skia2/gm/convexpaths.cpp
Ben Wagner 7fde8e1728 IWYU for gms.
This almost gets gms to be iwyu clean. The last bit is around gm.cpp
and the tracing framework and its use of atomic. Will also need a way
of keeping things from regressing, which is difficult due to needing to
do this outside-in.

Change-Id: I1393531e99da8b0f1a29f55c53c86d53f459af7d
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/211593
Reviewed-by: Herb Derby <herb@google.com>
Commit-Queue: Ben Wagner <bungeman@google.com>
2019-05-02 17:48:53 +00:00

319 lines
13 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm/gm.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPath.h"
#include "include/core/SkRect.h"
#include "include/core/SkScalar.h"
#include "include/core/SkSize.h"
#include "include/core/SkString.h"
#include "include/core/SkTypes.h"
#include "include/private/SkNoncopyable.h"
#include "include/private/SkTArray.h"
#include "include/utils/SkRandom.h"
class SkDoOnce : SkNoncopyable {
public:
SkDoOnce() { fDidOnce = false; }
bool needToDo() const { return !fDidOnce; }
bool alreadyDone() const { return fDidOnce; }
void accomplished() {
SkASSERT(!fDidOnce);
fDidOnce = true;
}
private:
bool fDidOnce;
};
namespace skiagm {
class ConvexPathsGM : public GM {
SkDoOnce fOnce;
public:
ConvexPathsGM() {
this->setBGColor(0xFF000000);
}
protected:
virtual SkString onShortName() {
return SkString("convexpaths");
}
virtual SkISize onISize() {
return SkISize::Make(1200, 1100);
}
void makePaths() {
if (fOnce.alreadyDone()) {
return;
}
fOnce.accomplished();
fPaths.push_back().moveTo(0, 0);
fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1,
0, 100 * SK_Scalar1);
fPaths.back().lineTo(0, 0);
fPaths.push_back().moveTo(0, 50 * SK_Scalar1);
fPaths.back().quadTo(50 * SK_Scalar1, 0,
100 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1,
0, 50 * SK_Scalar1);
fPaths.push_back().addRect(0, 0,
100 * SK_Scalar1, 100 * SK_Scalar1,
SkPath::kCW_Direction);
fPaths.push_back().addRect(0, 0,
100 * SK_Scalar1, 100 * SK_Scalar1,
SkPath::kCCW_Direction);
fPaths.push_back().addCircle(50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, SkPath::kCW_Direction);
fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
50 * SK_Scalar1,
100 * SK_Scalar1),
SkPath::kCW_Direction);
fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
100 * SK_Scalar1,
5 * SK_Scalar1),
SkPath::kCCW_Direction);
fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
SK_Scalar1,
100 * SK_Scalar1),
SkPath::kCCW_Direction);
fPaths.push_back().addRoundRect(SkRect::MakeXYWH(0, 0,
SK_Scalar1 * 100,
SK_Scalar1 * 100),
40 * SK_Scalar1, 20 * SK_Scalar1,
SkPath::kCW_Direction);
// large number of points
enum {
kLength = 100,
kPtsPerSide = (1 << 12),
};
fPaths.push_back().moveTo(0, 0);
for (int i = 1; i < kPtsPerSide; ++i) { // skip the first point due to moveTo.
fPaths.back().lineTo(kLength * SkIntToScalar(i) / kPtsPerSide, 0);
}
for (int i = 0; i < kPtsPerSide; ++i) {
fPaths.back().lineTo(kLength, kLength * SkIntToScalar(i) / kPtsPerSide);
}
for (int i = kPtsPerSide; i > 0; --i) {
fPaths.back().lineTo(kLength * SkIntToScalar(i) / kPtsPerSide, kLength);
}
for (int i = kPtsPerSide; i > 0; --i) {
fPaths.back().lineTo(0, kLength * SkIntToScalar(i) / kPtsPerSide);
}
// shallow diagonals
fPaths.push_back().lineTo(100 * SK_Scalar1, SK_Scalar1);
fPaths.back().lineTo(98 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.back().lineTo(3 * SK_Scalar1, 96 * SK_Scalar1);
fPaths.push_back().arcTo(SkRect::MakeXYWH(0, 0,
50 * SK_Scalar1,
100 * SK_Scalar1),
25 * SK_Scalar1, 130 * SK_Scalar1, false);
// cubics
fPaths.push_back().cubicTo( 1 * SK_Scalar1, 1 * SK_Scalar1,
10 * SK_Scalar1, 90 * SK_Scalar1,
0 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.push_back().cubicTo(100 * SK_Scalar1, 50 * SK_Scalar1,
20 * SK_Scalar1, 100 * SK_Scalar1,
0 * SK_Scalar1, 0 * SK_Scalar1);
// path that has a cubic with a repeated first control point and
// a repeated last control point.
fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10);
fPaths.back().cubicTo(10 * SK_Scalar1, 10 * SK_Scalar1,
10 * SK_Scalar1, 0,
20 * SK_Scalar1, 0);
fPaths.back().lineTo(40 * SK_Scalar1, 0);
fPaths.back().cubicTo(40 * SK_Scalar1, 0,
50 * SK_Scalar1, 0,
50 * SK_Scalar1, 10 * SK_Scalar1);
// path that has two cubics with repeated middle control points.
fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10);
fPaths.back().cubicTo(10 * SK_Scalar1, 0,
10 * SK_Scalar1, 0,
20 * SK_Scalar1, 0);
fPaths.back().lineTo(40 * SK_Scalar1, 0);
fPaths.back().cubicTo(50 * SK_Scalar1, 0,
50 * SK_Scalar1, 0,
50 * SK_Scalar1, 10 * SK_Scalar1);
// cubic where last three points are almost a line
fPaths.push_back().moveTo(0, 228 * SK_Scalar1 / 8);
fPaths.back().cubicTo(628 * SK_Scalar1 / 8, 82 * SK_Scalar1 / 8,
1255 * SK_Scalar1 / 8, 141 * SK_Scalar1 / 8,
1883 * SK_Scalar1 / 8, 202 * SK_Scalar1 / 8);
// flat cubic where the at end point tangents both point outward.
fPaths.push_back().moveTo(10 * SK_Scalar1, 0);
fPaths.back().cubicTo(0, SK_Scalar1,
30 * SK_Scalar1, SK_Scalar1,
20 * SK_Scalar1, 0);
// flat cubic where initial tangent is in, end tangent out
fPaths.push_back().moveTo(0, 0 * SK_Scalar1);
fPaths.back().cubicTo(10 * SK_Scalar1, SK_Scalar1,
30 * SK_Scalar1, SK_Scalar1,
20 * SK_Scalar1, 0);
// flat cubic where initial tangent is out, end tangent in
fPaths.push_back().moveTo(10 * SK_Scalar1, 0);
fPaths.back().cubicTo(0, SK_Scalar1,
20 * SK_Scalar1, SK_Scalar1,
30 * SK_Scalar1, 0);
// triangle where one edge is a degenerate quad
fPaths.push_back().moveTo(8.59375f, 45 * SK_Scalar1);
fPaths.back().quadTo(16.9921875f, 45 * SK_Scalar1,
31.25f, 45 * SK_Scalar1);
fPaths.back().lineTo(100 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.back().lineTo(8.59375f, 45 * SK_Scalar1);
// triangle where one edge is a quad with a repeated point
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1);
// triangle where one edge is a cubic with a 2x repeated point
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().cubicTo(50 * SK_Scalar1, 0,
50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
// triangle where one edge is a quad with a nearly repeated point
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().quadTo(50 * SK_Scalar1, 49.95f,
50 * SK_Scalar1, 50 * SK_Scalar1);
// triangle where one edge is a cubic with a 3x nearly repeated point
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().cubicTo(50 * SK_Scalar1, 49.95f,
50 * SK_Scalar1, 49.97f,
50 * SK_Scalar1, 50 * SK_Scalar1);
// triangle where there is a point degenerate cubic at one corner
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
// point line
fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1);
// point quad
fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
// point cubic
fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
// moveTo only paths
fPaths.push_back().moveTo(0, 0);
fPaths.back().moveTo(0, 0);
fPaths.back().moveTo(SK_Scalar1, SK_Scalar1);
fPaths.back().moveTo(SK_Scalar1, SK_Scalar1);
fPaths.back().moveTo(10 * SK_Scalar1, 10 * SK_Scalar1);
fPaths.push_back().moveTo(0, 0);
fPaths.back().moveTo(0, 0);
// line degenerate
fPaths.push_back().lineTo(100 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1, 0, 0);
fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.push_back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1,
100 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.push_back().cubicTo(0, 0,
0, 0,
100 * SK_Scalar1, 100 * SK_Scalar1);
// skbug.com/8928
fPaths.push_back().moveTo(16.875f, 192.594f);
fPaths.back().cubicTo(45.625f, 192.594f, 74.375f, 192.594f, 103.125f, 192.594f);
fPaths.back().cubicTo(88.75f, 167.708f, 74.375f, 142.823f, 60, 117.938f);
fPaths.back().cubicTo(45.625f, 142.823f, 31.25f, 167.708f, 16.875f, 192.594f);
fPaths.back().close();
SkMatrix m;
m.setAll(0.1f, 0, -1, 0, 0.115207f, -2.64977f, 0, 0, 1);
fPaths.back().transform(m);
// small circle. This is listed last so that it has device coords far
// from the origin (small area relative to x,y values).
fPaths.push_back().addCircle(0, 0, 1.2f);
}
virtual void onDraw(SkCanvas* canvas) {
this->makePaths();
SkPaint paint;
paint.setAntiAlias(true);
SkRandom rand;
canvas->translate(20 * SK_Scalar1, 20 * SK_Scalar1);
// As we've added more paths this has gotten pretty big. Scale the whole thing down.
canvas->scale(2 * SK_Scalar1 / 3, 2 * SK_Scalar1 / 3);
for (int i = 0; i < fPaths.count(); ++i) {
canvas->save();
// position the path, and make it at off-integer coords.
canvas->translate(SK_Scalar1 * 200 * (i % 5) + SK_Scalar1 / 10,
SK_Scalar1 * 200 * (i / 5) + 9 * SK_Scalar1 / 10);
SkColor color = rand.nextU();
color |= 0xff000000;
paint.setColor(color);
#if 0 // This hitting on 32bit Linux builds for some paths. Temporarily disabling while it is
// debugged.
SkASSERT(fPaths[i].isConvex());
#endif
canvas->drawPath(fPaths[i], paint);
canvas->restore();
}
}
private:
typedef GM INHERITED;
SkTArray<SkPath> fPaths;
};
//////////////////////////////////////////////////////////////////////////////
DEF_GM( return new ConvexPathsGM; )
}