89c909efee
This is an Android request for our public headers, much like warning about unused parameters. See bug. In general I've made two kinds of source changes: 1) more commonly, explicitly cast to the type which is being implicitly cast to at head; 2) less commonly, flip signedness of a value we're storing to match how it's used more smoothly. Much of this is self inflicted inconsistent use of size_t, unsigned, int, int32_t, uint32_t, etc. SkTArray is particularly tricky because of its std::vector half-compatibility. E.g. resize() takes size_t, but operator[] takes int. ¯\_(ツ)_/¯ Bug: skia:9847 Change-Id: I64626a529e1662b3d3020bc03d477fc641eda544 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/293436 Reviewed-by: Mike Reed <reed@google.com> Commit-Queue: Mike Klein <mtklein@google.com>
384 lines
11 KiB
C++
384 lines
11 KiB
C++
/*
|
|
* Copyright 2006 The Android Open Source Project
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
|
|
#ifndef SkTDArray_DEFINED
|
|
#define SkTDArray_DEFINED
|
|
|
|
#include "include/core/SkTypes.h"
|
|
#include "include/private/SkMalloc.h"
|
|
#include "include/private/SkTo.h"
|
|
|
|
#include <algorithm>
|
|
#include <initializer_list>
|
|
#include <utility>
|
|
|
|
/** SkTDArray<T> implements a std::vector-like array for raw data-only objects that do not require
|
|
construction or destruction. The constructor and destructor for T will not be called; T objects
|
|
will always be moved via raw memcpy. Newly created T objects will contain uninitialized memory.
|
|
|
|
In most cases, std::vector<T> can provide a similar level of performance for POD objects when
|
|
used with appropriate care. In new code, consider std::vector<T> instead.
|
|
*/
|
|
template <typename T> class SkTDArray {
|
|
public:
|
|
SkTDArray() : fArray(nullptr), fReserve(0), fCount(0) {}
|
|
SkTDArray(const T src[], int count) {
|
|
SkASSERT(src || count == 0);
|
|
|
|
fReserve = fCount = 0;
|
|
fArray = nullptr;
|
|
if (count) {
|
|
fArray = (T*)sk_malloc_throw(count * sizeof(T));
|
|
memcpy(fArray, src, sizeof(T) * count);
|
|
fReserve = fCount = count;
|
|
}
|
|
}
|
|
SkTDArray(const std::initializer_list<T>& list) : SkTDArray(list.begin(), list.size()) {}
|
|
SkTDArray(const SkTDArray<T>& src) : fArray(nullptr), fReserve(0), fCount(0) {
|
|
SkTDArray<T> tmp(src.fArray, src.fCount);
|
|
this->swap(tmp);
|
|
}
|
|
SkTDArray(SkTDArray<T>&& src) : fArray(nullptr), fReserve(0), fCount(0) {
|
|
this->swap(src);
|
|
}
|
|
~SkTDArray() {
|
|
sk_free(fArray);
|
|
}
|
|
|
|
SkTDArray<T>& operator=(const SkTDArray<T>& src) {
|
|
if (this != &src) {
|
|
if (src.fCount > fReserve) {
|
|
SkTDArray<T> tmp(src.fArray, src.fCount);
|
|
this->swap(tmp);
|
|
} else {
|
|
sk_careful_memcpy(fArray, src.fArray, sizeof(T) * src.fCount);
|
|
fCount = src.fCount;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
SkTDArray<T>& operator=(SkTDArray<T>&& src) {
|
|
if (this != &src) {
|
|
this->swap(src);
|
|
src.reset();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
friend bool operator==(const SkTDArray<T>& a, const SkTDArray<T>& b) {
|
|
return a.fCount == b.fCount &&
|
|
(a.fCount == 0 ||
|
|
!memcmp(a.fArray, b.fArray, a.fCount * sizeof(T)));
|
|
}
|
|
friend bool operator!=(const SkTDArray<T>& a, const SkTDArray<T>& b) {
|
|
return !(a == b);
|
|
}
|
|
|
|
void swap(SkTDArray<T>& that) {
|
|
using std::swap;
|
|
swap(fArray, that.fArray);
|
|
swap(fReserve, that.fReserve);
|
|
swap(fCount, that.fCount);
|
|
}
|
|
|
|
bool isEmpty() const { return fCount == 0; }
|
|
bool empty() const { return this->isEmpty(); }
|
|
|
|
/**
|
|
* Return the number of elements in the array
|
|
*/
|
|
int count() const { return fCount; }
|
|
size_t size() const { return fCount; }
|
|
|
|
/**
|
|
* Return the total number of elements allocated.
|
|
* reserved() - count() gives you the number of elements you can add
|
|
* without causing an allocation.
|
|
*/
|
|
int reserved() const { return fReserve; }
|
|
|
|
/**
|
|
* return the number of bytes in the array: count * sizeof(T)
|
|
*/
|
|
size_t bytes() const { return fCount * sizeof(T); }
|
|
|
|
T* begin() { return fArray; }
|
|
const T* begin() const { return fArray; }
|
|
T* end() { return fArray ? fArray + fCount : nullptr; }
|
|
const T* end() const { return fArray ? fArray + fCount : nullptr; }
|
|
|
|
T& operator[](int index) {
|
|
SkASSERT(index < fCount);
|
|
return fArray[index];
|
|
}
|
|
const T& operator[](int index) const {
|
|
SkASSERT(index < fCount);
|
|
return fArray[index];
|
|
}
|
|
|
|
T& getAt(int index) {
|
|
return (*this)[index];
|
|
}
|
|
|
|
|
|
void reset() {
|
|
if (fArray) {
|
|
sk_free(fArray);
|
|
fArray = nullptr;
|
|
fReserve = fCount = 0;
|
|
} else {
|
|
SkASSERT(fReserve == 0 && fCount == 0);
|
|
}
|
|
}
|
|
|
|
void rewind() {
|
|
// same as setCount(0)
|
|
fCount = 0;
|
|
}
|
|
|
|
/**
|
|
* Sets the number of elements in the array.
|
|
* If the array does not have space for count elements, it will increase
|
|
* the storage allocated to some amount greater than that required.
|
|
* It will never shrink the storage.
|
|
*/
|
|
void setCount(int count) {
|
|
SkASSERT(count >= 0);
|
|
if (count > fReserve) {
|
|
this->resizeStorageToAtLeast(count);
|
|
}
|
|
fCount = count;
|
|
}
|
|
|
|
void setReserve(int reserve) {
|
|
SkASSERT(reserve >= 0);
|
|
if (reserve > fReserve) {
|
|
this->resizeStorageToAtLeast(reserve);
|
|
}
|
|
}
|
|
void reserve(size_t n) {
|
|
SkASSERT_RELEASE(SkTFitsIn<int>(n));
|
|
this->setReserve(SkToInt(n));
|
|
}
|
|
|
|
T* prepend() {
|
|
this->adjustCount(1);
|
|
memmove(fArray + 1, fArray, (fCount - 1) * sizeof(T));
|
|
return fArray;
|
|
}
|
|
|
|
T* append() {
|
|
return this->append(1, nullptr);
|
|
}
|
|
T* append(int count, const T* src = nullptr) {
|
|
int oldCount = fCount;
|
|
if (count) {
|
|
SkASSERT(src == nullptr || fArray == nullptr ||
|
|
src + count <= fArray || fArray + oldCount <= src);
|
|
|
|
this->adjustCount(count);
|
|
if (src) {
|
|
memcpy(fArray + oldCount, src, sizeof(T) * count);
|
|
}
|
|
}
|
|
return fArray + oldCount;
|
|
}
|
|
|
|
T* insert(int index) {
|
|
return this->insert(index, 1, nullptr);
|
|
}
|
|
T* insert(int index, int count, const T* src = nullptr) {
|
|
SkASSERT(count);
|
|
SkASSERT(index <= fCount);
|
|
size_t oldCount = fCount;
|
|
this->adjustCount(count);
|
|
T* dst = fArray + index;
|
|
memmove(dst + count, dst, sizeof(T) * (oldCount - index));
|
|
if (src) {
|
|
memcpy(dst, src, sizeof(T) * count);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
void remove(int index, int count = 1) {
|
|
SkASSERT(index + count <= fCount);
|
|
fCount = fCount - count;
|
|
memmove(fArray + index, fArray + index + count, sizeof(T) * (fCount - index));
|
|
}
|
|
|
|
void removeShuffle(int index) {
|
|
SkASSERT(index < fCount);
|
|
int newCount = fCount - 1;
|
|
fCount = newCount;
|
|
if (index != newCount) {
|
|
memcpy(fArray + index, fArray + newCount, sizeof(T));
|
|
}
|
|
}
|
|
|
|
int find(const T& elem) const {
|
|
const T* iter = fArray;
|
|
const T* stop = fArray + fCount;
|
|
|
|
for (; iter < stop; iter++) {
|
|
if (*iter == elem) {
|
|
return SkToInt(iter - fArray);
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int rfind(const T& elem) const {
|
|
const T* iter = fArray + fCount;
|
|
const T* stop = fArray;
|
|
|
|
while (iter > stop) {
|
|
if (*--iter == elem) {
|
|
return SkToInt(iter - stop);
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Returns true iff the array contains this element.
|
|
*/
|
|
bool contains(const T& elem) const {
|
|
return (this->find(elem) >= 0);
|
|
}
|
|
|
|
/**
|
|
* Copies up to max elements into dst. The number of items copied is
|
|
* capped by count - index. The actual number copied is returned.
|
|
*/
|
|
int copyRange(T* dst, int index, int max) const {
|
|
SkASSERT(max >= 0);
|
|
SkASSERT(!max || dst);
|
|
if (index >= fCount) {
|
|
return 0;
|
|
}
|
|
int count = std::min(max, fCount - index);
|
|
memcpy(dst, fArray + index, sizeof(T) * count);
|
|
return count;
|
|
}
|
|
|
|
void copy(T* dst) const {
|
|
this->copyRange(dst, 0, fCount);
|
|
}
|
|
|
|
// routines to treat the array like a stack
|
|
void push_back(const T& v) { *this->append() = v; }
|
|
T* push() { return this->append(); }
|
|
const T& top() const { return (*this)[fCount - 1]; }
|
|
T& top() { return (*this)[fCount - 1]; }
|
|
void pop(T* elem) { SkASSERT(fCount > 0); if (elem) *elem = (*this)[fCount - 1]; --fCount; }
|
|
void pop() { SkASSERT(fCount > 0); --fCount; }
|
|
|
|
void deleteAll() {
|
|
T* iter = fArray;
|
|
T* stop = fArray + fCount;
|
|
while (iter < stop) {
|
|
delete *iter;
|
|
iter += 1;
|
|
}
|
|
this->reset();
|
|
}
|
|
|
|
void freeAll() {
|
|
T* iter = fArray;
|
|
T* stop = fArray + fCount;
|
|
while (iter < stop) {
|
|
sk_free(*iter);
|
|
iter += 1;
|
|
}
|
|
this->reset();
|
|
}
|
|
|
|
void unrefAll() {
|
|
T* iter = fArray;
|
|
T* stop = fArray + fCount;
|
|
while (iter < stop) {
|
|
(*iter)->unref();
|
|
iter += 1;
|
|
}
|
|
this->reset();
|
|
}
|
|
|
|
void safeUnrefAll() {
|
|
T* iter = fArray;
|
|
T* stop = fArray + fCount;
|
|
while (iter < stop) {
|
|
SkSafeUnref(*iter);
|
|
iter += 1;
|
|
}
|
|
this->reset();
|
|
}
|
|
|
|
#ifdef SK_DEBUG
|
|
void validate() const {
|
|
SkASSERT((fReserve == 0 && fArray == nullptr) ||
|
|
(fReserve > 0 && fArray != nullptr));
|
|
SkASSERT(fCount <= fReserve);
|
|
}
|
|
#endif
|
|
|
|
void shrinkToFit() {
|
|
if (fReserve != fCount) {
|
|
SkASSERT(fReserve > fCount);
|
|
fReserve = fCount;
|
|
fArray = (T*)sk_realloc_throw(fArray, fReserve * sizeof(T));
|
|
}
|
|
}
|
|
|
|
private:
|
|
T* fArray;
|
|
int fReserve; // size of the allocation in fArray (#elements)
|
|
int fCount; // logical number of elements (fCount <= fReserve)
|
|
|
|
/**
|
|
* Adjusts the number of elements in the array.
|
|
* This is the same as calling setCount(count() + delta).
|
|
*/
|
|
void adjustCount(int delta) {
|
|
SkASSERT(delta > 0);
|
|
|
|
// We take care to avoid overflow here.
|
|
// The sum of fCount and delta is at most 4294967294, which fits fine in uint32_t.
|
|
uint32_t count = (uint32_t)fCount + (uint32_t)delta;
|
|
SkASSERT_RELEASE( SkTFitsIn<int>(count) );
|
|
|
|
this->setCount(SkTo<int>(count));
|
|
}
|
|
|
|
/**
|
|
* Increase the storage allocation such that it can hold (fCount + extra)
|
|
* elements.
|
|
* It never shrinks the allocation, and it may increase the allocation by
|
|
* more than is strictly required, based on a private growth heuristic.
|
|
*
|
|
* note: does NOT modify fCount
|
|
*/
|
|
void resizeStorageToAtLeast(int count) {
|
|
SkASSERT(count > fReserve);
|
|
|
|
// We take care to avoid overflow here.
|
|
// The maximum value we can get for reserve here is 2684354563, which fits in uint32_t.
|
|
uint32_t reserve = (uint32_t)count + 4;
|
|
reserve += reserve / 4;
|
|
SkASSERT_RELEASE( SkTFitsIn<int>(reserve) );
|
|
|
|
fReserve = SkTo<int>(reserve);
|
|
fArray = (T*)sk_realloc_throw(fArray, (size_t)fReserve * sizeof(T));
|
|
}
|
|
};
|
|
|
|
template <typename T> static inline void swap(SkTDArray<T>& a, SkTDArray<T>& b) {
|
|
a.swap(b);
|
|
}
|
|
|
|
#endif
|