4675220000
BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1774013002 Review URL: https://codereview.chromium.org/1774013002
1422 lines
57 KiB
C++
1422 lines
57 KiB
C++
/*
|
|
* Copyright 2015 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "DMSrcSink.h"
|
|
#include "SkAndroidCodec.h"
|
|
#include "SkCodec.h"
|
|
#include "SkCodecImageGenerator.h"
|
|
#include "SkCommonFlags.h"
|
|
#include "SkData.h"
|
|
#include "SkDocument.h"
|
|
#include "SkError.h"
|
|
#include "SkImageGenerator.h"
|
|
#include "SkMallocPixelRef.h"
|
|
#include "SkMultiPictureDraw.h"
|
|
#include "SkNullCanvas.h"
|
|
#include "SkOSFile.h"
|
|
#include "SkOpts.h"
|
|
#include "SkPictureData.h"
|
|
#include "SkPictureRecorder.h"
|
|
#include "SkRandom.h"
|
|
#include "SkRecordDraw.h"
|
|
#include "SkRecorder.h"
|
|
#include "SkSVGCanvas.h"
|
|
#include "SkStream.h"
|
|
#include "SkTLogic.h"
|
|
#include "SkXMLWriter.h"
|
|
#include "SkSwizzler.h"
|
|
#include <functional>
|
|
|
|
#ifdef SK_MOJO
|
|
#include "SkMojo.mojom.h"
|
|
#endif
|
|
|
|
DEFINE_bool(multiPage, false, "For document-type backends, render the source"
|
|
" into multiple pages");
|
|
DEFINE_bool(RAW_threading, true, "Allow RAW decodes to run on multiple threads?");
|
|
|
|
namespace DM {
|
|
|
|
GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {}
|
|
|
|
Error GMSrc::draw(SkCanvas* canvas) const {
|
|
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
|
|
canvas->concat(gm->getInitialTransform());
|
|
gm->draw(canvas);
|
|
return "";
|
|
}
|
|
|
|
SkISize GMSrc::size() const {
|
|
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
|
|
return gm->getISize();
|
|
}
|
|
|
|
Name GMSrc::name() const {
|
|
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
|
|
return gm->getName();
|
|
}
|
|
|
|
void GMSrc::modifyGrContextOptions(GrContextOptions* options) const {
|
|
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
|
|
gm->modifyGrContextOptions(options);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
BRDSrc::BRDSrc(Path path, SkBitmapRegionDecoder::Strategy strategy, Mode mode,
|
|
CodecSrc::DstColorType dstColorType, uint32_t sampleSize)
|
|
: fPath(path)
|
|
, fStrategy(strategy)
|
|
, fMode(mode)
|
|
, fDstColorType(dstColorType)
|
|
, fSampleSize(sampleSize)
|
|
{}
|
|
|
|
bool BRDSrc::veto(SinkFlags flags) const {
|
|
// No need to test to non-raster or indirect backends.
|
|
return flags.type != SinkFlags::kRaster
|
|
|| flags.approach != SinkFlags::kDirect;
|
|
}
|
|
|
|
static SkBitmapRegionDecoder* create_brd(Path path,
|
|
SkBitmapRegionDecoder::Strategy strategy) {
|
|
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(path.c_str()));
|
|
if (!encoded) {
|
|
return NULL;
|
|
}
|
|
return SkBitmapRegionDecoder::Create(encoded, strategy);
|
|
}
|
|
|
|
Error BRDSrc::draw(SkCanvas* canvas) const {
|
|
SkColorType colorType = canvas->imageInfo().colorType();
|
|
if (kRGB_565_SkColorType == colorType &&
|
|
CodecSrc::kGetFromCanvas_DstColorType != fDstColorType) {
|
|
return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
|
|
}
|
|
switch (fDstColorType) {
|
|
case CodecSrc::kGetFromCanvas_DstColorType:
|
|
break;
|
|
case CodecSrc::kIndex8_Always_DstColorType:
|
|
colorType = kIndex_8_SkColorType;
|
|
break;
|
|
case CodecSrc::kGrayscale_Always_DstColorType:
|
|
colorType = kGray_8_SkColorType;
|
|
break;
|
|
}
|
|
|
|
SkAutoTDelete<SkBitmapRegionDecoder> brd(create_brd(fPath, fStrategy));
|
|
if (nullptr == brd.get()) {
|
|
return Error::Nonfatal(SkStringPrintf("Could not create brd for %s.", fPath.c_str()));
|
|
}
|
|
|
|
if (!brd->conversionSupported(colorType)) {
|
|
return Error::Nonfatal("Cannot convert to color type.");
|
|
}
|
|
|
|
const uint32_t width = brd->width();
|
|
const uint32_t height = brd->height();
|
|
// Visually inspecting very small output images is not necessary.
|
|
if ((width / fSampleSize <= 10 || height / fSampleSize <= 10) && 1 != fSampleSize) {
|
|
return Error::Nonfatal("Scaling very small images is uninteresting.");
|
|
}
|
|
switch (fMode) {
|
|
case kFullImage_Mode: {
|
|
SkBitmap bitmap;
|
|
if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(0, 0, width, height),
|
|
fSampleSize, colorType, false)) {
|
|
return "Cannot decode (full) region.";
|
|
}
|
|
if (colorType != bitmap.colorType()) {
|
|
return Error::Nonfatal("Cannot convert to color type.");
|
|
}
|
|
canvas->drawBitmap(bitmap, 0, 0);
|
|
return "";
|
|
}
|
|
case kDivisor_Mode: {
|
|
const uint32_t divisor = 2;
|
|
if (width < divisor || height < divisor) {
|
|
return Error::Nonfatal("Divisor is larger than image dimension.");
|
|
}
|
|
|
|
// Use a border to test subsets that extend outside the image.
|
|
// We will not allow the border to be larger than the image dimensions. Allowing
|
|
// these large borders causes off by one errors that indicate a problem with the
|
|
// test suite, not a problem with the implementation.
|
|
const uint32_t maxBorder = SkTMin(width, height) / (fSampleSize * divisor);
|
|
const uint32_t scaledBorder = SkTMin(5u, maxBorder);
|
|
const uint32_t unscaledBorder = scaledBorder * fSampleSize;
|
|
|
|
// We may need to clear the canvas to avoid uninitialized memory.
|
|
// Assume we are scaling a 780x780 image with sampleSize = 8.
|
|
// The output image should be 97x97.
|
|
// Each subset will be 390x390.
|
|
// Each scaled subset be 48x48.
|
|
// Four scaled subsets will only fill a 96x96 image.
|
|
// The bottom row and last column will not be touched.
|
|
// This is an unfortunate result of our rounding rules when scaling.
|
|
// Maybe we need to consider testing scaled subsets without trying to
|
|
// combine them to match the full scaled image? Or maybe this is the
|
|
// best we can do?
|
|
canvas->clear(0);
|
|
|
|
for (uint32_t x = 0; x < divisor; x++) {
|
|
for (uint32_t y = 0; y < divisor; y++) {
|
|
// Calculate the subset dimensions
|
|
uint32_t subsetWidth = width / divisor;
|
|
uint32_t subsetHeight = height / divisor;
|
|
const int left = x * subsetWidth;
|
|
const int top = y * subsetHeight;
|
|
|
|
// Increase the size of the last subset in each row or column, when the
|
|
// divisor does not divide evenly into the image dimensions
|
|
subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0;
|
|
subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0;
|
|
|
|
// Increase the size of the subset in order to have a border on each side
|
|
const int decodeLeft = left - unscaledBorder;
|
|
const int decodeTop = top - unscaledBorder;
|
|
const uint32_t decodeWidth = subsetWidth + unscaledBorder * 2;
|
|
const uint32_t decodeHeight = subsetHeight + unscaledBorder * 2;
|
|
SkBitmap bitmap;
|
|
if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(decodeLeft,
|
|
decodeTop, decodeWidth, decodeHeight), fSampleSize, colorType, false)) {
|
|
return "Cannot decode region.";
|
|
}
|
|
if (colorType != bitmap.colorType()) {
|
|
return Error::Nonfatal("Cannot convert to color type.");
|
|
}
|
|
|
|
canvas->drawBitmapRect(bitmap,
|
|
SkRect::MakeXYWH((SkScalar) scaledBorder, (SkScalar) scaledBorder,
|
|
(SkScalar) (subsetWidth / fSampleSize),
|
|
(SkScalar) (subsetHeight / fSampleSize)),
|
|
SkRect::MakeXYWH((SkScalar) (left / fSampleSize),
|
|
(SkScalar) (top / fSampleSize),
|
|
(SkScalar) (subsetWidth / fSampleSize),
|
|
(SkScalar) (subsetHeight / fSampleSize)),
|
|
nullptr);
|
|
}
|
|
}
|
|
return "";
|
|
}
|
|
default:
|
|
SkASSERT(false);
|
|
return "Error: Should not be reached.";
|
|
}
|
|
}
|
|
|
|
SkISize BRDSrc::size() const {
|
|
SkAutoTDelete<SkBitmapRegionDecoder> brd(create_brd(fPath, fStrategy));
|
|
if (brd) {
|
|
return SkISize::Make(SkTMax(1, brd->width() / (int) fSampleSize),
|
|
SkTMax(1, brd->height() / (int) fSampleSize));
|
|
}
|
|
return SkISize::Make(0, 0);
|
|
}
|
|
|
|
static SkString get_scaled_name(const Path& path, float scale) {
|
|
return SkStringPrintf("%s_%.3f", SkOSPath::Basename(path.c_str()).c_str(), scale);
|
|
}
|
|
|
|
Name BRDSrc::name() const {
|
|
// We will replicate the names used by CodecSrc so that images can
|
|
// be compared in Gold.
|
|
if (1 == fSampleSize) {
|
|
return SkOSPath::Basename(fPath.c_str());
|
|
}
|
|
return get_scaled_name(fPath, 1.0f / (float) fSampleSize);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
static bool serial_from_path_name(const SkString& path) {
|
|
if (!FLAGS_RAW_threading) {
|
|
static const char* const exts[] = {
|
|
"arw", "cr2", "dng", "nef", "nrw", "orf", "raf", "rw2", "pef", "srw",
|
|
"ARW", "CR2", "DNG", "NEF", "NRW", "ORF", "RAF", "RW2", "PEF", "SRW",
|
|
};
|
|
const char* actualExt = strrchr(path.c_str(), '.');
|
|
if (actualExt) {
|
|
actualExt++;
|
|
for (auto* ext : exts) {
|
|
if (0 == strcmp(ext, actualExt)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType, SkAlphaType dstAlphaType,
|
|
float scale)
|
|
: fPath(path)
|
|
, fMode(mode)
|
|
, fDstColorType(dstColorType)
|
|
, fDstAlphaType(dstAlphaType)
|
|
, fScale(scale)
|
|
, fRunSerially(serial_from_path_name(path))
|
|
{}
|
|
|
|
bool CodecSrc::veto(SinkFlags flags) const {
|
|
// Test CodecImageGenerator on 8888, 565, and gpu
|
|
if (kGen_Mode == fMode) {
|
|
// For image generator, we want to test kDirect approaches for kRaster and kGPU,
|
|
// while skipping everything else.
|
|
return (flags.type != SinkFlags::kRaster && flags.type != SinkFlags::kGPU) ||
|
|
flags.approach != SinkFlags::kDirect;
|
|
}
|
|
|
|
// Test all other modes to direct raster backends (8888 and 565).
|
|
return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect;
|
|
}
|
|
|
|
// FIXME: Currently we cannot draw unpremultiplied sources. skbug.com/3338 and skbug.com/3339.
|
|
// This allows us to still test unpremultiplied decodes.
|
|
void premultiply_if_necessary(SkBitmap& bitmap) {
|
|
if (kUnpremul_SkAlphaType != bitmap.alphaType()) {
|
|
return;
|
|
}
|
|
|
|
switch (bitmap.colorType()) {
|
|
case kN32_SkColorType:
|
|
for (int y = 0; y < bitmap.height(); y++) {
|
|
uint32_t* row = (uint32_t*) bitmap.getAddr(0, y);
|
|
SkOpts::RGBA_to_rgbA(row, row, bitmap.width());
|
|
}
|
|
break;
|
|
case kIndex_8_SkColorType: {
|
|
SkColorTable* colorTable = bitmap.getColorTable();
|
|
SkPMColor* colorPtr = const_cast<SkPMColor*>(colorTable->readColors());
|
|
SkOpts::RGBA_to_rgbA(colorPtr, colorPtr, colorTable->count());
|
|
break;
|
|
}
|
|
default:
|
|
// No need to premultiply kGray or k565 outputs.
|
|
break;
|
|
}
|
|
|
|
// In the kIndex_8 case, the canvas won't even try to draw unless we mark the
|
|
// bitmap as kPremul.
|
|
bitmap.setAlphaType(kPremul_SkAlphaType);
|
|
}
|
|
|
|
bool get_decode_info(SkImageInfo* decodeInfo, SkColorType canvasColorType,
|
|
CodecSrc::DstColorType dstColorType) {
|
|
switch (dstColorType) {
|
|
case CodecSrc::kIndex8_Always_DstColorType:
|
|
if (kRGB_565_SkColorType == canvasColorType) {
|
|
return false;
|
|
}
|
|
*decodeInfo = decodeInfo->makeColorType(kIndex_8_SkColorType);
|
|
break;
|
|
case CodecSrc::kGrayscale_Always_DstColorType:
|
|
if (kRGB_565_SkColorType == canvasColorType ||
|
|
kOpaque_SkAlphaType != decodeInfo->alphaType()) {
|
|
return false;
|
|
}
|
|
*decodeInfo = decodeInfo->makeColorType(kGray_8_SkColorType);
|
|
break;
|
|
default:
|
|
if (kRGB_565_SkColorType == canvasColorType &&
|
|
kOpaque_SkAlphaType != decodeInfo->alphaType()) {
|
|
return false;
|
|
}
|
|
*decodeInfo = decodeInfo->makeColorType(canvasColorType);
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Error test_gen(SkCanvas* canvas, SkData* data) {
|
|
SkAutoTDelete<SkImageGenerator> gen = SkCodecImageGenerator::NewFromEncodedCodec(data);
|
|
if (!gen) {
|
|
return "Could not create image generator.";
|
|
}
|
|
|
|
// FIXME: The gpu backend does not draw kGray sources correctly. (skbug.com/4822)
|
|
// Currently, we will avoid creating a CodecSrc for this case (see DM.cpp).
|
|
SkASSERT(kGray_8_SkColorType != gen->getInfo().colorType());
|
|
|
|
if (kOpaque_SkAlphaType != gen->getInfo().alphaType() &&
|
|
kRGB_565_SkColorType == canvas->imageInfo().colorType()) {
|
|
return Error::Nonfatal("Skip testing non-opaque images to 565.");
|
|
}
|
|
|
|
SkAutoTDelete<SkImage> image(SkImage::NewFromGenerator(gen.detach(), nullptr));
|
|
if (!image) {
|
|
return "Could not create image from codec image generator.";
|
|
}
|
|
|
|
canvas->drawImage(image, 0, 0);
|
|
return "";
|
|
}
|
|
|
|
Error CodecSrc::draw(SkCanvas* canvas) const {
|
|
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
|
|
if (!encoded) {
|
|
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
|
|
}
|
|
|
|
// The CodecImageGenerator test does not share much code with the other tests,
|
|
// so we will handle it in its own function.
|
|
if (kGen_Mode == fMode) {
|
|
return test_gen(canvas, encoded);
|
|
}
|
|
|
|
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
|
|
if (nullptr == codec.get()) {
|
|
return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str());
|
|
}
|
|
|
|
SkImageInfo decodeInfo = codec->getInfo().makeAlphaType(fDstAlphaType);
|
|
if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType)) {
|
|
return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
|
|
}
|
|
|
|
// Try to scale the image if it is desired
|
|
SkISize size = codec->getScaledDimensions(fScale);
|
|
if (size == decodeInfo.dimensions() && 1.0f != fScale) {
|
|
return Error::Nonfatal("Test without scaling is uninteresting.");
|
|
}
|
|
|
|
// Visually inspecting very small output images is not necessary. We will
|
|
// cover these cases in unit testing.
|
|
if ((size.width() <= 10 || size.height() <= 10) && 1.0f != fScale) {
|
|
return Error::Nonfatal("Scaling very small images is uninteresting.");
|
|
}
|
|
decodeInfo = decodeInfo.makeWH(size.width(), size.height());
|
|
|
|
// Construct a color table for the decode if necessary
|
|
SkAutoTUnref<SkColorTable> colorTable(nullptr);
|
|
SkPMColor* colorPtr = nullptr;
|
|
int* colorCountPtr = nullptr;
|
|
int maxColors = 256;
|
|
if (kIndex_8_SkColorType == decodeInfo.colorType()) {
|
|
SkPMColor colors[256];
|
|
colorTable.reset(new SkColorTable(colors, maxColors));
|
|
colorPtr = const_cast<SkPMColor*>(colorTable->readColors());
|
|
colorCountPtr = &maxColors;
|
|
}
|
|
|
|
SkBitmap bitmap;
|
|
SkPixelRefFactory* factory = nullptr;
|
|
SkMallocPixelRef::ZeroedPRFactory zeroFactory;
|
|
SkCodec::Options options;
|
|
if (kCodecZeroInit_Mode == fMode) {
|
|
factory = &zeroFactory;
|
|
options.fZeroInitialized = SkCodec::kYes_ZeroInitialized;
|
|
}
|
|
if (!bitmap.tryAllocPixels(decodeInfo, factory, colorTable.get())) {
|
|
return SkStringPrintf("Image(%s) is too large (%d x %d)", fPath.c_str(),
|
|
decodeInfo.width(), decodeInfo.height());
|
|
}
|
|
|
|
switch (fMode) {
|
|
case kCodecZeroInit_Mode:
|
|
case kCodec_Mode: {
|
|
switch (codec->getPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), &options,
|
|
colorPtr, colorCountPtr)) {
|
|
case SkCodec::kSuccess:
|
|
// We consider incomplete to be valid, since we should still decode what is
|
|
// available.
|
|
case SkCodec::kIncompleteInput:
|
|
break;
|
|
default:
|
|
// Everything else is considered a failure.
|
|
return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str());
|
|
}
|
|
premultiply_if_necessary(bitmap);
|
|
canvas->drawBitmap(bitmap, 0, 0);
|
|
break;
|
|
}
|
|
case kScanline_Mode: {
|
|
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr,
|
|
colorCountPtr)) {
|
|
return "Could not start scanline decoder";
|
|
}
|
|
|
|
void* dst = bitmap.getAddr(0, 0);
|
|
size_t rowBytes = bitmap.rowBytes();
|
|
uint32_t height = decodeInfo.height();
|
|
switch (codec->getScanlineOrder()) {
|
|
case SkCodec::kTopDown_SkScanlineOrder:
|
|
case SkCodec::kBottomUp_SkScanlineOrder:
|
|
case SkCodec::kNone_SkScanlineOrder:
|
|
// We do not need to check the return value. On an incomplete
|
|
// image, memory will be filled with a default value.
|
|
codec->getScanlines(dst, height, rowBytes);
|
|
break;
|
|
case SkCodec::kOutOfOrder_SkScanlineOrder: {
|
|
for (int y = 0; y < decodeInfo.height(); y++) {
|
|
int dstY = codec->outputScanline(y);
|
|
void* dstPtr = bitmap.getAddr(0, dstY);
|
|
// We complete the loop, even if this call begins to fail
|
|
// due to an incomplete image. This ensures any uninitialized
|
|
// memory will be filled with the proper value.
|
|
codec->getScanlines(dstPtr, 1, bitmap.rowBytes());
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
premultiply_if_necessary(bitmap);
|
|
canvas->drawBitmap(bitmap, 0, 0);
|
|
break;
|
|
}
|
|
case kStripe_Mode: {
|
|
const int height = decodeInfo.height();
|
|
// This value is chosen arbitrarily. We exercise more cases by choosing a value that
|
|
// does not align with image blocks.
|
|
const int stripeHeight = 37;
|
|
const int numStripes = (height + stripeHeight - 1) / stripeHeight;
|
|
|
|
// Decode odd stripes
|
|
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr,
|
|
colorCountPtr)) {
|
|
return "Could not start scanline decoder";
|
|
}
|
|
|
|
// This mode was designed to test the new skip scanlines API in libjpeg-turbo.
|
|
// Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting
|
|
// to run this test for image types that do not have this scanline ordering.
|
|
if (SkCodec::kTopDown_SkScanlineOrder != codec->getScanlineOrder()) {
|
|
return Error::Nonfatal("kStripe test is only interesting for kTopDown codecs.");
|
|
}
|
|
|
|
for (int i = 0; i < numStripes; i += 2) {
|
|
// Skip a stripe
|
|
const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight);
|
|
codec->skipScanlines(linesToSkip);
|
|
|
|
// Read a stripe
|
|
const int startY = (i + 1) * stripeHeight;
|
|
const int linesToRead = SkTMin(stripeHeight, height - startY);
|
|
if (linesToRead > 0) {
|
|
codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes());
|
|
}
|
|
}
|
|
|
|
// Decode even stripes
|
|
const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo, nullptr,
|
|
colorPtr, colorCountPtr);
|
|
if (SkCodec::kSuccess != startResult) {
|
|
return "Failed to restart scanline decoder with same parameters.";
|
|
}
|
|
for (int i = 0; i < numStripes; i += 2) {
|
|
// Read a stripe
|
|
const int startY = i * stripeHeight;
|
|
const int linesToRead = SkTMin(stripeHeight, height - startY);
|
|
codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes());
|
|
|
|
// Skip a stripe
|
|
const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight);
|
|
if (linesToSkip > 0) {
|
|
codec->skipScanlines(linesToSkip);
|
|
}
|
|
}
|
|
premultiply_if_necessary(bitmap);
|
|
canvas->drawBitmap(bitmap, 0, 0);
|
|
break;
|
|
}
|
|
case kCroppedScanline_Mode: {
|
|
const int width = decodeInfo.width();
|
|
const int height = decodeInfo.height();
|
|
// This value is chosen because, as we move across the image, it will sometimes
|
|
// align with the jpeg block sizes and it will sometimes not. This allows us
|
|
// to test interestingly different code paths in the implementation.
|
|
const int tileSize = 36;
|
|
|
|
SkCodec::Options opts;
|
|
SkIRect subset;
|
|
for (int x = 0; x < width; x += tileSize) {
|
|
subset = SkIRect::MakeXYWH(x, 0, SkTMin(tileSize, width - x), height);
|
|
opts.fSubset = ⊂
|
|
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &opts,
|
|
colorPtr, colorCountPtr)) {
|
|
return "Could not start scanline decoder.";
|
|
}
|
|
|
|
codec->getScanlines(bitmap.getAddr(x, 0), height, bitmap.rowBytes());
|
|
}
|
|
|
|
premultiply_if_necessary(bitmap);
|
|
canvas->drawBitmap(bitmap, 0, 0);
|
|
break;
|
|
}
|
|
case kSubset_Mode: {
|
|
// Arbitrarily choose a divisor.
|
|
int divisor = 2;
|
|
// Total width/height of the image.
|
|
const int W = codec->getInfo().width();
|
|
const int H = codec->getInfo().height();
|
|
if (divisor > W || divisor > H) {
|
|
return Error::Nonfatal(SkStringPrintf("Cannot codec subset: divisor %d is too big "
|
|
"for %s with dimensions (%d x %d)", divisor,
|
|
fPath.c_str(), W, H));
|
|
}
|
|
// subset dimensions
|
|
// SkWebpCodec, the only one that supports subsets, requires even top/left boundaries.
|
|
const int w = SkAlign2(W / divisor);
|
|
const int h = SkAlign2(H / divisor);
|
|
SkIRect subset;
|
|
SkCodec::Options opts;
|
|
opts.fSubset = ⊂
|
|
SkBitmap subsetBm;
|
|
// We will reuse pixel memory from bitmap.
|
|
void* pixels = bitmap.getPixels();
|
|
// Keep track of left and top (for drawing subsetBm into canvas). We could use
|
|
// fScale * x and fScale * y, but we want integers such that the next subset will start
|
|
// where the last one ended. So we'll add decodeInfo.width() and height().
|
|
int left = 0;
|
|
for (int x = 0; x < W; x += w) {
|
|
int top = 0;
|
|
for (int y = 0; y < H; y+= h) {
|
|
// Do not make the subset go off the edge of the image.
|
|
const int preScaleW = SkTMin(w, W - x);
|
|
const int preScaleH = SkTMin(h, H - y);
|
|
subset.setXYWH(x, y, preScaleW, preScaleH);
|
|
// And scale
|
|
// FIXME: Should we have a version of getScaledDimensions that takes a subset
|
|
// into account?
|
|
decodeInfo = decodeInfo.makeWH(
|
|
SkTMax(1, SkScalarRoundToInt(preScaleW * fScale)),
|
|
SkTMax(1, SkScalarRoundToInt(preScaleH * fScale)));
|
|
size_t rowBytes = decodeInfo.minRowBytes();
|
|
if (!subsetBm.installPixels(decodeInfo, pixels, rowBytes, colorTable.get(),
|
|
nullptr, nullptr)) {
|
|
return SkStringPrintf("could not install pixels for %s.", fPath.c_str());
|
|
}
|
|
const SkCodec::Result result = codec->getPixels(decodeInfo, pixels, rowBytes,
|
|
&opts, colorPtr, colorCountPtr);
|
|
switch (result) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kIncompleteInput:
|
|
break;
|
|
default:
|
|
return SkStringPrintf("subset codec failed to decode (%d, %d, %d, %d) "
|
|
"from %s with dimensions (%d x %d)\t error %d",
|
|
x, y, decodeInfo.width(), decodeInfo.height(),
|
|
fPath.c_str(), W, H, result);
|
|
}
|
|
premultiply_if_necessary(subsetBm);
|
|
canvas->drawBitmap(subsetBm, SkIntToScalar(left), SkIntToScalar(top));
|
|
// translate by the scaled height.
|
|
top += decodeInfo.height();
|
|
}
|
|
// translate by the scaled width.
|
|
left += decodeInfo.width();
|
|
}
|
|
return "";
|
|
}
|
|
default:
|
|
SkASSERT(false);
|
|
return "Invalid fMode";
|
|
}
|
|
return "";
|
|
}
|
|
|
|
SkISize CodecSrc::size() const {
|
|
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
|
|
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
|
|
if (nullptr == codec) {
|
|
return SkISize::Make(0, 0);
|
|
}
|
|
return codec->getScaledDimensions(fScale);
|
|
}
|
|
|
|
Name CodecSrc::name() const {
|
|
if (1.0f == fScale) {
|
|
return SkOSPath::Basename(fPath.c_str());
|
|
}
|
|
return get_scaled_name(fPath, fScale);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
AndroidCodecSrc::AndroidCodecSrc(Path path, Mode mode, CodecSrc::DstColorType dstColorType,
|
|
SkAlphaType dstAlphaType, int sampleSize)
|
|
: fPath(path)
|
|
, fMode(mode)
|
|
, fDstColorType(dstColorType)
|
|
, fDstAlphaType(dstAlphaType)
|
|
, fSampleSize(sampleSize)
|
|
, fRunSerially(serial_from_path_name(path))
|
|
{}
|
|
|
|
bool AndroidCodecSrc::veto(SinkFlags flags) const {
|
|
// No need to test decoding to non-raster or indirect backend.
|
|
return flags.type != SinkFlags::kRaster
|
|
|| flags.approach != SinkFlags::kDirect;
|
|
}
|
|
|
|
Error AndroidCodecSrc::draw(SkCanvas* canvas) const {
|
|
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
|
|
if (!encoded) {
|
|
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
|
|
}
|
|
SkAutoTDelete<SkAndroidCodec> codec(SkAndroidCodec::NewFromData(encoded));
|
|
if (nullptr == codec.get()) {
|
|
return SkStringPrintf("Couldn't create android codec for %s.", fPath.c_str());
|
|
}
|
|
|
|
SkImageInfo decodeInfo = codec->getInfo().makeAlphaType(fDstAlphaType);
|
|
if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType)) {
|
|
return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
|
|
}
|
|
|
|
// Scale the image if it is desired.
|
|
SkISize size = codec->getSampledDimensions(fSampleSize);
|
|
|
|
// Visually inspecting very small output images is not necessary. We will
|
|
// cover these cases in unit testing.
|
|
if ((size.width() <= 10 || size.height() <= 10) && 1 != fSampleSize) {
|
|
return Error::Nonfatal("Scaling very small images is uninteresting.");
|
|
}
|
|
decodeInfo = decodeInfo.makeWH(size.width(), size.height());
|
|
|
|
// Construct a color table for the decode if necessary
|
|
SkAutoTUnref<SkColorTable> colorTable(nullptr);
|
|
SkPMColor* colorPtr = nullptr;
|
|
int* colorCountPtr = nullptr;
|
|
int maxColors = 256;
|
|
if (kIndex_8_SkColorType == decodeInfo.colorType()) {
|
|
SkPMColor colors[256];
|
|
colorTable.reset(new SkColorTable(colors, maxColors));
|
|
colorPtr = const_cast<SkPMColor*>(colorTable->readColors());
|
|
colorCountPtr = &maxColors;
|
|
}
|
|
|
|
SkBitmap bitmap;
|
|
if (!bitmap.tryAllocPixels(decodeInfo, nullptr, colorTable.get())) {
|
|
return SkStringPrintf("Image(%s) is too large (%d x %d)", fPath.c_str(),
|
|
decodeInfo.width(), decodeInfo.height());
|
|
}
|
|
|
|
// Create options for the codec.
|
|
SkAndroidCodec::AndroidOptions options;
|
|
options.fColorPtr = colorPtr;
|
|
options.fColorCount = colorCountPtr;
|
|
options.fSampleSize = fSampleSize;
|
|
|
|
switch (fMode) {
|
|
case kFullImage_Mode: {
|
|
switch (codec->getAndroidPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(),
|
|
&options)) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kIncompleteInput:
|
|
break;
|
|
default:
|
|
return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str());
|
|
}
|
|
premultiply_if_necessary(bitmap);
|
|
canvas->drawBitmap(bitmap, 0, 0);
|
|
return "";
|
|
}
|
|
case kDivisor_Mode: {
|
|
const int width = codec->getInfo().width();
|
|
const int height = codec->getInfo().height();
|
|
const int divisor = 2;
|
|
if (width < divisor || height < divisor) {
|
|
return Error::Nonfatal("Divisor is larger than image dimension.");
|
|
}
|
|
|
|
// Keep track of the final decoded dimensions.
|
|
int finalScaledWidth = 0;
|
|
int finalScaledHeight = 0;
|
|
for (int x = 0; x < divisor; x++) {
|
|
for (int y = 0; y < divisor; y++) {
|
|
// Calculate the subset dimensions
|
|
int subsetWidth = width / divisor;
|
|
int subsetHeight = height / divisor;
|
|
const int left = x * subsetWidth;
|
|
const int top = y * subsetHeight;
|
|
|
|
// Increase the size of the last subset in each row or column, when the
|
|
// divisor does not divide evenly into the image dimensions
|
|
subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0;
|
|
subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0;
|
|
SkIRect subset = SkIRect::MakeXYWH(left, top, subsetWidth, subsetHeight);
|
|
if (!codec->getSupportedSubset(&subset)) {
|
|
return "Could not get supported subset to decode.";
|
|
}
|
|
options.fSubset = ⊂
|
|
const int scaledWidthOffset = subset.left() / fSampleSize;
|
|
const int scaledHeightOffset = subset.top() / fSampleSize;
|
|
void* pixels = bitmap.getAddr(scaledWidthOffset, scaledHeightOffset);
|
|
SkISize scaledSubsetSize = codec->getSampledSubsetDimensions(fSampleSize,
|
|
subset);
|
|
SkImageInfo subsetDecodeInfo = decodeInfo.makeWH(scaledSubsetSize.width(),
|
|
scaledSubsetSize.height());
|
|
|
|
if (x + 1 == divisor && y + 1 == divisor) {
|
|
finalScaledWidth = scaledWidthOffset + scaledSubsetSize.width();
|
|
finalScaledHeight = scaledHeightOffset + scaledSubsetSize.height();
|
|
}
|
|
|
|
switch (codec->getAndroidPixels(subsetDecodeInfo, pixels, bitmap.rowBytes(),
|
|
&options)) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kIncompleteInput:
|
|
break;
|
|
default:
|
|
return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str());
|
|
}
|
|
}
|
|
}
|
|
|
|
SkRect rect = SkRect::MakeXYWH(0, 0, (SkScalar) finalScaledWidth,
|
|
(SkScalar) finalScaledHeight);
|
|
premultiply_if_necessary(bitmap);
|
|
canvas->drawBitmapRect(bitmap, rect, rect, nullptr);
|
|
return "";
|
|
}
|
|
default:
|
|
SkASSERT(false);
|
|
return "Error: Should not be reached.";
|
|
}
|
|
}
|
|
|
|
SkISize AndroidCodecSrc::size() const {
|
|
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
|
|
SkAutoTDelete<SkAndroidCodec> codec(SkAndroidCodec::NewFromData(encoded));
|
|
if (nullptr == codec) {
|
|
return SkISize::Make(0, 0);
|
|
}
|
|
return codec->getSampledDimensions(fSampleSize);
|
|
}
|
|
|
|
Name AndroidCodecSrc::name() const {
|
|
// We will replicate the names used by CodecSrc so that images can
|
|
// be compared in Gold.
|
|
if (1 == fSampleSize) {
|
|
return SkOSPath::Basename(fPath.c_str());
|
|
}
|
|
return get_scaled_name(fPath, 1.0f / (float) fSampleSize);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
static const SkRect kSKPViewport = {0,0, 1000,1000};
|
|
|
|
SKPSrc::SKPSrc(Path path) : fPath(path) {}
|
|
|
|
Error SKPSrc::draw(SkCanvas* canvas) const {
|
|
SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str()));
|
|
if (!stream) {
|
|
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
|
|
}
|
|
SkAutoTUnref<SkPicture> pic(SkPicture::CreateFromStream(stream));
|
|
if (!pic) {
|
|
return SkStringPrintf("Couldn't decode %s as a picture.", fPath.c_str());
|
|
}
|
|
stream.reset((SkStream*)nullptr); // Might as well drop this when we're done with it.
|
|
|
|
canvas->clipRect(kSKPViewport);
|
|
canvas->drawPicture(pic);
|
|
return "";
|
|
}
|
|
|
|
SkISize SKPSrc::size() const {
|
|
SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str()));
|
|
if (!stream) {
|
|
return SkISize::Make(0,0);
|
|
}
|
|
SkPictInfo info;
|
|
if (!SkPicture::InternalOnly_StreamIsSKP(stream, &info)) {
|
|
return SkISize::Make(0,0);
|
|
}
|
|
SkRect viewport = kSKPViewport;
|
|
if (!viewport.intersect(info.fCullRect)) {
|
|
return SkISize::Make(0,0);
|
|
}
|
|
return viewport.roundOut().size();
|
|
}
|
|
|
|
Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
Error NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const {
|
|
SkAutoTDelete<SkCanvas> canvas(SkCreateNullCanvas());
|
|
return src.draw(canvas);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?");
|
|
|
|
GPUSink::GPUSink(GrContextFactory::GLContextType ct,
|
|
GrContextFactory::GLContextOptions options,
|
|
int samples,
|
|
bool diText,
|
|
bool threaded)
|
|
: fContextType(ct)
|
|
, fContextOptions(options)
|
|
, fSampleCount(samples)
|
|
, fUseDIText(diText)
|
|
, fThreaded(threaded) {}
|
|
|
|
void PreAbandonGpuContextErrorHandler(SkError, void*) {}
|
|
|
|
DEFINE_bool(imm, false, "Run gpu configs in immediate mode.");
|
|
DEFINE_bool(batchClip, false, "Clip each GrBatch to its device bounds for testing.");
|
|
DEFINE_bool(batchBounds, false, "Draw a wireframe bounds of each GrBatch.");
|
|
DEFINE_int32(batchLookback, -1, "Maximum GrBatch lookback for combining, negative means default.");
|
|
DEFINE_int32(batchLookahead, -1, "Maximum GrBatch lookahead for combining, negative means "
|
|
"default.");
|
|
|
|
Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const {
|
|
GrContextOptions grOptions;
|
|
grOptions.fImmediateMode = FLAGS_imm;
|
|
grOptions.fClipBatchToBounds = FLAGS_batchClip;
|
|
grOptions.fDrawBatchBounds = FLAGS_batchBounds;
|
|
grOptions.fMaxBatchLookback = FLAGS_batchLookback;
|
|
grOptions.fMaxBatchLookahead = FLAGS_batchLookahead;
|
|
|
|
src.modifyGrContextOptions(&grOptions);
|
|
|
|
GrContextFactory factory(grOptions);
|
|
const SkISize size = src.size();
|
|
const SkImageInfo info =
|
|
SkImageInfo::Make(size.width(), size.height(), kN32_SkColorType, kPremul_SkAlphaType);
|
|
#if SK_SUPPORT_GPU
|
|
const int maxDimension = factory.getContextInfo(fContextType, fContextOptions).
|
|
fGrContext->caps()->maxTextureSize();
|
|
if (maxDimension < SkTMax(size.width(), size.height())) {
|
|
return Error::Nonfatal("Src too large to create a texture.\n");
|
|
}
|
|
#endif
|
|
|
|
SkAutoTUnref<SkSurface> surface(
|
|
NewGpuSurface(&factory, fContextType, fContextOptions, info, fSampleCount, fUseDIText));
|
|
if (!surface) {
|
|
return "Could not create a surface.";
|
|
}
|
|
if (FLAGS_preAbandonGpuContext) {
|
|
SkSetErrorCallback(&PreAbandonGpuContextErrorHandler, nullptr);
|
|
factory.abandonContexts();
|
|
}
|
|
SkCanvas* canvas = surface->getCanvas();
|
|
Error err = src.draw(canvas);
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
canvas->flush();
|
|
if (FLAGS_gpuStats) {
|
|
canvas->getGrContext()->dumpCacheStats(log);
|
|
canvas->getGrContext()->dumpGpuStats(log);
|
|
}
|
|
dst->allocPixels(info);
|
|
canvas->readPixels(dst, 0, 0);
|
|
if (FLAGS_abandonGpuContext) {
|
|
factory.abandonContexts();
|
|
}
|
|
return "";
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
static Error draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) {
|
|
// Print the given DM:Src to a document, breaking on 8.5x11 pages.
|
|
SkASSERT(doc);
|
|
int width = src.size().width(),
|
|
height = src.size().height();
|
|
|
|
if (FLAGS_multiPage) {
|
|
const int kLetterWidth = 612, // 8.5 * 72
|
|
kLetterHeight = 792; // 11 * 72
|
|
const SkRect letter = SkRect::MakeWH(SkIntToScalar(kLetterWidth),
|
|
SkIntToScalar(kLetterHeight));
|
|
|
|
int xPages = ((width - 1) / kLetterWidth) + 1;
|
|
int yPages = ((height - 1) / kLetterHeight) + 1;
|
|
|
|
for (int y = 0; y < yPages; ++y) {
|
|
for (int x = 0; x < xPages; ++x) {
|
|
int w = SkTMin(kLetterWidth, width - (x * kLetterWidth));
|
|
int h = SkTMin(kLetterHeight, height - (y * kLetterHeight));
|
|
SkCanvas* canvas =
|
|
doc->beginPage(SkIntToScalar(w), SkIntToScalar(h));
|
|
if (!canvas) {
|
|
return "SkDocument::beginPage(w,h) returned nullptr";
|
|
}
|
|
canvas->clipRect(letter);
|
|
canvas->translate(-letter.width() * x, -letter.height() * y);
|
|
Error err = src.draw(canvas);
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
doc->endPage();
|
|
}
|
|
}
|
|
} else {
|
|
SkCanvas* canvas =
|
|
doc->beginPage(SkIntToScalar(width), SkIntToScalar(height));
|
|
if (!canvas) {
|
|
return "SkDocument::beginPage(w,h) returned nullptr";
|
|
}
|
|
Error err = src.draw(canvas);
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
doc->endPage();
|
|
}
|
|
if (!doc->close()) {
|
|
return "SkDocument::close() returned false";
|
|
}
|
|
dst->flush();
|
|
return "";
|
|
}
|
|
|
|
PDFSink::PDFSink(const char* rasterizer) : fRasterizer(rasterizer) {}
|
|
|
|
Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
|
|
SkAutoTUnref<SkDocument> doc(SkDocument::CreatePDF(dst));
|
|
if (!doc) {
|
|
return "SkDocument::CreatePDF() returned nullptr";
|
|
}
|
|
SkTArray<SkDocument::Attribute> info;
|
|
info.emplace_back(SkString("Title"), src.name());
|
|
info.emplace_back(SkString("Subject"),
|
|
SkString("rendering correctness test"));
|
|
info.emplace_back(SkString("Creator"), SkString("Skia/DM"));
|
|
|
|
info.emplace_back(SkString("Keywords"),
|
|
SkStringPrintf("Rasterizer:%s;", fRasterizer));
|
|
doc->setMetadata(&info[0], info.count(), nullptr, nullptr);
|
|
return draw_skdocument(src, doc.get(), dst);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
XPSSink::XPSSink() {}
|
|
|
|
Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
|
|
SkAutoTUnref<SkDocument> doc(SkDocument::CreateXPS(dst));
|
|
if (!doc) {
|
|
return "SkDocument::CreateXPS() returned nullptr";
|
|
}
|
|
return draw_skdocument(src, doc.get(), dst);
|
|
}
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
SKPSink::SKPSink() {}
|
|
|
|
Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
|
|
SkSize size;
|
|
size = src.size();
|
|
SkPictureRecorder recorder;
|
|
Error err = src.draw(recorder.beginRecording(size.width(), size.height()));
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
SkAutoTUnref<SkPicture> pic(recorder.endRecording());
|
|
pic->serialize(dst);
|
|
return "";
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
SVGSink::SVGSink() {}
|
|
|
|
Error SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
|
|
SkAutoTDelete<SkXMLWriter> xmlWriter(new SkXMLStreamWriter(dst));
|
|
SkAutoTUnref<SkCanvas> canvas(SkSVGCanvas::Create(
|
|
SkRect::MakeWH(SkIntToScalar(src.size().width()), SkIntToScalar(src.size().height())),
|
|
xmlWriter));
|
|
return src.draw(canvas);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
RasterSink::RasterSink(SkColorType colorType, SkColorProfileType profileType)
|
|
: fColorType(colorType)
|
|
, fProfileType(profileType) {}
|
|
|
|
Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const {
|
|
const SkISize size = src.size();
|
|
// If there's an appropriate alpha type for this color type, use it, otherwise use premul.
|
|
SkAlphaType alphaType = kPremul_SkAlphaType;
|
|
(void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType);
|
|
|
|
SkMallocPixelRef::ZeroedPRFactory factory;
|
|
dst->allocPixels(SkImageInfo::Make(size.width(), size.height(),
|
|
fColorType, alphaType, fProfileType),
|
|
&factory,
|
|
nullptr/*colortable*/);
|
|
SkCanvas canvas(*dst);
|
|
return src.draw(&canvas);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
// Handy for front-patching a Src. Do whatever up-front work you need, then call draw_to_canvas(),
|
|
// passing the Sink draw() arguments, a size, and a function draws into an SkCanvas.
|
|
// Several examples below.
|
|
|
|
template <typename Fn>
|
|
static Error draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log,
|
|
SkISize size, const Fn& draw) {
|
|
class ProxySrc : public Src {
|
|
public:
|
|
ProxySrc(SkISize size, const Fn& draw) : fSize(size), fDraw(draw) {}
|
|
Error draw(SkCanvas* canvas) const override { return fDraw(canvas); }
|
|
Name name() const override { sk_throw(); return ""; } // Won't be called.
|
|
SkISize size() const override { return fSize; }
|
|
private:
|
|
SkISize fSize;
|
|
const Fn& fDraw;
|
|
};
|
|
return sink->draw(ProxySrc(size, draw), bitmap, stream, log);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
DEFINE_bool(check, true, "If true, have most Via- modes fail if they affect the output.");
|
|
|
|
// Is *bitmap identical to what you get drawing src into sink?
|
|
static Error check_against_reference(const SkBitmap* bitmap, const Src& src, Sink* sink) {
|
|
// We can only check raster outputs.
|
|
// (Non-raster outputs like .pdf, .skp, .svg may differ but still draw identically.)
|
|
if (FLAGS_check && bitmap) {
|
|
SkBitmap reference;
|
|
SkString log;
|
|
Error err = sink->draw(src, &reference, nullptr, &log);
|
|
// If we can draw into this Sink via some pipeline, we should be able to draw directly.
|
|
SkASSERT(err.isEmpty());
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
// The dimensions are a property of the Src only, and so should be identical.
|
|
SkASSERT(reference.getSize() == bitmap->getSize());
|
|
if (reference.getSize() != bitmap->getSize()) {
|
|
return "Dimensions don't match reference";
|
|
}
|
|
// All SkBitmaps in DM are pre-locked and tight, so this comparison is easy.
|
|
if (0 != memcmp(reference.getPixels(), bitmap->getPixels(), reference.getSize())) {
|
|
return "Pixels don't match reference";
|
|
}
|
|
}
|
|
return "";
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) {
|
|
SkRect bounds = SkRect::MakeIWH(srcW, srcH);
|
|
matrix->mapRect(&bounds);
|
|
matrix->postTranslate(-bounds.x(), -bounds.y());
|
|
return SkISize::Make(SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height()));
|
|
}
|
|
|
|
ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}
|
|
|
|
Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
SkMatrix matrix = fMatrix;
|
|
SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height());
|
|
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
|
|
canvas->concat(matrix);
|
|
return src.draw(canvas);
|
|
});
|
|
}
|
|
|
|
// Undoes any flip or 90 degree rotate without changing the scale of the bitmap.
|
|
// This should be pixel-preserving.
|
|
ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}
|
|
|
|
Error ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
Error err = fSink->draw(src, bitmap, stream, log);
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
|
|
SkMatrix inverse;
|
|
if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) {
|
|
return "Cannot upright --matrix.";
|
|
}
|
|
SkMatrix upright = SkMatrix::I();
|
|
upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX()));
|
|
upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY()));
|
|
upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX()));
|
|
upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY()));
|
|
|
|
SkBitmap uprighted;
|
|
SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height());
|
|
uprighted.allocPixels(bitmap->info().makeWH(size.width(), size.height()));
|
|
|
|
SkCanvas canvas(uprighted);
|
|
canvas.concat(upright);
|
|
SkPaint paint;
|
|
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
|
|
canvas.drawBitmap(*bitmap, 0, 0, &paint);
|
|
|
|
*bitmap = uprighted;
|
|
bitmap->lockPixels();
|
|
return "";
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
Error ViaSerialization::draw(
|
|
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
// Record our Src into a picture.
|
|
auto size = src.size();
|
|
SkPictureRecorder recorder;
|
|
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
|
|
SkIntToScalar(size.height())));
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
SkAutoTUnref<SkPicture> pic(recorder.endRecording());
|
|
|
|
// Serialize it and then deserialize it.
|
|
SkDynamicMemoryWStream wStream;
|
|
pic->serialize(&wStream);
|
|
SkAutoTDelete<SkStream> rStream(wStream.detachAsStream());
|
|
SkAutoTUnref<SkPicture> deserialized(SkPicture::CreateFromStream(rStream));
|
|
|
|
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
|
|
canvas->drawPicture(deserialized);
|
|
return check_against_reference(bitmap, src, fSink);
|
|
});
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink)
|
|
: Via(sink)
|
|
, fW(w)
|
|
, fH(h)
|
|
, fFactory(factory) {}
|
|
|
|
Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
auto size = src.size();
|
|
SkPictureRecorder recorder;
|
|
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
|
|
SkIntToScalar(size.height()),
|
|
fFactory.get()));
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
SkAutoTUnref<SkPicture> pic(recorder.endRecordingAsPicture());
|
|
|
|
return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) {
|
|
const int xTiles = (size.width() + fW - 1) / fW,
|
|
yTiles = (size.height() + fH - 1) / fH;
|
|
SkMultiPictureDraw mpd(xTiles*yTiles);
|
|
SkTDArray<SkSurface*> surfaces;
|
|
surfaces.setReserve(xTiles*yTiles);
|
|
|
|
SkImageInfo info = canvas->imageInfo().makeWH(fW, fH);
|
|
for (int j = 0; j < yTiles; j++) {
|
|
for (int i = 0; i < xTiles; i++) {
|
|
// This lets our ultimate Sink determine the best kind of surface.
|
|
// E.g., if it's a GpuSink, the surfaces and images are textures.
|
|
SkSurface* s = canvas->newSurface(info);
|
|
if (!s) {
|
|
s = SkSurface::NewRaster(info); // Some canvases can't create surfaces.
|
|
}
|
|
surfaces.push(s);
|
|
SkCanvas* c = s->getCanvas();
|
|
c->translate(SkIntToScalar(-i * fW),
|
|
SkIntToScalar(-j * fH)); // Line up the canvas with this tile.
|
|
mpd.add(c, pic);
|
|
}
|
|
}
|
|
mpd.draw();
|
|
for (int j = 0; j < yTiles; j++) {
|
|
for (int i = 0; i < xTiles; i++) {
|
|
SkAutoTUnref<SkImage> image(surfaces[i+xTiles*j]->newImageSnapshot());
|
|
canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH));
|
|
}
|
|
}
|
|
surfaces.unrefAll();
|
|
return "";
|
|
});
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
Error ViaPicture::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
auto size = src.size();
|
|
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
|
|
SkPictureRecorder recorder;
|
|
SkAutoTUnref<SkPicture> pic;
|
|
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
|
|
SkIntToScalar(size.height())));
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
pic.reset(recorder.endRecordingAsPicture());
|
|
canvas->drawPicture(pic);
|
|
return check_against_reference(bitmap, src, fSink);
|
|
});
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
// Draw the Src into two pictures, then draw the second picture into the wrapped Sink.
|
|
// This tests that any shortcuts we may take while recording that second picture are legal.
|
|
Error ViaSecondPicture::draw(
|
|
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
auto size = src.size();
|
|
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
|
|
SkPictureRecorder recorder;
|
|
SkAutoTUnref<SkPicture> pic;
|
|
for (int i = 0; i < 2; i++) {
|
|
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
|
|
SkIntToScalar(size.height())));
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
pic.reset(recorder.endRecordingAsPicture());
|
|
}
|
|
canvas->drawPicture(pic);
|
|
return check_against_reference(bitmap, src, fSink);
|
|
});
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
// Draw the Src twice. This can help exercise caching.
|
|
Error ViaTwice::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) -> Error {
|
|
for (int i = 0; i < 2; i++) {
|
|
SkAutoCanvasRestore acr(canvas, true/*save now*/);
|
|
canvas->clear(SK_ColorTRANSPARENT);
|
|
Error err = src.draw(canvas);
|
|
if (err.isEmpty()) {
|
|
return err;
|
|
}
|
|
}
|
|
return check_against_reference(bitmap, src, fSink);
|
|
});
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
#ifdef SK_MOJO
|
|
Error ViaMojo::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
SkPictureRecorder recorder;
|
|
SkRect size = SkRect::Make(SkIRect::MakeSize(src.size()));
|
|
Error err = src.draw(recorder.beginRecording(size));
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
SkAutoTUnref<SkPicture> skPicture(recorder.endRecording());
|
|
|
|
SkASSERT(skPicture);
|
|
SkDynamicMemoryWStream buffer;
|
|
skPicture->serialize(&buffer);
|
|
skPicture.reset();
|
|
SkMojo::FlattenedPicturePtr mojoPicture = SkMojo::FlattenedPicture::New();
|
|
mojoPicture->data.resize(buffer.bytesWritten());
|
|
buffer.copyTo(mojoPicture->data.data());
|
|
buffer.reset();
|
|
SkASSERT(mojoPicture.get() && mojoPicture->data);
|
|
|
|
size_t flatSize = mojoPicture->GetSerializedSize();
|
|
SkAutoMalloc storage(flatSize);
|
|
if (!mojoPicture->Serialize(storage.get(), flatSize)) {
|
|
return "SkMojo::FlattenedPicture::Serialize failed";
|
|
}
|
|
mojoPicture = SkMojo::FlattenedPicture::New();
|
|
mojoPicture->Deserialize(storage.get());
|
|
storage.free();
|
|
if (!mojoPicture) {
|
|
return "SkMojo::FlattenedPicture::Deserialize failed";
|
|
}
|
|
SkMemoryStream tmpStream(mojoPicture->data.data(),
|
|
mojoPicture->data.size());
|
|
skPicture.reset(SkPicture::CreateFromStream(&tmpStream));
|
|
mojoPicture.reset();
|
|
auto fn = [&](SkCanvas* canvas) -> Error {
|
|
canvas->drawPicture(skPicture.get());
|
|
return check_against_reference(bitmap, src, fSink);
|
|
};
|
|
return draw_to_canvas(fSink, bitmap, stream, log, src.size(), fn);
|
|
}
|
|
#else // not SK_MOJO
|
|
Error ViaMojo::draw(const Src&, SkBitmap*, SkWStream*, SkString*) const {
|
|
return "Mojo is missing!";
|
|
}
|
|
#endif
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
// This is like SkRecords::Draw, in that it plays back SkRecords ops into a Canvas.
|
|
// Unlike SkRecords::Draw, it builds a single-op sub-picture out of each Draw-type op.
|
|
// This is an only-slightly-exaggerated simluation of Blink's Slimming Paint pictures.
|
|
struct DrawsAsSingletonPictures {
|
|
SkCanvas* fCanvas;
|
|
const SkDrawableList& fDrawables;
|
|
|
|
template <typename T>
|
|
void draw(const T& op, SkCanvas* canvas) {
|
|
// We must pass SkMatrix::I() as our initial matrix.
|
|
// By default SkRecords::Draw() uses the canvas' matrix as its initial matrix,
|
|
// which would have the funky effect of applying transforms over and over.
|
|
SkRecords::Draw d(canvas, nullptr, fDrawables.begin(), fDrawables.count(), &SkMatrix::I());
|
|
d(op);
|
|
}
|
|
|
|
// Draws get their own picture.
|
|
template <typename T>
|
|
SK_WHEN(T::kTags & SkRecords::kDraw_Tag, void) operator()(const T& op) {
|
|
SkPictureRecorder rec;
|
|
this->draw(op, rec.beginRecording(SkRect::MakeLargest()));
|
|
SkAutoTUnref<SkPicture> pic(rec.endRecordingAsPicture());
|
|
fCanvas->drawPicture(pic);
|
|
}
|
|
|
|
// We'll just issue non-draws directly.
|
|
template <typename T>
|
|
skstd::enable_if_t<!(T::kTags & SkRecords::kDraw_Tag), void> operator()(const T& op) {
|
|
this->draw(op, fCanvas);
|
|
}
|
|
};
|
|
|
|
// Record Src into a picture, then record it into a macro picture with a sub-picture for each draw.
|
|
// Then play back that macro picture into our wrapped sink.
|
|
Error ViaSingletonPictures::draw(
|
|
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
auto size = src.size();
|
|
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
|
|
// Use low-level (Skia-private) recording APIs so we can read the SkRecord.
|
|
SkRecord skr;
|
|
SkRecorder recorder(&skr, size.width(), size.height());
|
|
Error err = src.draw(&recorder);
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
|
|
// Record our macro-picture, with each draw op as its own sub-picture.
|
|
SkPictureRecorder macroRec;
|
|
SkCanvas* macroCanvas = macroRec.beginRecording(SkIntToScalar(size.width()),
|
|
SkIntToScalar(size.height()));
|
|
|
|
SkAutoTDelete<SkDrawableList> drawables(recorder.detachDrawableList());
|
|
const SkDrawableList empty;
|
|
|
|
DrawsAsSingletonPictures drawsAsSingletonPictures = {
|
|
macroCanvas,
|
|
drawables ? *drawables : empty,
|
|
};
|
|
for (int i = 0; i < skr.count(); i++) {
|
|
skr.visit<void>(i, drawsAsSingletonPictures);
|
|
}
|
|
SkAutoTUnref<SkPicture> macroPic(macroRec.endRecordingAsPicture());
|
|
|
|
canvas->drawPicture(macroPic);
|
|
return check_against_reference(bitmap, src, fSink);
|
|
});
|
|
}
|
|
|
|
} // namespace DM
|