skia2/tools/vulkan/VulkanTestContext.cpp

606 lines
26 KiB
C++

/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrContext.h"
#include "SkSurface.h"
#include "VulkanTestContext.h"
#include "vk/GrVkInterface.h"
#include "vk/GrVkUtil.h"
#include "vk/GrVkTypes.h"
#ifdef VK_USE_PLATFORM_WIN32_KHR
// windows wants to define this as CreateSemaphoreA or CreateSemaphoreW
#undef CreateSemaphore
#endif
VulkanTestContext::VulkanTestContext(void* platformData, int msaaSampleCount)
: fSurface(VK_NULL_HANDLE)
, fSwapchain(VK_NULL_HANDLE)
, fCommandPool(VK_NULL_HANDLE)
, fBackbuffers(nullptr) {
// any config code here (particularly for msaa)?
this->initializeContext(platformData);
}
void VulkanTestContext::initializeContext(void* platformData) {
fBackendContext.reset(GrVkBackendContext::Create());
fContext = GrContext::Create(kVulkan_GrBackend, (GrBackendContext)fBackendContext.get());
fSurface = createVkSurface(platformData);
if (VK_NULL_HANDLE == fSurface) {
fBackendContext.reset(nullptr);
return;
}
// query to get the initial queue props size
uint32_t queueCount;
GR_VK_CALL(fBackendContext->fInterface,
GetPhysicalDeviceQueueFamilyProperties(fBackendContext->fPhysicalDevice, &queueCount,
nullptr));
SkASSERT(queueCount >= 1);
SkAutoMalloc queuePropsAlloc(queueCount * sizeof(VkQueueFamilyProperties));
// now get the actual queue props
VkQueueFamilyProperties* queueProps = (VkQueueFamilyProperties*)queuePropsAlloc.get();
GR_VK_CALL(fBackendContext->fInterface,
GetPhysicalDeviceQueueFamilyProperties(fBackendContext->fPhysicalDevice, &queueCount,
queueProps));
// iterate to find the present queue
fPresentQueueIndex = -1;
for (uint32_t i = 0; i < queueCount; i++) {
if ((queueProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) && canPresent(i)) {
fPresentQueueIndex = i;
break;
}
}
SkASSERT(fPresentQueueIndex < queueCount);
VkBool32 supported;
VkResult res = GR_VK_CALL(fBackendContext->fInterface,
GetPhysicalDeviceSurfaceSupportKHR(fBackendContext->fPhysicalDevice,
fPresentQueueIndex,
fSurface,
&supported));
if (VK_SUCCESS != res) {
this->destroyContext();
return;
}
if (!this->createSwapchain(-1, -1)) {
this->destroyContext();
return;
}
// create presentQueue
vkGetDeviceQueue(fBackendContext->fDevice, fPresentQueueIndex, 0, &fPresentQueue);
}
bool VulkanTestContext::createSwapchain(uint32_t width, uint32_t height)
{
// check for capabilities
VkSurfaceCapabilitiesKHR caps;
VkResult res = GR_VK_CALL(fBackendContext->fInterface,
GetPhysicalDeviceSurfaceCapabilitiesKHR(fBackendContext->fPhysicalDevice,
fSurface,
&caps));
if (VK_SUCCESS != res) {
return false;
}
uint32_t surfaceFormatCount;
res = GR_VK_CALL(fBackendContext->fInterface,
GetPhysicalDeviceSurfaceFormatsKHR(fBackendContext->fPhysicalDevice,
fSurface,
&surfaceFormatCount,
nullptr));
if (VK_SUCCESS != res) {
return false;
}
SkAutoMalloc surfaceFormatAlloc(surfaceFormatCount * sizeof(VkSurfaceFormatKHR));
VkSurfaceFormatKHR* surfaceFormats = (VkSurfaceFormatKHR*)surfaceFormatAlloc.get();
res = GR_VK_CALL(fBackendContext->fInterface,
GetPhysicalDeviceSurfaceFormatsKHR(fBackendContext->fPhysicalDevice,
fSurface,
&surfaceFormatCount,
surfaceFormats));
if (VK_SUCCESS != res) {
return false;
}
uint32_t presentModeCount;
res = GR_VK_CALL(fBackendContext->fInterface,
GetPhysicalDeviceSurfacePresentModesKHR(fBackendContext->fPhysicalDevice,
fSurface,
&presentModeCount,
nullptr));
if (VK_SUCCESS != res) {
return false;
}
SkAutoMalloc presentModeAlloc(presentModeCount * sizeof(VkPresentModeKHR));
VkPresentModeKHR* presentModes = (VkPresentModeKHR*)presentModeAlloc.get();
res = GR_VK_CALL(fBackendContext->fInterface,
GetPhysicalDeviceSurfacePresentModesKHR(fBackendContext->fPhysicalDevice,
fSurface,
&presentModeCount,
presentModes));
if (VK_SUCCESS != res) {
return false;
}
VkExtent2D extent = caps.currentExtent;
// use the hints
if (extent.width == (uint32_t)-1) {
extent.width = width;
extent.height = height;
}
// clamp width; to protect us from broken hints
if (extent.width < caps.minImageExtent.width) {
extent.width = caps.minImageExtent.width;
} else if (extent.width > caps.maxImageExtent.width) {
extent.width = caps.maxImageExtent.width;
}
// clamp height
if (extent.height < caps.minImageExtent.height) {
extent.height = caps.minImageExtent.height;
} else if (extent.height > caps.maxImageExtent.height) {
extent.height = caps.maxImageExtent.height;
}
fWidth = (int)extent.width;
fHeight = (int)extent.height;
uint32_t imageCount = caps.minImageCount + 2;
if (caps.maxImageCount > 0 && imageCount > caps.maxImageCount) {
// Application must settle for fewer images than desired:
imageCount = caps.maxImageCount;
}
VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT;
SkASSERT((caps.supportedUsageFlags & usageFlags) == usageFlags);
SkASSERT(caps.supportedTransforms & caps.currentTransform);
SkASSERT(caps.supportedCompositeAlpha & (VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR |
VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR));
VkCompositeAlphaFlagBitsKHR composite_alpha =
(caps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR) ?
VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR :
VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
// If mailbox mode is available, use it, as it is the lowest-latency non-
// tearing mode. If not, fall back to FIFO which is always available.
VkPresentModeKHR mode = VK_PRESENT_MODE_FIFO_KHR;
for (uint32_t i = 0; i < presentModeCount; ++i) {
// use mailbox
if (VK_PRESENT_MODE_MAILBOX_KHR == presentModes[i]) {
mode = presentModes[i];
break;
}
}
VkSwapchainCreateInfoKHR swapchainCreateInfo;
memset(&swapchainCreateInfo, 0, sizeof(VkSwapchainCreateInfoKHR));
swapchainCreateInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swapchainCreateInfo.surface = fSurface;
swapchainCreateInfo.minImageCount = imageCount;
swapchainCreateInfo.imageFormat = surfaceFormats[0].format; // for now, use the first one
swapchainCreateInfo.imageColorSpace = surfaceFormats[0].colorSpace;
swapchainCreateInfo.imageExtent = extent;
swapchainCreateInfo.imageArrayLayers = 1;
swapchainCreateInfo.imageUsage = usageFlags;
uint32_t queueFamilies[] = { fBackendContext->fQueueFamilyIndex, fPresentQueueIndex };
if (fBackendContext->fQueueFamilyIndex != fPresentQueueIndex) {
swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
swapchainCreateInfo.queueFamilyIndexCount = 2;
swapchainCreateInfo.pQueueFamilyIndices = queueFamilies;
} else {
swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swapchainCreateInfo.queueFamilyIndexCount = 0;
swapchainCreateInfo.pQueueFamilyIndices = nullptr;
}
swapchainCreateInfo.preTransform = caps.currentTransform;;
swapchainCreateInfo.compositeAlpha = composite_alpha;
swapchainCreateInfo.presentMode = mode;
swapchainCreateInfo.clipped = true;
swapchainCreateInfo.oldSwapchain = fSwapchain;
res = GR_VK_CALL(fBackendContext->fInterface,
CreateSwapchainKHR(fBackendContext->fDevice,
&swapchainCreateInfo, nullptr, &fSwapchain));
if (VK_SUCCESS != res) {
return false;
}
// destroy the old swapchain
if (swapchainCreateInfo.oldSwapchain != VK_NULL_HANDLE) {
GR_VK_CALL(fBackendContext->fInterface, DeviceWaitIdle(fBackendContext->fDevice));
this->destroyBuffers();
GR_VK_CALL(fBackendContext->fInterface, DestroySwapchainKHR(fBackendContext->fDevice,
swapchainCreateInfo.oldSwapchain,
nullptr));
}
GrVkFormatToPixelConfig(swapchainCreateInfo.imageFormat, &fPixelConfig);
this->createBuffers();
return true;
}
void VulkanTestContext::createBuffers() {
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface, GetSwapchainImagesKHR(fBackendContext->fDevice,
fSwapchain,
&fImageCount,
nullptr));
SkASSERT(fImageCount);
fImages = new VkImage[fImageCount];
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface, GetSwapchainImagesKHR(fBackendContext->fDevice,
fSwapchain,
&fImageCount,
fImages));
// set up initial image layouts and create surfaces
fImageLayouts = new VkImageLayout[fImageCount];
fSurfaces = new sk_sp<SkSurface>[fImageCount];
for (uint32_t i = 0; i < fImageCount; ++i) {
fImageLayouts[i] = VK_IMAGE_LAYOUT_UNDEFINED;
GrBackendRenderTargetDesc desc;
GrVkTextureInfo info;
info.fImage = fImages[i];
info.fAlloc = nullptr;
info.fImageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
info.fImageTiling = VK_IMAGE_TILING_OPTIMAL;
desc.fWidth = fWidth;
desc.fHeight = fHeight;
desc.fConfig = fPixelConfig;
desc.fOrigin = kTopLeft_GrSurfaceOrigin;
desc.fSampleCnt = 0;
desc.fStencilBits = 0;
desc.fRenderTargetHandle = (GrBackendObject) &info;
SkSurfaceProps props(0, kUnknown_SkPixelGeometry);
fSurfaces[i] = SkSurface::MakeFromBackendRenderTarget(fContext, desc, &props);
}
// create the command pool for the command buffers
if (VK_NULL_HANDLE == fCommandPool) {
VkCommandPoolCreateInfo commandPoolInfo;
memset(&commandPoolInfo, 0, sizeof(VkCommandPoolCreateInfo));
commandPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
// this needs to be on the render queue
commandPoolInfo.queueFamilyIndex = fBackendContext->fQueueFamilyIndex;
commandPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
CreateCommandPool(fBackendContext->fDevice, &commandPoolInfo,
nullptr, &fCommandPool));
}
// set up the backbuffers
VkSemaphoreCreateInfo semaphoreInfo;
memset(&semaphoreInfo, 0, sizeof(VkSemaphoreCreateInfo));
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
semaphoreInfo.pNext = nullptr;
semaphoreInfo.flags = 0;
VkCommandBufferAllocateInfo commandBuffersInfo;
memset(&commandBuffersInfo, 0, sizeof(VkCommandBufferAllocateInfo));
commandBuffersInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
commandBuffersInfo.pNext = nullptr;
commandBuffersInfo.commandPool = fCommandPool;
commandBuffersInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
commandBuffersInfo.commandBufferCount = 2;
VkFenceCreateInfo fenceInfo;
memset(&fenceInfo, 0, sizeof(VkFenceCreateInfo));
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceInfo.pNext = nullptr;
fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
// we create one additional backbuffer structure here, because we want to
// give the command buffers they contain a chance to finish before we cycle back
fBackbuffers = new BackbufferInfo[fImageCount + 1];
for (uint32_t i = 0; i < fImageCount + 1; ++i) {
fBackbuffers[i].fImageIndex = -1;
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
CreateSemaphore(fBackendContext->fDevice, &semaphoreInfo,
nullptr, &fBackbuffers[i].fAcquireSemaphore));
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
CreateSemaphore(fBackendContext->fDevice, &semaphoreInfo,
nullptr, &fBackbuffers[i].fRenderSemaphore));
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
AllocateCommandBuffers(fBackendContext->fDevice, &commandBuffersInfo,
fBackbuffers[i].fTransitionCmdBuffers));
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
CreateFence(fBackendContext->fDevice, &fenceInfo, nullptr,
&fBackbuffers[i].fUsageFences[0]));
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
CreateFence(fBackendContext->fDevice, &fenceInfo, nullptr,
&fBackbuffers[i].fUsageFences[1]));
}
fCurrentBackbufferIndex = fImageCount;
}
void VulkanTestContext::destroyBuffers() {
if (fBackbuffers) {
for (uint32_t i = 0; i < fImageCount + 1; ++i) {
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
WaitForFences(fBackendContext->fDevice, 2,
fBackbuffers[i].fUsageFences,
true, UINT64_MAX));
fBackbuffers[i].fImageIndex = -1;
GR_VK_CALL(fBackendContext->fInterface,
DestroySemaphore(fBackendContext->fDevice,
fBackbuffers[i].fAcquireSemaphore,
nullptr));
GR_VK_CALL(fBackendContext->fInterface,
DestroySemaphore(fBackendContext->fDevice,
fBackbuffers[i].fRenderSemaphore,
nullptr));
GR_VK_CALL(fBackendContext->fInterface,
FreeCommandBuffers(fBackendContext->fDevice, fCommandPool, 2,
fBackbuffers[i].fTransitionCmdBuffers));
GR_VK_CALL(fBackendContext->fInterface,
DestroyFence(fBackendContext->fDevice, fBackbuffers[i].fUsageFences[0], 0));
GR_VK_CALL(fBackendContext->fInterface,
DestroyFence(fBackendContext->fDevice, fBackbuffers[i].fUsageFences[1], 0));
}
}
delete[] fBackbuffers;
fBackbuffers = nullptr;
delete[] fSurfaces;
fSurfaces = nullptr;
delete[] fImageLayouts;
fImageLayouts = nullptr;
delete[] fImages;
fImages = nullptr;
}
VulkanTestContext::~VulkanTestContext() {
this->destroyContext();
}
void VulkanTestContext::destroyContext() {
if (!fBackendContext.get()) {
return;
}
GR_VK_CALL(fBackendContext->fInterface, DeviceWaitIdle(fBackendContext->fDevice));
this->destroyBuffers();
if (VK_NULL_HANDLE != fCommandPool) {
GR_VK_CALL(fBackendContext->fInterface, DestroyCommandPool(fBackendContext->fDevice,
fCommandPool, nullptr));
fCommandPool = VK_NULL_HANDLE;
}
if (VK_NULL_HANDLE != fSwapchain) {
GR_VK_CALL(fBackendContext->fInterface, DestroySwapchainKHR(fBackendContext->fDevice,
fSwapchain, nullptr));
fSwapchain = VK_NULL_HANDLE;
}
if (VK_NULL_HANDLE != fSurface) {
GR_VK_CALL(fBackendContext->fInterface, DestroySurfaceKHR(fBackendContext->fInstance,
fSurface, nullptr));
fSurface = VK_NULL_HANDLE;
}
delete fContext;
fBackendContext.reset(nullptr);
}
VulkanTestContext::BackbufferInfo* VulkanTestContext::getAvailableBackbuffer() {
SkASSERT(fBackbuffers);
++fCurrentBackbufferIndex;
if (fCurrentBackbufferIndex > fImageCount) {
fCurrentBackbufferIndex = 0;
}
BackbufferInfo* backbuffer = fBackbuffers + fCurrentBackbufferIndex;
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
WaitForFences(fBackendContext->fDevice, 2, backbuffer->fUsageFences,
true, UINT64_MAX));
return backbuffer;
}
SkSurface* VulkanTestContext::getBackbufferSurface() {
BackbufferInfo* backbuffer = this->getAvailableBackbuffer();
SkASSERT(backbuffer);
// reset the fence
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
ResetFences(fBackendContext->fDevice, 2, backbuffer->fUsageFences));
// semaphores should be in unsignaled state
// acquire the image
VkResult res = GR_VK_CALL(fBackendContext->fInterface,
AcquireNextImageKHR(fBackendContext->fDevice,
fSwapchain,
UINT64_MAX,
backbuffer->fAcquireSemaphore,
VK_NULL_HANDLE,
&backbuffer->fImageIndex));
if (VK_ERROR_SURFACE_LOST_KHR == res) {
// need to figure out how to create a new vkSurface without the platformData*
// maybe use attach somehow? but need a Window
return nullptr;
}
if (VK_ERROR_OUT_OF_DATE_KHR == res) {
// tear swapchain down and try again
if (!this->createSwapchain(0, 0)) {
return nullptr;
}
// acquire the image
res = GR_VK_CALL(fBackendContext->fInterface,
AcquireNextImageKHR(fBackendContext->fDevice,
fSwapchain,
UINT64_MAX,
backbuffer->fAcquireSemaphore,
VK_NULL_HANDLE,
&backbuffer->fImageIndex));
if (VK_SUCCESS != res) {
return nullptr;
}
}
// set up layout transfer from initial to color attachment
VkImageLayout layout = fImageLayouts[backbuffer->fImageIndex];
VkPipelineStageFlags srcStageMask = (VK_IMAGE_LAYOUT_UNDEFINED == layout) ?
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT :
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
VkPipelineStageFlags dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
VkAccessFlags srcAccessMask = (VK_IMAGE_LAYOUT_UNDEFINED == layout) ?
0 : VK_ACCESS_MEMORY_READ_BIT;
VkAccessFlags dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
VkImageMemoryBarrier imageMemoryBarrier = {
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType
NULL, // pNext
srcAccessMask, // outputMask
dstAccessMask, // inputMask
layout, // oldLayout
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, // newLayout
fPresentQueueIndex, // srcQueueFamilyIndex
fBackendContext->fQueueFamilyIndex, // dstQueueFamilyIndex
fImages[backbuffer->fImageIndex], // image
{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 } // subresourceRange
};
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
ResetCommandBuffer(backbuffer->fTransitionCmdBuffers[0], 0));
VkCommandBufferBeginInfo info;
memset(&info, 0, sizeof(VkCommandBufferBeginInfo));
info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
info.flags = 0;
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
BeginCommandBuffer(backbuffer->fTransitionCmdBuffers[0], &info));
GR_VK_CALL(fBackendContext->fInterface,
CmdPipelineBarrier(backbuffer->fTransitionCmdBuffers[0],
srcStageMask, dstStageMask, 0,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier));
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
EndCommandBuffer(backbuffer->fTransitionCmdBuffers[0]));
// insert the layout transfer into the queue and wait on the acquire
VkSubmitInfo submitInfo;
memset(&submitInfo, 0, sizeof(VkSubmitInfo));
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &backbuffer->fAcquireSemaphore;
submitInfo.pWaitDstStageMask = 0;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &backbuffer->fTransitionCmdBuffers[0];
submitInfo.signalSemaphoreCount = 0;
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
QueueSubmit(fBackendContext->fQueue, 1, &submitInfo,
backbuffer->fUsageFences[0]));
return fSurfaces[backbuffer->fImageIndex].get();
}
void VulkanTestContext::swapBuffers() {
BackbufferInfo* backbuffer = fBackbuffers + fCurrentBackbufferIndex;
VkImageLayout layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkPipelineStageFlags srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
VkPipelineStageFlags dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
VkAccessFlags srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
VkAccessFlags dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
VkImageMemoryBarrier imageMemoryBarrier = {
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType
NULL, // pNext
srcAccessMask, // outputMask
dstAccessMask, // inputMask
layout, // oldLayout
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, // newLayout
fBackendContext->fQueueFamilyIndex, // srcQueueFamilyIndex
fPresentQueueIndex, // dstQueueFamilyIndex
fImages[backbuffer->fImageIndex], // image
{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 } // subresourceRange
};
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
ResetCommandBuffer(backbuffer->fTransitionCmdBuffers[1], 0));
VkCommandBufferBeginInfo info;
memset(&info, 0, sizeof(VkCommandBufferBeginInfo));
info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
info.flags = 0;
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
BeginCommandBuffer(backbuffer->fTransitionCmdBuffers[1], &info));
GR_VK_CALL(fBackendContext->fInterface,
CmdPipelineBarrier(backbuffer->fTransitionCmdBuffers[1],
srcStageMask, dstStageMask, 0,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier));
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
EndCommandBuffer(backbuffer->fTransitionCmdBuffers[1]));
fImageLayouts[backbuffer->fImageIndex] = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
// insert the layout transfer into the queue and wait on the acquire
VkSubmitInfo submitInfo;
memset(&submitInfo, 0, sizeof(VkSubmitInfo));
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 0;
submitInfo.pWaitDstStageMask = 0;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &backbuffer->fTransitionCmdBuffers[1];
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = &backbuffer->fRenderSemaphore;
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
QueueSubmit(fBackendContext->fQueue, 1, &submitInfo,
backbuffer->fUsageFences[1]));
// Submit present operation to present queue
const VkPresentInfoKHR presentInfo =
{
VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, // sType
NULL, // pNext
1, // waitSemaphoreCount
&backbuffer->fRenderSemaphore, // pWaitSemaphores
1, // swapchainCount
&fSwapchain, // pSwapchains
&backbuffer->fImageIndex, // pImageIndices
NULL // pResults
};
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
QueuePresentKHR(fPresentQueue, &presentInfo));
}