REPORTER_ASSERT(reporter, pixels[1] == green);
REPORTER_ASSERT(reporter, pixels[2] == green);
REPORTER_ASSERT(reporter, pixels[3] == red);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
static void make_bitmap_mutable(SkBitmap* bm) {
bm->allocN32Pixels(10, 10);
}
static void make_bitmap_immutable(SkBitmap* bm) {
bm->allocN32Pixels(10, 10);
bm->setImmutable();
}
DEF_TEST(image_newfrombitmap, reporter) {
const struct {
void (*fMakeProc)(SkBitmap*);
bool fExpectPeekSuccess;
bool fExpectSharedID;
bool fExpectLazy;
} rec[] = {
{ make_bitmap_mutable, true, false, false },
{ make_bitmap_immutable, true, true, false },
};
for (size_t i = 0; i < SK_ARRAY_COUNT(rec); ++i) {
SkBitmap bm;
rec[i].fMakeProc(&bm);
sk_sp<SkImage> image(SkImage::MakeFromBitmap(bm));
SkPixmap pmap;
const bool sharedID = (image->uniqueID() == bm.getGenerationID());
REPORTER_ASSERT(reporter, sharedID == rec[i].fExpectSharedID);
const bool peekSuccess = image->peekPixels(&pmap);
REPORTER_ASSERT(reporter, peekSuccess == rec[i].fExpectPeekSuccess);
const bool lazy = image->isLazyGenerated();
REPORTER_ASSERT(reporter, lazy == rec[i].fExpectLazy);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
#include "SkBitmapCache.h"
/*
* This tests the caching (and preemptive purge) of the raster equivalent of a gpu-image.
* We cache it for performance when drawing into a raster surface.
*
* A cleaner test would know if each drawImage call triggered a read-back from the gpu,
* but we don't have that facility (at the moment) so we use a little internal knowledge
* of *how* the raster version is cached, and look for that.
*/
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(c, reporter, ctxInfo) {
SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
sk_sp<SkImage> image(create_gpu_image(ctxInfo.grContext()));
const uint32_t uniqueID = image->uniqueID();
auto surface(SkSurface::MakeRaster(info));
// now we can test drawing a gpu-backed image into a cpu-backed surface
{
SkBitmap cachedBitmap;
REPORTER_ASSERT(reporter, !SkBitmapCache::Find(uniqueID, &cachedBitmap));
}
surface->getCanvas()->drawImage(image, 0, 0);
{
SkBitmap cachedBitmap;
if (SkBitmapCache::Find(uniqueID, &cachedBitmap)) {
REPORTER_ASSERT(reporter, cachedBitmap.getGenerationID() == uniqueID);
REPORTER_ASSERT(reporter, cachedBitmap.isImmutable());
REPORTER_ASSERT(reporter, cachedBitmap.getPixels());
} else {
// unexpected, but not really a bug, since the cache is global and this test may be
// run w/ other threads competing for its budget.
SkDebugf("SkImage_Gpu2Cpu : cachedBitmap was already purged\n");
}
}
image.reset(nullptr);
{
SkBitmap cachedBitmap;
REPORTER_ASSERT(reporter, !SkBitmapCache::Find(uniqueID, &cachedBitmap));
}
}
GrContextFactory::ContextType pick_second_context_type(const sk_gpu_test::ContextInfo& info) {
switch (info.backend()) {
case kOpenGL_GrBackend:
if (info.glContext()->gl()->fStandard == kGLES_GrGLStandard) {
return GrContextFactory::kGLES_ContextType;
} else {
return GrContextFactory::kGL_ContextType;
}
case kVulkan_GrBackend:
return GrContextFactory::kVulkan_ContextType;
}
SkFAIL("Unknown backend type.");
return GrContextFactory::kGL_ContextType;
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_makeTextureImage, reporter, contextInfo) {
GrContext* context = contextInfo.grContext();
sk_gpu_test::TestContext* testContext = contextInfo.testContext();
GrContextFactory otherFactory;
GrContextFactory::ContextType otherContextType = pick_second_context_type(contextInfo);
ContextInfo otherContextInfo = otherFactory.getContextInfo(otherContextType);
testContext->makeCurrent();
std::function<sk_sp<SkImage>()> imageFactories[] = {
create_image,
create_codec_image,
create_data_image,
// Create an image from a picture.
create_picture_image,
// Create a texture image.
[context] { return create_gpu_image(context); },
// Create a texture image in a another GrContext.
[testContext, otherContextInfo] {
otherContextInfo.testContext()->makeCurrent();
sk_sp<SkImage> otherContextImage = create_gpu_image(otherContextInfo.grContext());
testContext->makeCurrent();
return otherContextImage;
}
};
sk_sp<SkColorSpace> dstColorSpaces[] ={
nullptr,
SkColorSpace::MakeSRGB(),
};
for (auto& dstColorSpace : dstColorSpaces) {
for (auto factory : imageFactories) {
sk_sp<SkImage> image(factory());
if (!image) {
ERRORF(reporter, "Error creating image.");
continue;
}
GrTexture* origTexture = as_IB(image)->peekTexture();
sk_sp<SkImage> texImage(image->makeTextureImage(context, dstColorSpace.get()));
if (!texImage) {
// We expect to fail if image comes from a different GrContext.
if (!origTexture || origTexture->getContext() == context) {
ERRORF(reporter, "makeTextureImage failed.");
}
continue;
}
GrTexture* copyTexture = as_IB(texImage)->peekTexture();
if (!copyTexture) {
ERRORF(reporter, "makeTextureImage returned non-texture image.");
continue;
}
if (origTexture) {
if (origTexture != copyTexture) {
ERRORF(reporter, "makeTextureImage made unnecessary texture copy.");
}
}
if (image->width() != texImage->width() || image->height() != texImage->height()) {
ERRORF(reporter, "makeTextureImage changed the image size.");
}
if (image->alphaType() != texImage->alphaType()) {
ERRORF(reporter, "makeTextureImage changed image alpha type.");
}
}
}
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_makeNonTextureImage, reporter, contextInfo) {
GrContext* context = contextInfo.grContext();
std::function<sk_sp<SkImage>()> imageFactories[] = {
create_image,
create_codec_image,
create_data_image,
create_picture_image,
[context] { return create_gpu_image(context); },
};
SkColorSpace* legacyColorSpace = nullptr;
for (auto factory : imageFactories) {
sk_sp<SkImage> image = factory();
if (!image->isTextureBacked()) {
REPORTER_ASSERT(reporter, image->makeNonTextureImage().get() == image.get());
if (!(image = image->makeTextureImage(context, legacyColorSpace))) {
continue;
}
}
auto rasterImage = image->makeNonTextureImage();
if (!rasterImage) {
ERRORF(reporter, "makeNonTextureImage failed for texture-backed image.");
}
REPORTER_ASSERT(reporter, !rasterImage->isTextureBacked());
assert_equal(reporter, image.get(), nullptr, rasterImage.get());
}
}
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(SkImage_drawAbandonedGpuImage, reporter, contextInfo) {
auto context = contextInfo.grContext();
auto image = create_gpu_image(context);
auto info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
auto surface(SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info));
as_IB(image)->peekTexture()->abandon();
surface->getCanvas()->drawImage(image, 0, 0);
}
#endif
// https://bug.skia.org/4390
DEF_TEST(ImageFromIndex8Bitmap, r) {
SkPMColor pmColors[1] = {SkPreMultiplyColor(SK_ColorWHITE)};
SkBitmap bm;
sk_sp<SkColorTable> ctable( new SkColorTable(pmColors, SK_ARRAY_COUNT(pmColors)));
SkImageInfo info = SkImageInfo::Make(1, 1, kIndex_8_SkColorType, kPremul_SkAlphaType);
bm.allocPixels(info, nullptr, ctable.get());
SkAutoLockPixels autoLockPixels(bm);
*bm.getAddr8(0, 0) = 0;
sk_sp<SkImage> img(SkImage::MakeFromBitmap(bm));
REPORTER_ASSERT(r, img != nullptr);
}
class EmptyGenerator : public SkImageGenerator {
public:
EmptyGenerator() : SkImageGenerator(SkImageInfo::MakeN32Premul(0, 0)) {}
};
DEF_TEST(ImageEmpty, reporter) {
const SkImageInfo info = SkImageInfo::Make(0, 0, kN32_SkColorType, kPremul_SkAlphaType);
SkPixmap pmap(info, nullptr, 0);
REPORTER_ASSERT(reporter, nullptr == SkImage::MakeRasterCopy(pmap));
REPORTER_ASSERT(reporter, nullptr == SkImage::MakeRasterData(info, nullptr, 0));
REPORTER_ASSERT(reporter, nullptr == SkImage::MakeFromRaster(pmap, nullptr, nullptr));
REPORTER_ASSERT(reporter, nullptr == SkImage::MakeFromGenerator(
skstd::make_unique<EmptyGenerator>()));
}
DEF_TEST(ImageDataRef, reporter) {
SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1);
size_t rowBytes = info.minRowBytes();
size_t size = info.getSafeSize(rowBytes);
sk_sp<SkData> data = SkData::MakeUninitialized(size);
REPORTER_ASSERT(reporter, data->unique());
sk_sp<SkImage> image = SkImage::MakeRasterData(info, data, rowBytes);
REPORTER_ASSERT(reporter, !data->unique());
image.reset();
REPORTER_ASSERT(reporter, data->unique());
}
static bool has_pixels(const SkPMColor pixels[], int count, SkPMColor expected) {
for (int i = 0; i < count; ++i) {
if (pixels[i] != expected) {
return false;
}
}
return true;
}
static void image_test_read_pixels(skiatest::Reporter* reporter, SkImage* image) {
if (!image) {
ERRORF(reporter, "Failed to create image!");
return;
}
const SkPMColor expected = SkPreMultiplyColor(SK_ColorWHITE);
const SkPMColor notExpected = ~expected;
const int w = 2, h = 2;
const size_t rowBytes = w * sizeof(SkPMColor);
SkPMColor pixels[w*h];
SkImageInfo info;
info = SkImageInfo::MakeUnknown(w, h);
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, 0));
// out-of-bounds should fail
info = SkImageInfo::MakeN32Premul(w, h);
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, -w, 0));
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, -h));
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, image->width(), 0));
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, image->height()));
// top-left should succeed
sk_memset32(pixels, notExpected, w*h);
REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, 0, 0));
REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected));
// bottom-right should succeed
sk_memset32(pixels, notExpected, w*h);
REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes,
image->width() - w, image->height() - h));
REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected));
// partial top-left should succeed
sk_memset32(pixels, notExpected, w*h);
REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, -1, -1));
REPORTER_ASSERT(reporter, pixels[3] == expected);
REPORTER_ASSERT(reporter, has_pixels(pixels, w*h - 1, notExpected));
// partial bottom-right should succeed
sk_memset32(pixels, notExpected, w*h);
REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes,
image->width() - 1, image->height() - 1));
REPORTER_ASSERT(reporter, pixels[0] == expected);
REPORTER_ASSERT(reporter, has_pixels(&pixels[1], w*h - 1, notExpected));
}
DEF_TEST(ImageReadPixels, reporter) {
sk_sp<SkImage> image(create_image());
image_test_read_pixels(reporter, image.get());
image = create_data_image();
image_test_read_pixels(reporter, image.get());
RasterDataHolder dataHolder;
image = create_rasterproc_image(&dataHolder);
image_test_read_pixels(reporter, image.get());
image.reset();
REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount);
image = create_codec_image();
image_test_read_pixels(reporter, image.get());
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageReadPixels_Gpu, reporter, ctxInfo) {
image_test_read_pixels(reporter, create_gpu_image(ctxInfo.grContext()).get());
}
#endif
static void check_legacy_bitmap(skiatest::Reporter* reporter, const SkImage* image,
const SkBitmap& bitmap, SkImage::LegacyBitmapMode mode) {
REPORTER_ASSERT(reporter, image->width() == bitmap.width());
REPORTER_ASSERT(reporter, image->height() == bitmap.height());
REPORTER_ASSERT(reporter, image->alphaType() == bitmap.alphaType());
if (SkImage::kRO_LegacyBitmapMode == mode) {
REPORTER_ASSERT(reporter, bitmap.isImmutable());
}
SkAutoLockPixels alp(bitmap);
REPORTER_ASSERT(reporter, bitmap.getPixels());
const SkImageInfo info = SkImageInfo::MakeN32(1, 1, bitmap.alphaType());
SkPMColor imageColor;
REPORTER_ASSERT(reporter, image->readPixels(info, &imageColor, sizeof(SkPMColor), 0, 0));
REPORTER_ASSERT(reporter, imageColor == *bitmap.getAddr32(0, 0));
}
static void test_legacy_bitmap(skiatest::Reporter* reporter, const SkImage* image, SkImage::LegacyBitmapMode mode) {
if (!image) {
ERRORF(reporter, "Failed to create image.");
return;
}
SkBitmap bitmap;
REPORTER_ASSERT(reporter, image->asLegacyBitmap(&bitmap, mode));
check_legacy_bitmap(reporter, image, bitmap, mode);
// Test subsetting to exercise the rowBytes logic.
SkBitmap tmp;
REPORTER_ASSERT(reporter, bitmap.extractSubset(&tmp, SkIRect::MakeWH(image->width() / 2,
image->height() / 2)));
sk_sp<SkImage> subsetImage(SkImage::MakeFromBitmap(tmp));
REPORTER_ASSERT(reporter, subsetImage.get());
SkBitmap subsetBitmap;
REPORTER_ASSERT(reporter, subsetImage->asLegacyBitmap(&subsetBitmap, mode));
check_legacy_bitmap(reporter, subsetImage.get(), subsetBitmap, mode);
}
DEF_TEST(ImageLegacyBitmap, reporter) {
const SkImage::LegacyBitmapMode modes[] = {
SkImage::kRO_LegacyBitmapMode,
SkImage::kRW_LegacyBitmapMode,
};
for (auto& mode : modes) {
sk_sp<SkImage> image(create_image());
test_legacy_bitmap(reporter, image.get(), mode);
image = create_data_image();
test_legacy_bitmap(reporter, image.get(), mode);
RasterDataHolder dataHolder;
image = create_rasterproc_image(&dataHolder);
test_legacy_bitmap(reporter, image.get(), mode);
image.reset();
REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount);
image = create_codec_image();
test_legacy_bitmap(reporter, image.get(), mode);
}
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageLegacyBitmap_Gpu, reporter, ctxInfo) {
const SkImage::LegacyBitmapMode modes[] = {
SkImage::kRO_LegacyBitmapMode,
SkImage::kRW_LegacyBitmapMode,
};
for (auto& mode : modes) {
sk_sp<SkImage> image(create_gpu_image(ctxInfo.grContext()));
test_legacy_bitmap(reporter, image.get(), mode);
}
}
#endif
static void test_peek(skiatest::Reporter* reporter, SkImage* image, bool expectPeekSuccess) {
if (!image) {
ERRORF(reporter, "Failed to create image!");
return;
}
SkPixmap pm;
bool success = image->peekPixels(&pm);
REPORTER_ASSERT(reporter, expectPeekSuccess == success);
if (success) {
const SkImageInfo& info = pm.info();
REPORTER_ASSERT(reporter, 20 == info.width());
REPORTER_ASSERT(reporter, 20 == info.height());
REPORTER_ASSERT(reporter, kN32_SkColorType == info.colorType());
REPORTER_ASSERT(reporter, kPremul_SkAlphaType == info.alphaType() ||
kOpaque_SkAlphaType == info.alphaType());
REPORTER_ASSERT(reporter, info.minRowBytes() <= pm.rowBytes());
REPORTER_ASSERT(reporter, SkPreMultiplyColor(SK_ColorWHITE) == *pm.addr32(0, 0));
}
}
DEF_TEST(ImagePeek, reporter) {
sk_sp<SkImage> image(create_image());
test_peek(reporter, image.get(), true);
image = create_data_image();
test_peek(reporter, image.get(), true);
RasterDataHolder dataHolder;
image = create_rasterproc_image(&dataHolder);
test_peek(reporter, image.get(), true);
image.reset();
REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount);
image = create_codec_image();
test_peek(reporter, image.get(), false);
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImagePeek_Gpu, reporter, ctxInfo) {
sk_sp<SkImage> image(create_gpu_image(ctxInfo.grContext()));
test_peek(reporter, image.get(), false);
}
#endif
#if SK_SUPPORT_GPU
struct TextureReleaseChecker {
TextureReleaseChecker() : fReleaseCount(0) {}
int fReleaseCount;
static void Release(void* self) {
static_cast<TextureReleaseChecker*>(self)->fReleaseCount++;
}
};
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(SkImage_NewFromTextureRelease, reporter, ctxInfo) {
const int kWidth = 10;
const int kHeight = 10;
std::unique_ptr<uint32_t[]> pixels(new uint32_t[kWidth * kHeight]);
GrBackendTextureDesc backendDesc;
backendDesc.fFlags = kRenderTarget_GrBackendTextureFlag;
backendDesc.fOrigin = kBottomLeft_GrSurfaceOrigin;
backendDesc.fConfig = kRGBA_8888_GrPixelConfig;
backendDesc.fWidth = kWidth;
backendDesc.fHeight = kHeight;
backendDesc.fSampleCnt = 0;
backendDesc.fTextureHandle = ctxInfo.grContext()->getGpu()->createTestingOnlyBackendTexture(
pixels.get(), kWidth, kHeight, kRGBA_8888_GrPixelConfig, true);
TextureReleaseChecker releaseChecker;
sk_sp<SkImage> refImg(
SkImage::MakeFromTexture(ctxInfo.grContext(), backendDesc, kPremul_SkAlphaType,
TextureReleaseChecker::Release, &releaseChecker));
GrSurfaceOrigin readBackOrigin;
GrBackendObject readBackHandle = refImg->getTextureHandle(false, &readBackOrigin);
// TODO: Make it so we can check this (see skbug.com/5019)
#if 0
if (*readBackHandle != *(backendDesc.fTextureHandle)) {
ERRORF(reporter, "backend mismatch %d %d\n",
(int)readBackHandle, (int)backendDesc.fTextureHandle);
}
REPORTER_ASSERT(reporter, readBackHandle == backendDesc.fTextureHandle);
#else
REPORTER_ASSERT(reporter, SkToBool(readBackHandle));
#endif
if (readBackOrigin != backendDesc.fOrigin) {
ERRORF(reporter, "origin mismatch %d %d\n", readBackOrigin, backendDesc.fOrigin);
}
REPORTER_ASSERT(reporter, readBackOrigin == backendDesc.fOrigin);
// Now exercise the release proc
REPORTER_ASSERT(reporter, 0 == releaseChecker.fReleaseCount);
refImg.reset(nullptr); // force a release of the image
REPORTER_ASSERT(reporter, 1 == releaseChecker.fReleaseCount);
ctxInfo.grContext()->getGpu()->deleteTestingOnlyBackendTexture(backendDesc.fTextureHandle);
}
static void check_images_same(skiatest::Reporter* reporter, const SkImage* a, const SkImage* b) {
if (a->width() != b->width() || a->height() != b->height()) {
ERRORF(reporter, "Images must have the same size");
return;
}
if (a->alphaType() != b->alphaType()) {
ERRORF(reporter, "Images must have the same alpha type");
return;
}
SkImageInfo info = SkImageInfo::MakeN32Premul(a->width(), a->height());
SkAutoPixmapStorage apm;
SkAutoPixmapStorage bpm;
apm.alloc(info);
bpm.alloc(info);
if (!a->readPixels(apm, 0, 0)) {
ERRORF(reporter, "Could not read image a's pixels");
return;
}
if (!b->readPixels(bpm, 0, 0)) {
ERRORF(reporter, "Could not read image b's pixels");
return;
}
for (auto y = 0; y < info.height(); ++y) {
for (auto x = 0; x < info.width(); ++x) {
uint32_t pixelA = *apm.addr32(x, y);
uint32_t pixelB = *bpm.addr32(x, y);
if (pixelA != pixelB) {
ERRORF(reporter, "Expected image pixels to be the same. At %d,%d 0x%08x != 0x%08x",
x, y, pixelA, pixelB);
return;
}
}
}
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DeferredTextureImage, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
sk_gpu_test::TestContext* testContext = ctxInfo.testContext();
sk_sp<GrContextThreadSafeProxy> proxy = context->threadSafeProxy();
GrContextFactory otherFactory;
ContextInfo otherContextInfo =
otherFactory.getContextInfo(pick_second_context_type(ctxInfo));
testContext->makeCurrent();
REPORTER_ASSERT(reporter, proxy);
auto createLarge = [context] {
return create_image_large(context->caps()->maxTextureSize());
};
struct {
std::function<sk_sp<SkImage> ()> fImageFactory;
std::vector<SkImage::DeferredTextureImageUsageParams> fParams;
SkFilterQuality fExpectedQuality;
int fExpectedScaleFactor;
bool fExpectation;
} testCases[] = {
{ create_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}},
kNone_SkFilterQuality, 1, true },
{ create_codec_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}},
kNone_SkFilterQuality, 1, true },
{ create_data_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}},
kNone_SkFilterQuality, 1, true },
{ create_picture_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}},
kNone_SkFilterQuality, 1, false },
{ [context] { return create_gpu_image(context); },
{{SkMatrix::I(), kNone_SkFilterQuality, 0}},
kNone_SkFilterQuality, 1, false },
// Create a texture image in a another GrContext.
{ [testContext, otherContextInfo] {
otherContextInfo.testContext()->makeCurrent();
sk_sp<SkImage> otherContextImage = create_gpu_image(otherContextInfo.grContext());
testContext->makeCurrent();
return otherContextImage;
}, {{SkMatrix::I(), kNone_SkFilterQuality, 0}},
kNone_SkFilterQuality, 1, false },
// Create an image that is too large to upload.
{ createLarge, {{SkMatrix::I(), kNone_SkFilterQuality, 0}},
kNone_SkFilterQuality, 1, false },
// Create an image that is too large, but is scaled to an acceptable size.
{ createLarge, {{SkMatrix::I(), kMedium_SkFilterQuality, 4}},
kMedium_SkFilterQuality, 16, true},
// Create an image with multiple low filter qualities, make sure we round up.
{ createLarge, {{SkMatrix::I(), kNone_SkFilterQuality, 4},
{SkMatrix::I(), kMedium_SkFilterQuality, 4}},
kMedium_SkFilterQuality, 16, true},
// Create an image with multiple prescale levels, make sure we chose the minimum scale.
{ createLarge, {{SkMatrix::I(), kMedium_SkFilterQuality, 5},
{SkMatrix::I(), kMedium_SkFilterQuality, 4}},
kMedium_SkFilterQuality, 16, true},
};
for (auto testCase : testCases) {
sk_sp<SkImage> image(testCase.fImageFactory());
if (!image) {
ERRORF(reporter, "Failed to create image!");
continue;
}
size_t size = image->getDeferredTextureImageData(*proxy, testCase.fParams.data(),
static_cast<int>(testCase.fParams.size()),
nullptr, nullptr);
static const char *const kFS[] = { "fail", "succeed" };
if (SkToBool(size) != testCase.fExpectation) {
ERRORF(reporter, "This image was expected to %s but did not.",
kFS[testCase.fExpectation]);
}
if (size) {
void* buffer = sk_malloc_throw(size);
void* misaligned = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(buffer) + 3);
if (image->getDeferredTextureImageData(*proxy, testCase.fParams.data(),
static_cast<int>(testCase.fParams.size()),
misaligned, nullptr)) {
ERRORF(reporter, "Should fail when buffer is misaligned.");
}
if (!image->getDeferredTextureImageData(*proxy, testCase.fParams.data(),
static_cast<int>(testCase.fParams.size()),
buffer, nullptr)) {
ERRORF(reporter, "deferred image size succeeded but creation failed.");
} else {
for (auto budgeted : { SkBudgeted::kNo, SkBudgeted::kYes }) {
sk_sp<SkImage> newImage(
SkImage::MakeFromDeferredTextureImageData(context, buffer, budgeted));
REPORTER_ASSERT(reporter, newImage != nullptr);
if (newImage) {
// Scale the image in software for comparison.
SkImageInfo scaled_info = SkImageInfo::MakeN32(
image->width() / testCase.fExpectedScaleFactor,
image->height() / testCase.fExpectedScaleFactor,
image->alphaType());
SkAutoPixmapStorage scaled;
scaled.alloc(scaled_info);
image->scalePixels(scaled, testCase.fExpectedQuality);
sk_sp<SkImage> scaledImage = SkImage::MakeRasterCopy(scaled);
check_images_same(reporter, scaledImage.get(), newImage.get());
}
// The other context should not be able to create images from texture data
// created by the original context.
sk_sp<SkImage> newImage2(SkImage::MakeFromDeferredTextureImageData(
otherContextInfo.grContext(), buffer, budgeted));
REPORTER_ASSERT(reporter, !newImage2);
testContext->makeCurrent();
}
}
sk_free(buffer);
}
}
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
static sk_sp<SkImage> create_picture_image(sk_sp<SkColorSpace> space) {
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->clear(SK_ColorCYAN);
return SkImage::MakeFromPicture(recorder.finishRecordingAsPicture(), SkISize::Make(10, 10),
nullptr, nullptr, SkImage::BitDepth::kU8, std::move(space));
};
static inline bool almost_equal(int a, int b) {
return SkTAbs(a - b) <= 1;
}
DEF_TEST(Image_ColorSpace, r) {
sk_sp<SkColorSpace> srgb = SkColorSpace::MakeSRGB();
sk_sp<SkImage> image = GetResourceAsImage("mandrill_512_q075.jpg");
REPORTER_ASSERT(r, srgb.get() == image->colorSpace());
image = GetResourceAsImage("webp-color-profile-lossy.webp");
SkColorSpaceTransferFn fn;
bool success = image->colorSpace()->isNumericalTransferFn(&fn);
REPORTER_ASSERT(r, success);
REPORTER_ASSERT(r, color_space_almost_equal(1.8f, fn.fG));
sk_sp<SkColorSpace> rec2020 = SkColorSpace::MakeRGB(SkColorSpace::kSRGB_RenderTargetGamma,
SkColorSpace::kRec2020_Gamut);
image = create_picture_image(rec2020);
REPORTER_ASSERT(r, SkColorSpace::Equals(rec2020.get(), image->colorSpace()));
SkBitmap bitmap;
SkImageInfo info = SkImageInfo::MakeN32(10, 10, kPremul_SkAlphaType, rec2020);
bitmap.allocPixels(info);
image = SkImage::MakeFromBitmap(bitmap);
REPORTER_ASSERT(r, SkColorSpace::Equals(rec2020.get(), image->colorSpace()));
sk_sp<SkSurface> surface = SkSurface::MakeRaster(
SkImageInfo::MakeN32Premul(SkISize::Make(10, 10)));
image = surface->makeImageSnapshot();
REPORTER_ASSERT(r, nullptr == image->colorSpace());
surface = SkSurface::MakeRaster(info);
image = surface->makeImageSnapshot();
REPORTER_ASSERT(r, SkColorSpace::Equals(rec2020.get(), image->colorSpace()));
}
DEF_TEST(Image_makeColorSpace, r) {
sk_sp<SkColorSpace> p3 = SkColorSpace::MakeRGB(SkColorSpace::kSRGB_RenderTargetGamma,
SkColorSpace::kDCIP3_D65_Gamut);
SkBitmap srgbBitmap;
srgbBitmap.allocPixels(SkImageInfo::MakeS32(1, 1, kOpaque_SkAlphaType));
*srgbBitmap.getAddr32(0, 0) = SkSwizzle_RGBA_to_PMColor(0xFF604020);
srgbBitmap.setImmutable();
sk_sp<SkImage> srgbImage = SkImage::MakeFromBitmap(srgbBitmap);
sk_sp<SkImage> p3Image = as_IB(srgbImage)->makeColorSpace(p3);
SkBitmap p3Bitmap;
bool success = p3Image->asLegacyBitmap(&p3Bitmap, SkImage::kRO_LegacyBitmapMode);
REPORTER_ASSERT(r, success);
p3Bitmap.lockPixels();
REPORTER_ASSERT(r, almost_equal(0x28, SkGetPackedR32(*p3Bitmap.getAddr32(0, 0))));
REPORTER_ASSERT(r, almost_equal(0x40, SkGetPackedG32(*p3Bitmap.getAddr32(0, 0))));
REPORTER_ASSERT(r, almost_equal(0x5E, SkGetPackedB32(*p3Bitmap.getAddr32(0, 0))));
srgbImage = GetResourceAsImage("1x1.png");
p3Image = as_IB(srgbImage)->makeColorSpace(p3);
success = p3Image->asLegacyBitmap(&p3Bitmap, SkImage::kRO_LegacyBitmapMode);
REPORTER_ASSERT(r, success);
p3Bitmap.lockPixels();
REPORTER_ASSERT(r, almost_equal(0x8B, SkGetPackedR32(*p3Bitmap.getAddr32(0, 0))));
REPORTER_ASSERT(r, almost_equal(0x82, SkGetPackedG32(*p3Bitmap.getAddr32(0, 0))));
REPORTER_ASSERT(r, almost_equal(0x77, SkGetPackedB32(*p3Bitmap.getAddr32(0, 0))));
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static void make_all_premul(SkBitmap* bm) {
bm->allocPixels(SkImageInfo::MakeN32(256, 256, kPremul_SkAlphaType));
for (int a = 0; a < 256; ++a) {
for (int r = 0; r < 256; ++r) {
// make all valid premul combinations
int c = SkTMin(a, r);
*bm->getAddr32(a, r) = SkPackARGB32(a, c, c, c);
}
}
}
static bool equal(const SkBitmap& a, const SkBitmap& b) {
SkASSERT(a.width() == b.width());
SkASSERT(a.height() == b.height());
for (int y = 0; y < a.height(); ++y) {
for (int x = 0; x < a.width(); ++x) {
SkPMColor pa = *a.getAddr32(x, y);
SkPMColor pb = *b.getAddr32(x, y);
if (pa != pb) {
return false;
}
}
}
return true;
}
DEF_TEST(image_roundtrip_encode, reporter) {
SkBitmap bm0;
make_all_premul(&bm0);
auto img0 = SkImage::MakeFromBitmap(bm0);
sk_sp<SkData> data(img0->encode(SkEncodedImageFormat::kPNG, 100));
auto img1 = SkImage::MakeFromEncoded(data);
SkBitmap bm1;
bm1.allocPixels(SkImageInfo::MakeN32(256, 256, kPremul_SkAlphaType));
img1->readPixels(bm1.info(), bm1.getPixels(), bm1.rowBytes(), 0, 0);
REPORTER_ASSERT(reporter, equal(bm0, bm1));
}
DEF_TEST(image_roundtrip_premul, reporter) {
SkBitmap bm0;
make_all_premul(&bm0);
SkBitmap bm1;
bm1.allocPixels(SkImageInfo::MakeN32(256, 256, kUnpremul_SkAlphaType));
bm0.readPixels(bm1.info(), bm1.getPixels(), bm1.rowBytes(), 0, 0);
SkBitmap bm2;
bm2.allocPixels(SkImageInfo::MakeN32(256, 256, kPremul_SkAlphaType));
bm1.readPixels(bm2.info(), bm2.getPixels(), bm2.rowBytes(), 0, 0);
REPORTER_ASSERT(reporter, equal(bm0, bm2));
}