c0bd9f9fe5
Current strategy: everything from the top Things to look at first are the manual changes: - added tools/rewrite_includes.py - removed -Idirectives from BUILD.gn - various compile.sh simplifications - tweak tools/embed_resources.py - update gn/find_headers.py to write paths from the top - update gn/gn_to_bp.py SkUserConfig.h layout so that #include "include/config/SkUserConfig.h" always gets the header we want. No-Presubmit: true Change-Id: I73a4b181654e0e38d229bc456c0d0854bae3363e Reviewed-on: https://skia-review.googlesource.com/c/skia/+/209706 Commit-Queue: Mike Klein <mtklein@google.com> Reviewed-by: Hal Canary <halcanary@google.com> Reviewed-by: Brian Osman <brianosman@google.com> Reviewed-by: Florin Malita <fmalita@chromium.org>
472 lines
15 KiB
C++
472 lines
15 KiB
C++
/*
|
|
* Copyright 2011 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#ifndef SkMatrix44_DEFINED
|
|
#define SkMatrix44_DEFINED
|
|
|
|
#include "include/core/SkMatrix.h"
|
|
#include "include/core/SkScalar.h"
|
|
|
|
#include <atomic>
|
|
#include <cstring>
|
|
|
|
#ifdef SK_MSCALAR_IS_DOUBLE
|
|
#ifdef SK_MSCALAR_IS_FLOAT
|
|
#error "can't define MSCALAR both as DOUBLE and FLOAT"
|
|
#endif
|
|
typedef double SkMScalar;
|
|
|
|
static inline double SkFloatToMScalar(float x) {
|
|
return static_cast<double>(x);
|
|
}
|
|
static inline float SkMScalarToFloat(double x) {
|
|
return static_cast<float>(x);
|
|
}
|
|
static inline double SkDoubleToMScalar(double x) {
|
|
return x;
|
|
}
|
|
static inline double SkMScalarToDouble(double x) {
|
|
return x;
|
|
}
|
|
static inline double SkMScalarAbs(double x) {
|
|
return fabs(x);
|
|
}
|
|
static const SkMScalar SK_MScalarPI = 3.141592653589793;
|
|
|
|
#define SkMScalarFloor(x) sk_double_floor(x)
|
|
#define SkMScalarCeil(x) sk_double_ceil(x)
|
|
#define SkMScalarRound(x) sk_double_round(x)
|
|
|
|
#define SkMScalarFloorToInt(x) sk_double_floor2int(x)
|
|
#define SkMScalarCeilToInt(x) sk_double_ceil2int(x)
|
|
#define SkMScalarRoundToInt(x) sk_double_round2int(x)
|
|
|
|
|
|
#elif defined SK_MSCALAR_IS_FLOAT
|
|
#ifdef SK_MSCALAR_IS_DOUBLE
|
|
#error "can't define MSCALAR both as DOUBLE and FLOAT"
|
|
#endif
|
|
typedef float SkMScalar;
|
|
|
|
static inline float SkFloatToMScalar(float x) {
|
|
return x;
|
|
}
|
|
static inline float SkMScalarToFloat(float x) {
|
|
return x;
|
|
}
|
|
static inline float SkDoubleToMScalar(double x) {
|
|
return sk_double_to_float(x);
|
|
}
|
|
static inline double SkMScalarToDouble(float x) {
|
|
return static_cast<double>(x);
|
|
}
|
|
static inline float SkMScalarAbs(float x) {
|
|
return sk_float_abs(x);
|
|
}
|
|
static const SkMScalar SK_MScalarPI = 3.14159265f;
|
|
|
|
#define SkMScalarFloor(x) sk_float_floor(x)
|
|
#define SkMScalarCeil(x) sk_float_ceil(x)
|
|
#define SkMScalarRound(x) sk_float_round(x)
|
|
|
|
#define SkMScalarFloorToInt(x) sk_float_floor2int(x)
|
|
#define SkMScalarCeilToInt(x) sk_float_ceil2int(x)
|
|
#define SkMScalarRoundToInt(x) sk_float_round2int(x)
|
|
|
|
#endif
|
|
|
|
#define SkIntToMScalar(n) static_cast<SkMScalar>(n)
|
|
|
|
#define SkMScalarToScalar(x) SkMScalarToFloat(x)
|
|
#define SkScalarToMScalar(x) SkFloatToMScalar(x)
|
|
|
|
static const SkMScalar SK_MScalar1 = 1;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct SkVector4 {
|
|
SkScalar fData[4];
|
|
|
|
SkVector4() {
|
|
this->set(0, 0, 0, 1);
|
|
}
|
|
SkVector4(const SkVector4& src) {
|
|
memcpy(fData, src.fData, sizeof(fData));
|
|
}
|
|
SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
|
|
fData[0] = x;
|
|
fData[1] = y;
|
|
fData[2] = z;
|
|
fData[3] = w;
|
|
}
|
|
|
|
SkVector4& operator=(const SkVector4& src) {
|
|
memcpy(fData, src.fData, sizeof(fData));
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const SkVector4& v) {
|
|
return fData[0] == v.fData[0] && fData[1] == v.fData[1] &&
|
|
fData[2] == v.fData[2] && fData[3] == v.fData[3];
|
|
}
|
|
bool operator!=(const SkVector4& v) {
|
|
return !(*this == v);
|
|
}
|
|
bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
|
|
return fData[0] == x && fData[1] == y &&
|
|
fData[2] == z && fData[3] == w;
|
|
}
|
|
|
|
void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
|
|
fData[0] = x;
|
|
fData[1] = y;
|
|
fData[2] = z;
|
|
fData[3] = w;
|
|
}
|
|
};
|
|
|
|
/** \class SkMatrix44
|
|
|
|
The SkMatrix44 class holds a 4x4 matrix.
|
|
|
|
*/
|
|
class SK_API SkMatrix44 {
|
|
public:
|
|
|
|
enum Uninitialized_Constructor {
|
|
kUninitialized_Constructor
|
|
};
|
|
enum Identity_Constructor {
|
|
kIdentity_Constructor
|
|
};
|
|
|
|
SkMatrix44(Uninitialized_Constructor) {} // ironically, cannot be constexpr
|
|
|
|
constexpr SkMatrix44(Identity_Constructor)
|
|
: fMat{{ 1, 0, 0, 0, },
|
|
{ 0, 1, 0, 0, },
|
|
{ 0, 0, 1, 0, },
|
|
{ 0, 0, 0, 1, }}
|
|
, fTypeMask(kIdentity_Mask)
|
|
{}
|
|
|
|
constexpr SkMatrix44() : SkMatrix44{kIdentity_Constructor} {}
|
|
|
|
SkMatrix44(const SkMatrix44& src) = default;
|
|
|
|
SkMatrix44& operator=(const SkMatrix44& src) = default;
|
|
|
|
SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) {
|
|
this->setConcat(a, b);
|
|
}
|
|
|
|
bool operator==(const SkMatrix44& other) const;
|
|
bool operator!=(const SkMatrix44& other) const {
|
|
return !(other == *this);
|
|
}
|
|
|
|
/* When converting from SkMatrix44 to SkMatrix, the third row and
|
|
* column is dropped. When converting from SkMatrix to SkMatrix44
|
|
* the third row and column remain as identity:
|
|
* [ a b c ] [ a b 0 c ]
|
|
* [ d e f ] -> [ d e 0 f ]
|
|
* [ g h i ] [ 0 0 1 0 ]
|
|
* [ g h 0 i ]
|
|
*/
|
|
SkMatrix44(const SkMatrix&);
|
|
SkMatrix44& operator=(const SkMatrix& src);
|
|
operator SkMatrix() const;
|
|
|
|
/**
|
|
* Return a reference to a const identity matrix
|
|
*/
|
|
static const SkMatrix44& I();
|
|
|
|
using TypeMask = uint8_t;
|
|
enum : TypeMask {
|
|
kIdentity_Mask = 0,
|
|
kTranslate_Mask = 1 << 0, //!< set if the matrix has translation
|
|
kScale_Mask = 1 << 1, //!< set if the matrix has any scale != 1
|
|
kAffine_Mask = 1 << 2, //!< set if the matrix skews or rotates
|
|
kPerspective_Mask = 1 << 3, //!< set if the matrix is in perspective
|
|
};
|
|
|
|
/**
|
|
* Returns a bitfield describing the transformations the matrix may
|
|
* perform. The bitfield is computed conservatively, so it may include
|
|
* false positives. For example, when kPerspective_Mask is true, all
|
|
* other bits may be set to true even in the case of a pure perspective
|
|
* transform.
|
|
*/
|
|
inline TypeMask getType() const { return fTypeMask; }
|
|
|
|
/**
|
|
* Return true if the matrix is identity.
|
|
*/
|
|
inline bool isIdentity() const {
|
|
return kIdentity_Mask == this->getType();
|
|
}
|
|
|
|
/**
|
|
* Return true if the matrix contains translate or is identity.
|
|
*/
|
|
inline bool isTranslate() const {
|
|
return !(this->getType() & ~kTranslate_Mask);
|
|
}
|
|
|
|
/**
|
|
* Return true if the matrix only contains scale or translate or is identity.
|
|
*/
|
|
inline bool isScaleTranslate() const {
|
|
return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
|
|
}
|
|
|
|
/**
|
|
* Returns true if the matrix only contains scale or is identity.
|
|
*/
|
|
inline bool isScale() const {
|
|
return !(this->getType() & ~kScale_Mask);
|
|
}
|
|
|
|
inline bool hasPerspective() const {
|
|
return SkToBool(this->getType() & kPerspective_Mask);
|
|
}
|
|
|
|
void setIdentity();
|
|
inline void reset() { this->setIdentity();}
|
|
|
|
/**
|
|
* get a value from the matrix. The row,col parameters work as follows:
|
|
* (0, 0) scale-x
|
|
* (0, 3) translate-x
|
|
* (3, 0) perspective-x
|
|
*/
|
|
inline SkMScalar get(int row, int col) const {
|
|
SkASSERT((unsigned)row <= 3);
|
|
SkASSERT((unsigned)col <= 3);
|
|
return fMat[col][row];
|
|
}
|
|
|
|
/**
|
|
* set a value in the matrix. The row,col parameters work as follows:
|
|
* (0, 0) scale-x
|
|
* (0, 3) translate-x
|
|
* (3, 0) perspective-x
|
|
*/
|
|
inline void set(int row, int col, SkMScalar value) {
|
|
SkASSERT((unsigned)row <= 3);
|
|
SkASSERT((unsigned)col <= 3);
|
|
fMat[col][row] = value;
|
|
this->recomputeTypeMask();
|
|
}
|
|
|
|
inline double getDouble(int row, int col) const {
|
|
return SkMScalarToDouble(this->get(row, col));
|
|
}
|
|
inline void setDouble(int row, int col, double value) {
|
|
this->set(row, col, SkDoubleToMScalar(value));
|
|
}
|
|
inline float getFloat(int row, int col) const {
|
|
return SkMScalarToFloat(this->get(row, col));
|
|
}
|
|
inline void setFloat(int row, int col, float value) {
|
|
this->set(row, col, SkFloatToMScalar(value));
|
|
}
|
|
|
|
/** These methods allow one to efficiently read matrix entries into an
|
|
* array. The given array must have room for exactly 16 entries. Whenever
|
|
* possible, they will try to use memcpy rather than an entry-by-entry
|
|
* copy.
|
|
*
|
|
* Col major indicates that consecutive elements of columns will be stored
|
|
* contiguously in memory. Row major indicates that consecutive elements
|
|
* of rows will be stored contiguously in memory.
|
|
*/
|
|
void asColMajorf(float[]) const;
|
|
void asColMajord(double[]) const;
|
|
void asRowMajorf(float[]) const;
|
|
void asRowMajord(double[]) const;
|
|
|
|
/** These methods allow one to efficiently set all matrix entries from an
|
|
* array. The given array must have room for exactly 16 entries. Whenever
|
|
* possible, they will try to use memcpy rather than an entry-by-entry
|
|
* copy.
|
|
*
|
|
* Col major indicates that input memory will be treated as if consecutive
|
|
* elements of columns are stored contiguously in memory. Row major
|
|
* indicates that input memory will be treated as if consecutive elements
|
|
* of rows are stored contiguously in memory.
|
|
*/
|
|
void setColMajorf(const float[]);
|
|
void setColMajord(const double[]);
|
|
void setRowMajorf(const float[]);
|
|
void setRowMajord(const double[]);
|
|
|
|
#ifdef SK_MSCALAR_IS_FLOAT
|
|
void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); }
|
|
void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); }
|
|
#else
|
|
void setColMajor(const SkMScalar data[]) { this->setColMajord(data); }
|
|
void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); }
|
|
#endif
|
|
|
|
/* This sets the top-left of the matrix and clears the translation and
|
|
* perspective components (with [3][3] set to 1). m_ij is interpreted
|
|
* as the matrix entry at row = i, col = j. */
|
|
void set3x3(SkMScalar m_00, SkMScalar m_10, SkMScalar m_20,
|
|
SkMScalar m_01, SkMScalar m_11, SkMScalar m_21,
|
|
SkMScalar m_02, SkMScalar m_12, SkMScalar m_22);
|
|
void set3x3RowMajorf(const float[]);
|
|
|
|
void set4x4(SkMScalar m_00, SkMScalar m_10, SkMScalar m_20, SkMScalar m_30,
|
|
SkMScalar m_01, SkMScalar m_11, SkMScalar m_21, SkMScalar m_31,
|
|
SkMScalar m_02, SkMScalar m_12, SkMScalar m_22, SkMScalar m_32,
|
|
SkMScalar m_03, SkMScalar m_13, SkMScalar m_23, SkMScalar m_33);
|
|
|
|
void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
|
|
void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
|
|
void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
|
|
|
|
void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
|
|
void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
|
|
void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
|
|
|
|
inline void setScale(SkMScalar scale) {
|
|
this->setScale(scale, scale, scale);
|
|
}
|
|
inline void preScale(SkMScalar scale) {
|
|
this->preScale(scale, scale, scale);
|
|
}
|
|
inline void postScale(SkMScalar scale) {
|
|
this->postScale(scale, scale, scale);
|
|
}
|
|
|
|
void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z,
|
|
SkMScalar degrees) {
|
|
this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180);
|
|
}
|
|
|
|
/** Rotate about the vector [x,y,z]. If that vector is not unit-length,
|
|
it will be automatically resized.
|
|
*/
|
|
void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
|
|
SkMScalar radians);
|
|
/** Rotate about the vector [x,y,z]. Does not check the length of the
|
|
vector, assuming it is unit-length.
|
|
*/
|
|
void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
|
|
SkMScalar radians);
|
|
|
|
void setConcat(const SkMatrix44& a, const SkMatrix44& b);
|
|
inline void preConcat(const SkMatrix44& m) {
|
|
this->setConcat(*this, m);
|
|
}
|
|
inline void postConcat(const SkMatrix44& m) {
|
|
this->setConcat(m, *this);
|
|
}
|
|
|
|
friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) {
|
|
return SkMatrix44(a, b);
|
|
}
|
|
|
|
/** If this is invertible, return that in inverse and return true. If it is
|
|
not invertible, return false and leave the inverse parameter in an
|
|
unspecified state.
|
|
*/
|
|
bool invert(SkMatrix44* inverse) const;
|
|
|
|
/** Transpose this matrix in place. */
|
|
void transpose();
|
|
|
|
/** Apply the matrix to the src vector, returning the new vector in dst.
|
|
It is legal for src and dst to point to the same memory.
|
|
*/
|
|
void mapScalars(const SkScalar src[4], SkScalar dst[4]) const;
|
|
inline void mapScalars(SkScalar vec[4]) const {
|
|
this->mapScalars(vec, vec);
|
|
}
|
|
|
|
#ifdef SK_MSCALAR_IS_DOUBLE
|
|
void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const;
|
|
#elif defined SK_MSCALAR_IS_FLOAT
|
|
inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
|
|
this->mapScalars(src, dst);
|
|
}
|
|
#endif
|
|
inline void mapMScalars(SkMScalar vec[4]) const {
|
|
this->mapMScalars(vec, vec);
|
|
}
|
|
|
|
friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) {
|
|
SkVector4 dst;
|
|
m.mapScalars(src.fData, dst.fData);
|
|
return dst;
|
|
}
|
|
|
|
/**
|
|
* map an array of [x, y, 0, 1] through the matrix, returning an array
|
|
* of [x', y', z', w'].
|
|
*
|
|
* @param src2 array of [x, y] pairs, with implied z=0 and w=1
|
|
* @param count number of [x, y] pairs in src2
|
|
* @param dst4 array of [x', y', z', w'] quads as the output.
|
|
*/
|
|
void map2(const float src2[], int count, float dst4[]) const;
|
|
void map2(const double src2[], int count, double dst4[]) const;
|
|
|
|
/** Returns true if transformating an axis-aligned square in 2d by this matrix
|
|
will produce another 2d axis-aligned square; typically means the matrix
|
|
is a scale with perhaps a 90-degree rotation. A 3d rotation through 90
|
|
degrees into a perpendicular plane collapses a square to a line, but
|
|
is still considered to be axis-aligned.
|
|
|
|
By default, tolerates very slight error due to float imprecisions;
|
|
a 90-degree rotation can still end up with 10^-17 of
|
|
"non-axis-aligned" result.
|
|
*/
|
|
bool preserves2dAxisAlignment(SkMScalar epsilon = SK_ScalarNearlyZero) const;
|
|
|
|
void dump() const;
|
|
|
|
double determinant() const;
|
|
|
|
private:
|
|
/* This is indexed by [col][row]. */
|
|
SkMScalar fMat[4][4];
|
|
TypeMask fTypeMask;
|
|
|
|
static constexpr int kAllPublic_Masks = 0xF;
|
|
|
|
void as3x4RowMajorf(float[]) const;
|
|
void set3x4RowMajorf(const float[]);
|
|
|
|
SkMScalar transX() const { return fMat[3][0]; }
|
|
SkMScalar transY() const { return fMat[3][1]; }
|
|
SkMScalar transZ() const { return fMat[3][2]; }
|
|
|
|
SkMScalar scaleX() const { return fMat[0][0]; }
|
|
SkMScalar scaleY() const { return fMat[1][1]; }
|
|
SkMScalar scaleZ() const { return fMat[2][2]; }
|
|
|
|
SkMScalar perspX() const { return fMat[0][3]; }
|
|
SkMScalar perspY() const { return fMat[1][3]; }
|
|
SkMScalar perspZ() const { return fMat[2][3]; }
|
|
|
|
void recomputeTypeMask();
|
|
|
|
inline void setTypeMask(TypeMask mask) {
|
|
SkASSERT(0 == (~kAllPublic_Masks & mask));
|
|
fTypeMask = mask;
|
|
}
|
|
|
|
inline const SkMScalar* values() const { return &fMat[0][0]; }
|
|
|
|
friend class SkColorSpace;
|
|
};
|
|
|
|
#endif
|