993a4216a6
Review URL: https://codereview.chromium.org/1149553002
206 lines
7.8 KiB
C++
206 lines
7.8 KiB
C++
/*
|
|
* Copyright 2012 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#ifndef SkImage_DEFINED
|
|
#define SkImage_DEFINED
|
|
|
|
#include "SkFilterQuality.h"
|
|
#include "SkImageInfo.h"
|
|
#include "SkImageEncoder.h"
|
|
#include "SkRefCnt.h"
|
|
#include "SkScalar.h"
|
|
#include "SkShader.h"
|
|
|
|
class SkData;
|
|
class SkCanvas;
|
|
class SkImageGenerator;
|
|
class SkPaint;
|
|
class SkString;
|
|
class SkSurface;
|
|
class SkSurfaceProps;
|
|
class GrContext;
|
|
class GrTexture;
|
|
|
|
/**
|
|
* SkImage is an abstraction for drawing a rectagle of pixels, though the
|
|
* particular type of image could be actually storing its data on the GPU, or
|
|
* as drawing commands (picture or PDF or otherwise), ready to be played back
|
|
* into another canvas.
|
|
*
|
|
* The content of SkImage is always immutable, though the actual storage may
|
|
* change, if for example that image can be re-created via encoded data or
|
|
* other means.
|
|
*
|
|
* SkImage always has a non-zero dimensions. If there is a request to create a new image, either
|
|
* directly or via SkSurface, and either of the requested dimensions are zero, then NULL will be
|
|
* returned.
|
|
*/
|
|
class SK_API SkImage : public SkRefCnt {
|
|
public:
|
|
SK_DECLARE_INST_COUNT(SkImage)
|
|
|
|
typedef SkImageInfo Info;
|
|
|
|
static SkImage* NewRasterCopy(const Info&, const void* pixels, size_t rowBytes);
|
|
static SkImage* NewRasterData(const Info&, SkData* pixels, size_t rowBytes);
|
|
|
|
/**
|
|
* Construct a new SkImage based on the given ImageGenerator.
|
|
* This function will always take ownership of the passed
|
|
* ImageGenerator. Returns NULL on error.
|
|
*/
|
|
static SkImage* NewFromGenerator(SkImageGenerator*);
|
|
|
|
/**
|
|
* Construct a new SkImage based on the specified encoded data. Returns NULL on failure,
|
|
* which can mean that the format of the encoded data was not recognized/supported.
|
|
*
|
|
* Regardless of success or failure, the caller is responsible for managing their ownership
|
|
* of the data.
|
|
*/
|
|
static SkImage* NewFromData(SkData* data);
|
|
|
|
/**
|
|
* Create a new image from the specified descriptor. Note - the caller is responsible for
|
|
* managing the lifetime of the underlying platform texture.
|
|
*
|
|
* Will return NULL if the specified descriptor is unsupported.
|
|
*/
|
|
static SkImage* NewFromTexture(GrContext*, const GrBackendTextureDesc&,
|
|
SkAlphaType = kPremul_SkAlphaType);
|
|
|
|
/**
|
|
* Create a new image by copying the pixels from the specified descriptor. No reference is
|
|
* kept to the original platform texture.
|
|
*
|
|
* Will return NULL if the specified descriptor is unsupported.
|
|
*/
|
|
static SkImage* NewFromTextureCopy(GrContext*, const GrBackendTextureDesc&,
|
|
SkAlphaType = kPremul_SkAlphaType);
|
|
|
|
/**
|
|
* Create a new image by copying the pixels from the specified y, u, v textures. The data
|
|
* from the textures is immediately ingested into the image and the textures can be modified or
|
|
* deleted after the function returns. The image will have the dimensions of the y texture.
|
|
*/
|
|
static SkImage* NewFromYUVTexturesCopy(GrContext*, SkYUVColorSpace,
|
|
const GrBackendObject yuvTextureHandles[3],
|
|
const SkISize yuvSizes[3],
|
|
GrSurfaceOrigin);
|
|
|
|
int width() const { return fWidth; }
|
|
int height() const { return fHeight; }
|
|
uint32_t uniqueID() const { return fUniqueID; }
|
|
virtual bool isOpaque() const { return false; }
|
|
|
|
/**
|
|
* Return the GrTexture that stores the image pixels. Calling getTexture
|
|
* does not affect the reference count of the GrTexture object.
|
|
* Will return NULL if the image does not use a texture.
|
|
*/
|
|
GrTexture* getTexture() const;
|
|
|
|
virtual SkShader* newShader(SkShader::TileMode,
|
|
SkShader::TileMode,
|
|
const SkMatrix* localMatrix = NULL) const;
|
|
|
|
/**
|
|
* If the image has direct access to its pixels (i.e. they are in local
|
|
* RAM) return the (const) address of those pixels, and if not null, return
|
|
* the ImageInfo and rowBytes. The returned address is only valid while
|
|
* the image object is in scope.
|
|
*
|
|
* On failure, returns NULL and the info and rowBytes parameters are
|
|
* ignored.
|
|
*/
|
|
const void* peekPixels(SkImageInfo* info, size_t* rowBytes) const;
|
|
|
|
/**
|
|
* Copy the pixels from the image into the specified buffer (pixels + rowBytes),
|
|
* converting them into the requested format (dstInfo). The image pixels are read
|
|
* starting at the specified (srcX,srcY) location.
|
|
*
|
|
* The specified ImageInfo and (srcX,srcY) offset specifies a source rectangle
|
|
*
|
|
* srcR.setXYWH(srcX, srcY, dstInfo.width(), dstInfo.height());
|
|
*
|
|
* srcR is intersected with the bounds of the image. If this intersection is not empty,
|
|
* then we have two sets of pixels (of equal size). Replace the dst pixels with the
|
|
* corresponding src pixels, performing any colortype/alphatype transformations needed
|
|
* (in the case where the src and dst have different colortypes or alphatypes).
|
|
*
|
|
* This call can fail, returning false, for several reasons:
|
|
* - If srcR does not intersect the image bounds.
|
|
* - If the requested colortype/alphatype cannot be converted from the image's types.
|
|
*/
|
|
bool readPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes,
|
|
int srcX, int srcY) const;
|
|
|
|
/**
|
|
* Encode the image's pixels and return the result as a new SkData, which
|
|
* the caller must manage (i.e. call unref() when they are done).
|
|
*
|
|
* If the image type cannot be encoded, or the requested encoder type is
|
|
* not supported, this will return NULL.
|
|
*/
|
|
SkData* encode(SkImageEncoder::Type t = SkImageEncoder::kPNG_Type,
|
|
int quality = 80) const;
|
|
|
|
/**
|
|
* Return a new surface that is compatible with this image's internal representation
|
|
* (e.g. raster or gpu).
|
|
*
|
|
* If no surfaceprops are specified, the image will attempt to match the props of when it
|
|
* was created (if it came from a surface).
|
|
*/
|
|
SkSurface* newSurface(const SkImageInfo&, const SkSurfaceProps* = NULL) const;
|
|
|
|
const char* toString(SkString*) const;
|
|
|
|
/**
|
|
* Return an image that is a rescale of this image (using newWidth, newHeight).
|
|
*
|
|
* If subset is NULL, then the entire original image is used as the src for the scaling.
|
|
* If subset is not NULL, then it specifies subset of src-pixels used for scaling. If
|
|
* subset extends beyond the bounds of the original image, then NULL is returned.
|
|
*
|
|
* Notes:
|
|
* - newWidth and newHeight must be > 0 or NULL will be returned.
|
|
*
|
|
* - it is legal for the returned image to be the same instance as the src image
|
|
* (if the new dimensions == the src dimensions and subset is NULL or == src dimensions).
|
|
*
|
|
* - it is legal for the "scaled" image to have changed its SkAlphaType from unpremul
|
|
* to premul (as required by the impl). The image should draw (nearly) identically,
|
|
* since during drawing we will "apply the alpha" to the pixels. Future optimizations
|
|
* may take away this caveat, preserving unpremul.
|
|
*/
|
|
SkImage* newImage(int newWidth, int newHeight, const SkIRect* subset = NULL,
|
|
SkFilterQuality = kNone_SkFilterQuality) const;
|
|
|
|
protected:
|
|
SkImage(int width, int height) :
|
|
fWidth(width),
|
|
fHeight(height),
|
|
fUniqueID(NextUniqueID()) {
|
|
|
|
SkASSERT(width > 0);
|
|
SkASSERT(height > 0);
|
|
}
|
|
|
|
private:
|
|
const int fWidth;
|
|
const int fHeight;
|
|
const uint32_t fUniqueID;
|
|
|
|
static uint32_t NextUniqueID();
|
|
|
|
typedef SkRefCnt INHERITED;
|
|
};
|
|
|
|
#endif
|