skia2/tests/StreamTest.cpp
Ben Wagner 255ab8d9a5 Make SkStream readers report failure.
This also fixes an issue noticed while making this change where
SkFontDescriptor improperly round trips negative axis values.

Change-Id: Iacc5929a185659dcacc18c802c4908e4f34c6899
Reviewed-on: https://skia-review.googlesource.com/128341
Commit-Queue: Ben Wagner <bungeman@google.com>
Reviewed-by: Leon Scroggins <scroggo@google.com>
2018-05-18 15:06:24 +00:00

653 lines
23 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Resources.h"
#include "SkAutoMalloc.h"
#include "SkData.h"
#include "SkFrontBufferedStream.h"
#include "SkOSFile.h"
#include "SkOSPath.h"
#include "SkRandom.h"
#include "SkStream.h"
#include "SkStreamPriv.h"
#include "Test.h"
#include <functional>
#include <limits>
#ifndef SK_BUILD_FOR_WIN
#include <unistd.h>
#include <fcntl.h>
#endif
#define MAX_SIZE (256 * 1024)
static void test_loop_stream(skiatest::Reporter* reporter, SkStream* stream,
const void* src, size_t len, int repeat) {
SkAutoSMalloc<256> storage(len);
void* tmp = storage.get();
for (int i = 0; i < repeat; ++i) {
size_t bytes = stream->read(tmp, len);
REPORTER_ASSERT(reporter, bytes == len);
REPORTER_ASSERT(reporter, !memcmp(tmp, src, len));
}
// expect EOF
size_t bytes = stream->read(tmp, 1);
REPORTER_ASSERT(reporter, 0 == bytes);
// isAtEnd might not return true until after the first failing read.
REPORTER_ASSERT(reporter, stream->isAtEnd());
}
static void test_filestreams(skiatest::Reporter* reporter, const char* tmpDir) {
SkString path = SkOSPath::Join(tmpDir, "wstream_test");
const char s[] = "abcdefghijklmnopqrstuvwxyz";
{
SkFILEWStream writer(path.c_str());
if (!writer.isValid()) {
ERRORF(reporter, "Failed to create tmp file %s\n", path.c_str());
return;
}
for (int i = 0; i < 100; ++i) {
writer.write(s, 26);
}
}
{
SkFILEStream stream(path.c_str());
REPORTER_ASSERT(reporter, stream.isValid());
test_loop_stream(reporter, &stream, s, 26, 100);
std::unique_ptr<SkStreamAsset> stream2(stream.duplicate());
test_loop_stream(reporter, stream2.get(), s, 26, 100);
}
{
FILE* file = ::fopen(path.c_str(), "rb");
SkFILEStream stream(file);
REPORTER_ASSERT(reporter, stream.isValid());
test_loop_stream(reporter, &stream, s, 26, 100);
std::unique_ptr<SkStreamAsset> stream2(stream.duplicate());
test_loop_stream(reporter, stream2.get(), s, 26, 100);
}
}
static void TestWStream(skiatest::Reporter* reporter) {
SkDynamicMemoryWStream ds;
const char s[] = "abcdefghijklmnopqrstuvwxyz";
int i;
for (i = 0; i < 100; i++) {
REPORTER_ASSERT(reporter, ds.write(s, 26));
}
REPORTER_ASSERT(reporter, ds.bytesWritten() == 100 * 26);
char* dst = new char[100 * 26 + 1];
dst[100*26] = '*';
ds.copyTo(dst);
REPORTER_ASSERT(reporter, dst[100*26] == '*');
for (i = 0; i < 100; i++) {
REPORTER_ASSERT(reporter, memcmp(&dst[i * 26], s, 26) == 0);
}
{
std::unique_ptr<SkStreamAsset> stream(ds.detachAsStream());
REPORTER_ASSERT(reporter, 100 * 26 == stream->getLength());
REPORTER_ASSERT(reporter, ds.bytesWritten() == 0);
test_loop_stream(reporter, stream.get(), s, 26, 100);
std::unique_ptr<SkStreamAsset> stream2(stream->duplicate());
test_loop_stream(reporter, stream2.get(), s, 26, 100);
std::unique_ptr<SkStreamAsset> stream3(stream->fork());
REPORTER_ASSERT(reporter, stream3->isAtEnd());
char tmp;
size_t bytes = stream->read(&tmp, 1);
REPORTER_ASSERT(reporter, 0 == bytes);
stream3->rewind();
test_loop_stream(reporter, stream3.get(), s, 26, 100);
}
for (i = 0; i < 100; i++) {
REPORTER_ASSERT(reporter, ds.write(s, 26));
}
REPORTER_ASSERT(reporter, ds.bytesWritten() == 100 * 26);
{
// Test that this works after a snapshot.
std::unique_ptr<SkStreamAsset> stream(ds.detachAsStream());
REPORTER_ASSERT(reporter, ds.bytesWritten() == 0);
test_loop_stream(reporter, stream.get(), s, 26, 100);
std::unique_ptr<SkStreamAsset> stream2(stream->duplicate());
test_loop_stream(reporter, stream2.get(), s, 26, 100);
}
delete[] dst;
SkString tmpDir = skiatest::GetTmpDir();
if (!tmpDir.isEmpty()) {
test_filestreams(reporter, tmpDir.c_str());
}
}
static void TestPackedUInt(skiatest::Reporter* reporter) {
// we know that packeduint tries to write 1, 2 or 4 bytes for the length,
// so we test values around each of those transitions (and a few others)
const size_t sizes[] = {
0, 1, 2, 0xFC, 0xFD, 0xFE, 0xFF, 0x100, 0x101, 32767, 32768, 32769,
0xFFFD, 0xFFFE, 0xFFFF, 0x10000, 0x10001,
0xFFFFFD, 0xFFFFFE, 0xFFFFFF, 0x1000000, 0x1000001,
0x7FFFFFFE, 0x7FFFFFFF, 0x80000000, 0x80000001, 0xFFFFFFFE, 0xFFFFFFFF
};
size_t i;
SkDynamicMemoryWStream wstream;
for (i = 0; i < SK_ARRAY_COUNT(sizes); ++i) {
bool success = wstream.writePackedUInt(sizes[i]);
REPORTER_ASSERT(reporter, success);
}
std::unique_ptr<SkStreamAsset> rstream(wstream.detachAsStream());
for (i = 0; i < SK_ARRAY_COUNT(sizes); ++i) {
size_t n;
if (!rstream->readPackedUInt(&n)) {
ERRORF(reporter, "[%d] sizes:%x could not be read\n", i, sizes[i]);
}
if (sizes[i] != n) {
ERRORF(reporter, "[%d] sizes:%x != n:%x\n", i, sizes[i], n);
}
}
}
// Test that setting an SkMemoryStream to a nullptr data does not result in a crash when calling
// methods that access fData.
static void TestDereferencingData(SkMemoryStream* memStream) {
memStream->read(nullptr, 0);
memStream->getMemoryBase();
(void)memStream->asData();
}
static void TestNullData() {
SkMemoryStream memStream(nullptr);
TestDereferencingData(&memStream);
memStream.setData(nullptr);
TestDereferencingData(&memStream);
}
DEF_TEST(Stream, reporter) {
TestWStream(reporter);
TestPackedUInt(reporter);
TestNullData();
}
#ifndef SK_BUILD_FOR_IOS
/**
* Tests peeking and then reading the same amount. The two should provide the
* same results.
* Returns the amount successfully read minus the amount successfully peeked.
*/
static size_t compare_peek_to_read(skiatest::Reporter* reporter,
SkStream* stream, size_t bytesToPeek) {
// The rest of our tests won't be very interesting if bytesToPeek is zero.
REPORTER_ASSERT(reporter, bytesToPeek > 0);
SkAutoMalloc peekStorage(bytesToPeek);
SkAutoMalloc readStorage(bytesToPeek);
void* peekPtr = peekStorage.get();
void* readPtr = peekStorage.get();
const size_t bytesPeeked = stream->peek(peekPtr, bytesToPeek);
const size_t bytesRead = stream->read(readPtr, bytesToPeek);
// bytesRead should only be less than attempted if the stream is at the
// end.
REPORTER_ASSERT(reporter, bytesRead == bytesToPeek || stream->isAtEnd());
// peek and read should behave the same, except peek returned to the
// original position, so they read the same data.
REPORTER_ASSERT(reporter, !memcmp(peekPtr, readPtr, bytesPeeked));
// A stream should never be able to peek more than it can read.
REPORTER_ASSERT(reporter, bytesRead >= bytesPeeked);
return bytesRead - bytesPeeked;
}
static void test_fully_peekable_stream(skiatest::Reporter* r, SkStream* stream, size_t limit) {
for (size_t i = 1; !stream->isAtEnd(); i++) {
REPORTER_ASSERT(r, compare_peek_to_read(r, stream, i) == 0);
}
}
static void test_peeking_front_buffered_stream(skiatest::Reporter* r,
const SkStream& original,
size_t bufferSize) {
std::unique_ptr<SkStream> dupe(original.duplicate());
REPORTER_ASSERT(r, dupe != nullptr);
auto bufferedStream = SkFrontBufferedStream::Make(std::move(dupe), bufferSize);
REPORTER_ASSERT(r, bufferedStream != nullptr);
size_t peeked = 0;
for (size_t i = 1; !bufferedStream->isAtEnd(); i++) {
const size_t unpeekableBytes = compare_peek_to_read(r, bufferedStream.get(), i);
if (unpeekableBytes > 0) {
// This could not have returned a number greater than i.
REPORTER_ASSERT(r, unpeekableBytes <= i);
// We have reached the end of the buffer. Verify that it was at least
// bufferSize.
REPORTER_ASSERT(r, peeked + i - unpeekableBytes >= bufferSize);
// No more peeking is supported.
break;
}
peeked += i;
}
// Test that attempting to peek beyond the length of the buffer does not prevent rewinding.
bufferedStream = SkFrontBufferedStream::Make(original.duplicate(), bufferSize);
REPORTER_ASSERT(r, bufferedStream != nullptr);
const size_t bytesToPeek = bufferSize + 1;
SkAutoMalloc peekStorage(bytesToPeek);
SkAutoMalloc readStorage(bytesToPeek);
for (size_t start = 0; start <= bufferSize; start++) {
// Skip to the starting point
REPORTER_ASSERT(r, bufferedStream->skip(start) == start);
const size_t bytesPeeked = bufferedStream->peek(peekStorage.get(), bytesToPeek);
if (0 == bytesPeeked) {
// Peeking should only fail completely if we have read/skipped beyond the buffer.
REPORTER_ASSERT(r, start >= bufferSize);
break;
}
// Only read the amount that was successfully peeked.
const size_t bytesRead = bufferedStream->read(readStorage.get(), bytesPeeked);
REPORTER_ASSERT(r, bytesRead == bytesPeeked);
REPORTER_ASSERT(r, !memcmp(peekStorage.get(), readStorage.get(), bytesPeeked));
// This should be safe to rewind.
REPORTER_ASSERT(r, bufferedStream->rewind());
}
}
// This test uses file system operations that don't work out of the
// box on iOS. It's likely that we don't need them on iOS. Ignoring for now.
// TODO(stephana): Re-evaluate if we need this in the future.
DEF_TEST(StreamPeek, reporter) {
// Test a memory stream.
const char gAbcs[] = "abcdefghijklmnopqrstuvwxyz";
SkMemoryStream memStream(gAbcs, strlen(gAbcs), false);
test_fully_peekable_stream(reporter, &memStream, memStream.getLength());
// Test an arbitrary file stream. file streams do not support peeking.
auto tmpdir = skiatest::GetTmpDir();
if (tmpdir.isEmpty()) {
ERRORF(reporter, "no tmp dir!");
return;
}
auto path = SkOSPath::Join(tmpdir.c_str(), "file");
{
SkFILEWStream wStream(path.c_str());
constexpr char filename[] = "images/baby_tux.webp";
auto data = GetResourceAsData(filename);
if (!data || data->size() == 0) {
ERRORF(reporter, "resource missing: %s\n", filename);
return;
}
if (!wStream.isValid() || !wStream.write(data->data(), data->size())) {
ERRORF(reporter, "error wrtiting to file %s", path.c_str());
return;
}
}
SkFILEStream fileStream(path.c_str());
REPORTER_ASSERT(reporter, fileStream.isValid());
if (!fileStream.isValid()) {
return;
}
SkAutoMalloc storage(fileStream.getLength());
for (size_t i = 1; i < fileStream.getLength(); i++) {
REPORTER_ASSERT(reporter, fileStream.peek(storage.get(), i) == 0);
}
// Now test some FrontBufferedStreams
for (size_t i = 1; i < memStream.getLength(); i++) {
test_peeking_front_buffered_stream(reporter, memStream, i);
}
}
#endif
// Asserts that asset == expected and is peekable.
static void stream_peek_test(skiatest::Reporter* rep,
SkStreamAsset* asset,
const SkData* expected) {
if (asset->getLength() != expected->size()) {
ERRORF(rep, "Unexpected length.");
return;
}
SkRandom rand;
uint8_t buffer[4096];
const uint8_t* expect = expected->bytes();
for (size_t i = 0; i < asset->getLength(); ++i) {
uint32_t maxSize =
SkToU32(SkTMin(sizeof(buffer), asset->getLength() - i));
size_t size = rand.nextRangeU(1, maxSize);
SkASSERT(size >= 1);
SkASSERT(size <= sizeof(buffer));
SkASSERT(size + i <= asset->getLength());
if (asset->peek(buffer, size) < size) {
ERRORF(rep, "Peek Failed!");
return;
}
if (0 != memcmp(buffer, &expect[i], size)) {
ERRORF(rep, "Peek returned wrong bytes!");
return;
}
uint8_t value;
REPORTER_ASSERT(rep, 1 == asset->read(&value, 1));
if (value != expect[i]) {
ERRORF(rep, "Read Failed!");
return;
}
}
}
DEF_TEST(StreamPeek_BlockMemoryStream, rep) {
const static int kSeed = 1234;
SkRandom valueSource(kSeed);
SkRandom rand(kSeed << 1);
uint8_t buffer[4096];
SkDynamicMemoryWStream dynamicMemoryWStream;
size_t totalWritten = 0;
for (int i = 0; i < 32; ++i) {
// Randomize the length of the blocks.
size_t size = rand.nextRangeU(1, sizeof(buffer));
for (size_t j = 0; j < size; ++j) {
buffer[j] = valueSource.nextU() & 0xFF;
}
dynamicMemoryWStream.write(buffer, size);
totalWritten += size;
REPORTER_ASSERT(rep, totalWritten == dynamicMemoryWStream.bytesWritten());
}
std::unique_ptr<SkStreamAsset> asset(dynamicMemoryWStream.detachAsStream());
sk_sp<SkData> expected(SkData::MakeUninitialized(asset->getLength()));
uint8_t* expectedPtr = static_cast<uint8_t*>(expected->writable_data());
valueSource.setSeed(kSeed); // reseed.
// We want the exact same same "random" string of numbers to put
// in expected. i.e.: don't rely on SkDynamicMemoryStream to work
// correctly while we are testing SkDynamicMemoryStream.
for (size_t i = 0; i < asset->getLength(); ++i) {
expectedPtr[i] = valueSource.nextU() & 0xFF;
}
stream_peek_test(rep, asset.get(), expected.get());
}
namespace {
class DumbStream : public SkStream {
public:
DumbStream(const uint8_t* data, size_t n)
: fData(data), fCount(n), fIdx(0) {}
size_t read(void* buffer, size_t size) override {
size_t copyCount = SkTMin(fCount - fIdx, size);
if (copyCount) {
memcpy(buffer, &fData[fIdx], copyCount);
fIdx += copyCount;
}
return copyCount;
}
bool isAtEnd() const override {
return fCount == fIdx;
}
private:
const uint8_t* fData;
size_t fCount, fIdx;
};
} // namespace
static void stream_copy_test(skiatest::Reporter* reporter,
const void* srcData,
size_t N,
SkStream* stream) {
SkDynamicMemoryWStream tgt;
if (!SkStreamCopy(&tgt, stream)) {
ERRORF(reporter, "SkStreamCopy failed");
return;
}
sk_sp<SkData> data(tgt.detachAsData());
if (data->size() != N) {
ERRORF(reporter, "SkStreamCopy incorrect size");
return;
}
if (0 != memcmp(data->data(), srcData, N)) {
ERRORF(reporter, "SkStreamCopy bad copy");
}
}
DEF_TEST(DynamicMemoryWStream_detachAsData, r) {
const char az[] = "abcdefghijklmnopqrstuvwxyz";
const unsigned N = 40000;
SkDynamicMemoryWStream dmws;
for (unsigned i = 0; i < N; ++i) {
dmws.writeText(az);
}
REPORTER_ASSERT(r, dmws.bytesWritten() == N * strlen(az));
auto data = dmws.detachAsData();
REPORTER_ASSERT(r, data->size() == N * strlen(az));
const uint8_t* ptr = data->bytes();
for (unsigned i = 0; i < N; ++i) {
if (0 != memcmp(ptr, az, strlen(az))) {
ERRORF(r, "detachAsData() memcmp failed");
return;
}
ptr += strlen(az);
}
}
DEF_TEST(StreamCopy, reporter) {
SkRandom random(123456);
static const int N = 10000;
SkAutoTMalloc<uint8_t> src((size_t)N);
for (int j = 0; j < N; ++j) {
src[j] = random.nextU() & 0xff;
}
// SkStreamCopy had two code paths; this test both.
DumbStream dumbStream(src.get(), (size_t)N);
stream_copy_test(reporter, src, N, &dumbStream);
SkMemoryStream smartStream(src.get(), (size_t)N);
stream_copy_test(reporter, src, N, &smartStream);
}
DEF_TEST(StreamEmptyStreamMemoryBase, r) {
SkDynamicMemoryWStream tmp;
std::unique_ptr<SkStreamAsset> asset(tmp.detachAsStream());
REPORTER_ASSERT(r, nullptr == asset->getMemoryBase());
}
DEF_TEST(FILEStreamWithOffset, r) {
if (GetResourcePath().isEmpty()) {
return;
}
SkString filename = GetResourcePath("images/baby_tux.png");
SkFILEStream stream1(filename.c_str());
if (!stream1.isValid()) {
ERRORF(r, "Could not create SkFILEStream from %s", filename.c_str());
return;
}
REPORTER_ASSERT(r, stream1.hasLength());
REPORTER_ASSERT(r, stream1.hasPosition());
// Seek halfway through the file. The second SkFILEStream will be created
// with the same filename and offset and therefore will treat that offset as
// the beginning.
const size_t size = stream1.getLength();
const size_t middle = size / 2;
if (!stream1.seek(middle)) {
ERRORF(r, "Could not seek SkFILEStream to %lu out of %lu", middle, size);
return;
}
REPORTER_ASSERT(r, stream1.getPosition() == middle);
FILE* file = sk_fopen(filename.c_str(), kRead_SkFILE_Flag);
if (!file) {
ERRORF(r, "Could not open %s as a FILE", filename.c_str());
return;
}
if (fseek(file, (long) middle, SEEK_SET) != 0) {
ERRORF(r, "Could not fseek FILE to %lu out of %lu", middle, size);
return;
}
SkFILEStream stream2(file);
const size_t remaining = size - middle;
SkAutoTMalloc<uint8_t> expected(remaining);
REPORTER_ASSERT(r, stream1.read(expected.get(), remaining) == remaining);
auto test_full_read = [&r, &expected, remaining](SkStream* stream) {
SkAutoTMalloc<uint8_t> actual(remaining);
REPORTER_ASSERT(r, stream->read(actual.get(), remaining) == remaining);
REPORTER_ASSERT(r, !memcmp(expected.get(), actual.get(), remaining));
REPORTER_ASSERT(r, stream->getPosition() == stream->getLength());
REPORTER_ASSERT(r, stream->isAtEnd());
};
auto test_rewind = [&r, &expected, remaining](SkStream* stream) {
// Rewind goes back to original offset.
REPORTER_ASSERT(r, stream->rewind());
REPORTER_ASSERT(r, stream->getPosition() == 0);
SkAutoTMalloc<uint8_t> actual(remaining);
REPORTER_ASSERT(r, stream->read(actual.get(), remaining) == remaining);
REPORTER_ASSERT(r, !memcmp(expected.get(), actual.get(), remaining));
};
auto test_move = [&r, &expected, size, remaining](SkStream* stream) {
// Cannot move to before the original offset.
REPORTER_ASSERT(r, stream->move(- (long) size));
REPORTER_ASSERT(r, stream->getPosition() == 0);
REPORTER_ASSERT(r, stream->move(std::numeric_limits<long>::min()));
REPORTER_ASSERT(r, stream->getPosition() == 0);
SkAutoTMalloc<uint8_t> actual(remaining);
REPORTER_ASSERT(r, stream->read(actual.get(), remaining) == remaining);
REPORTER_ASSERT(r, !memcmp(expected.get(), actual.get(), remaining));
REPORTER_ASSERT(r, stream->isAtEnd());
REPORTER_ASSERT(r, stream->getPosition() == remaining);
// Cannot move beyond the end.
REPORTER_ASSERT(r, stream->move(1));
REPORTER_ASSERT(r, stream->isAtEnd());
REPORTER_ASSERT(r, stream->getPosition() == remaining);
};
auto test_seek = [&r, &expected, middle, remaining](SkStream* stream) {
// Seek to an arbitrary position.
const size_t arbitrary = middle / 2;
REPORTER_ASSERT(r, stream->seek(arbitrary));
REPORTER_ASSERT(r, stream->getPosition() == arbitrary);
const size_t miniRemaining = remaining - arbitrary;
SkAutoTMalloc<uint8_t> actual(miniRemaining);
REPORTER_ASSERT(r, stream->read(actual.get(), miniRemaining) == miniRemaining);
REPORTER_ASSERT(r, !memcmp(expected.get() + arbitrary, actual.get(), miniRemaining));
};
auto test_seek_beginning = [&r, &expected, remaining](SkStream* stream) {
// Seek to the beginning.
REPORTER_ASSERT(r, stream->seek(0));
REPORTER_ASSERT(r, stream->getPosition() == 0);
SkAutoTMalloc<uint8_t> actual(remaining);
REPORTER_ASSERT(r, stream->read(actual.get(), remaining) == remaining);
REPORTER_ASSERT(r, !memcmp(expected.get(), actual.get(), remaining));
};
auto test_seek_end = [&r, remaining](SkStream* stream) {
// Cannot seek past the end.
REPORTER_ASSERT(r, stream->isAtEnd());
REPORTER_ASSERT(r, stream->seek(remaining + 1));
REPORTER_ASSERT(r, stream->isAtEnd());
REPORTER_ASSERT(r, stream->getPosition() == remaining);
const size_t middle = remaining / 2;
REPORTER_ASSERT(r, stream->seek(middle));
REPORTER_ASSERT(r, !stream->isAtEnd());
REPORTER_ASSERT(r, stream->getPosition() == middle);
REPORTER_ASSERT(r, stream->seek(remaining * 2));
REPORTER_ASSERT(r, stream->isAtEnd());
REPORTER_ASSERT(r, stream->getPosition() == remaining);
REPORTER_ASSERT(r, stream->seek(std::numeric_limits<long>::max()));
REPORTER_ASSERT(r, stream->isAtEnd());
REPORTER_ASSERT(r, stream->getPosition() == remaining);
};
std::function<void (SkStream* stream, bool recurse)> test_all;
test_all = [&](SkStream* stream, bool recurse) {
REPORTER_ASSERT(r, stream->getLength() == remaining);
REPORTER_ASSERT(r, stream->getPosition() == 0);
test_full_read(stream);
test_rewind(stream);
test_move(stream);
test_seek(stream);
test_seek_beginning(stream);
test_seek_end(stream);
if (recurse) {
// Duplicate shares the original offset.
auto duplicate = stream->duplicate();
if (!duplicate) {
ERRORF(r, "Failed to duplicate the stream!");
} else {
test_all(duplicate.get(), false);
}
// Fork shares the original offset, too.
auto fork = stream->fork();
if (!fork) {
ERRORF(r, "Failed to fork the stream!");
} else {
REPORTER_ASSERT(r, fork->isAtEnd());
REPORTER_ASSERT(r, fork->getLength() == remaining);
REPORTER_ASSERT(r, fork->rewind());
test_all(fork.get(), false);
}
}
};
test_all(&stream2, true);
}
#include "SkBuffer.h"
DEF_TEST(RBuffer, reporter) {
int32_t value = 0;
SkRBuffer buffer(&value, 4);
REPORTER_ASSERT(reporter, buffer.isValid());
int32_t tmp;
REPORTER_ASSERT(reporter, buffer.read(&tmp, 4));
REPORTER_ASSERT(reporter, buffer.isValid());
REPORTER_ASSERT(reporter, !buffer.read(&tmp, 4));
REPORTER_ASSERT(reporter, !buffer.isValid());
}