skia2/samplecode/SampleCCPRGeometry.cpp
Chris Dalton 7f578bf07b CCPR: Remove cubic insets and MSAA borders
Avoids the need for MSAA cubic borders by chopping up the cubic
geometry and crossing the inflections points and loop intersections
with lines and quadratic(s) instead. This allows us to render the
remaining cubic segments with simple hulls and analytic AA, giving
better image quality and performance.


Bug: skia:
Change-Id: If371229f575ee0286c325c230a116d602a9d38ce
Reviewed-on: https://skia-review.googlesource.com/41883
Commit-Queue: Chris Dalton <csmartdalton@google.com>
Reviewed-by: Brian Salomon <bsalomon@google.com>
2017-09-05 23:06:42 +00:00

404 lines
14 KiB
C++

/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTypes.h"
#if SK_SUPPORT_GPU
#include "GrContextPriv.h"
#include "GrPathUtils.h"
#include "GrRenderTargetContext.h"
#include "GrRenderTargetContextPriv.h"
#include "GrResourceProvider.h"
#include "SampleCode.h"
#include "SkCanvas.h"
#include "SkMakeUnique.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkView.h"
#include "ccpr/GrCCPRCoverageProcessor.h"
#include "ccpr/GrCCPRGeometry.h"
#include "gl/GrGLGpu.cpp"
#include "ops/GrDrawOp.h"
using TriangleInstance = GrCCPRCoverageProcessor::TriangleInstance;
using CurveInstance = GrCCPRCoverageProcessor::CurveInstance;
using Mode = GrCCPRCoverageProcessor::Mode;
static int num_points(Mode mode) {
return mode >= Mode::kSerpentineHulls ? 4 : 3;
}
static int is_quadratic(Mode mode) {
return mode >= Mode::kQuadraticHulls && mode < Mode::kSerpentineHulls;
}
/**
* This sample visualizes the AA bloat geometry generated by the ccpr geometry shaders. It
* increases the AA bloat by 50x and outputs color instead of coverage (coverage=+1 -> green,
* coverage=0 -> black, coverage=-1 -> red). Use the keys 1-7 to cycle through the different
* geometry processors.
*/
class CCPRGeometryView : public SampleView {
public:
CCPRGeometryView() { this->updateGpuData(); }
void onDrawContent(SkCanvas*) override;
SkView::Click* onFindClickHandler(SkScalar x, SkScalar y, unsigned) override;
bool onClick(SampleView::Click*) override;
bool onQuery(SkEvent* evt) override;
private:
class Click;
class Op;
void updateAndInval() {
this->updateGpuData();
this->inval(nullptr);
}
void updateGpuData();
Mode fMode = Mode::kTriangleHulls;
SkMatrix fCubicKLM;
SkPoint fPoints[4] = {
{100.05f, 100.05f},
{100.05f, 300.95f},
{400.75f, 300.95f},
{400.75f, 100.05f}
};
SkTArray<SkPoint> fGpuPoints;
SkTArray<int32_t> fInstanceData;
int fInstanceCount;
typedef SampleView INHERITED;
};
class CCPRGeometryView::Op : public GrDrawOp {
DEFINE_OP_CLASS_ID
public:
Op(CCPRGeometryView* view)
: INHERITED(ClassID())
, fView(view) {
this->setBounds(SkRect::MakeLargest(), GrOp::HasAABloat::kNo, GrOp::IsZeroArea::kNo);
}
const char* name() const override { return "[Testing/Sample code] CCPRGeometryView::Op"; }
private:
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
RequiresDstTexture finalize(const GrCaps&, const GrAppliedClip*) override {
return RequiresDstTexture::kNo;
}
bool onCombineIfPossible(GrOp* other, const GrCaps& caps) override { return false; }
void onPrepare(GrOpFlushState*) override {}
void onExecute(GrOpFlushState*) override;
CCPRGeometryView* fView;
typedef GrDrawOp INHERITED;
};
static void draw_klm_line(int w, int h, SkCanvas* canvas, const SkScalar line[3], SkColor color) {
SkPoint p1, p2;
if (SkScalarAbs(line[1]) > SkScalarAbs(line[0])) {
// Draw from vertical edge to vertical edge.
p1 = {0, -line[2] / line[1]};
p2 = {(SkScalar) w, (-line[2] - w * line[0]) / line[1]};
} else {
// Draw from horizontal edge to horizontal edge.
p1 = {-line[2] / line[0], 0};
p2 = {(-line[2] - h * line[1]) / line[0], (SkScalar) h};
}
SkPaint linePaint;
linePaint.setColor(color);
linePaint.setAlpha(128);
linePaint.setStyle(SkPaint::kStroke_Style);
linePaint.setStrokeWidth(0);
linePaint.setAntiAlias(true);
canvas->drawLine(p1, p2, linePaint);
}
void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
SkAutoCanvasRestore acr(canvas, true);
canvas->setMatrix(SkMatrix::I());
SkPath outline;
outline.moveTo(fPoints[0]);
if (4 == num_points(fMode)) {
outline.cubicTo(fPoints[1], fPoints[2], fPoints[3]);
} else if (is_quadratic(fMode)) {
outline.quadTo(fPoints[1], fPoints[3]);
} else {
outline.lineTo(fPoints[1]);
outline.lineTo(fPoints[3]);
outline.close();
}
SkPaint outlinePaint;
outlinePaint.setColor(0x30000000);
outlinePaint.setStyle(SkPaint::kStroke_Style);
outlinePaint.setStrokeWidth(0);
outlinePaint.setAntiAlias(true);
canvas->drawPath(outline, outlinePaint);
#if 0
SkPaint gridPaint;
gridPaint.setColor(0x10000000);
gridPaint.setStyle(SkPaint::kStroke_Style);
gridPaint.setStrokeWidth(0);
gridPaint.setAntiAlias(true);
for (int y = 0; y < this->height(); y += GrCCPRCoverageProcessor::kDebugBloat) {
canvas->drawLine(0, y, this->width(), y, gridPaint);
}
for (int x = 0; x < this->width(); x += GrCCPRCoverageProcessor::kDebugBloat) {
canvas->drawLine(x, 0, x, this->height(), outlinePaint);
}
#endif
const char* caption = "Use GPU backend to visualize geometry.";
if (GrRenderTargetContext* rtc =
canvas->internal_private_accessTopLayerRenderTargetContext()) {
rtc->priv().testingOnly_addDrawOp(skstd::make_unique<Op>(this));
caption = GrCCPRCoverageProcessor::GetProcessorName(fMode);
}
SkPaint pointsPaint;
pointsPaint.setColor(SK_ColorBLUE);
pointsPaint.setStrokeWidth(8);
pointsPaint.setAntiAlias(true);
if (4 == num_points(fMode)) {
int w = this->width(), h = this->height();
canvas->drawPoints(SkCanvas::kPoints_PointMode, 4, fPoints, pointsPaint);
draw_klm_line(w, h, canvas, &fCubicKLM[0], SK_ColorYELLOW);
draw_klm_line(w, h, canvas, &fCubicKLM[3], SK_ColorBLUE);
draw_klm_line(w, h, canvas, &fCubicKLM[6], SK_ColorRED);
} else {
canvas->drawPoints(SkCanvas::kPoints_PointMode, 2, fPoints, pointsPaint);
canvas->drawPoints(SkCanvas::kPoints_PointMode, 1, fPoints + 3, pointsPaint);
}
SkPaint captionPaint;
captionPaint.setTextSize(20);
captionPaint.setColor(SK_ColorBLACK);
captionPaint.setAntiAlias(true);
canvas->drawText(caption, strlen(caption), 10, 30, captionPaint);
}
void CCPRGeometryView::updateGpuData() {
int vertexCount = num_points(fMode);
fGpuPoints.reset();
fInstanceData.reset();
fInstanceCount = 0;
if (4 == vertexCount) {
double t[2], s[2];
SkCubicType type = GrPathUtils::getCubicKLM(fPoints, &fCubicKLM, t, s);
if (Mode::kSerpentineHulls == fMode && SkCubicType::kLoop == type) {
fMode = Mode::kLoopHulls;
}
if (Mode::kSerpentineCorners == fMode && SkCubicType::kLoop == type) {
fMode = Mode::kLoopCorners;
}
if (Mode::kLoopHulls == fMode && SkCubicType::kLoop != type) {
fMode = Mode::kSerpentineHulls;
}
if (Mode::kLoopCorners == fMode && SkCubicType::kLoop != type) {
fMode = Mode::kSerpentineCorners;
}
GrCCPRGeometry geometry;
geometry.beginContour(fPoints[0]);
geometry.cubicTo(fPoints[1], fPoints[2], fPoints[3],
GrCCPRCoverageProcessor::kDebugBloat / 2,
GrCCPRCoverageProcessor::kDebugBloat / 2);
geometry.endContour();
fGpuPoints.push_back_n(geometry.points().count(), geometry.points().begin());
int ptsIdx = 0;
for (GrCCPRGeometry::Verb verb : geometry.verbs()) {
switch (verb) {
case GrCCPRGeometry::Verb::kLineTo:
++ptsIdx;
continue;
case GrCCPRGeometry::Verb::kMonotonicQuadraticTo:
ptsIdx += 2;
continue;
case GrCCPRGeometry::Verb::kMonotonicSerpentineTo:
case GrCCPRGeometry::Verb::kMonotonicLoopTo:
fInstanceData.push_back(ptsIdx);
fInstanceData.push_back(0); // Atlas offset.
ptsIdx += 3;
++fInstanceCount;
continue;
default: continue;
}
}
} else if (is_quadratic(fMode)) {
GrCCPRGeometry geometry;
geometry.beginContour(fPoints[0]);
geometry.quadraticTo(fPoints[1], fPoints[3]);
geometry.endContour();
fGpuPoints.push_back_n(geometry.points().count(), geometry.points().begin());
for (GrCCPRGeometry::Verb verb : geometry.verbs()) {
if (GrCCPRGeometry::Verb::kBeginContour == verb ||
GrCCPRGeometry::Verb::kEndOpenContour == verb ||
GrCCPRGeometry::Verb::kEndClosedContour == verb) {
continue;
}
SkASSERT(GrCCPRGeometry::Verb::kMonotonicQuadraticTo == verb);
fInstanceData.push_back(2 * fInstanceCount++); // Pts idx.
fInstanceData.push_back(0); // Atlas offset.
}
} else {
fGpuPoints.push_back(fPoints[0]);
fGpuPoints.push_back(fPoints[1]);
fGpuPoints.push_back(fPoints[3]);
fInstanceData.push_back(0);
fInstanceData.push_back(1);
fInstanceData.push_back(2);
fInstanceData.push_back(0); // Atlas offset.
fInstanceCount = 1;
}
}
void CCPRGeometryView::Op::onExecute(GrOpFlushState* state) {
if (fView->fInstanceData.empty()) {
return;
}
GrResourceProvider* rp = state->resourceProvider();
GrContext* context = state->gpu()->getContext();
GrGLGpu* glGpu = kOpenGL_GrBackend == context->contextPriv().getBackend() ?
static_cast<GrGLGpu*>(state->gpu()) : nullptr;
int vertexCount = num_points(fView->fMode);
sk_sp<GrBuffer> pointsBuffer(rp->createBuffer(fView->fGpuPoints.count() * sizeof(SkPoint),
kTexel_GrBufferType, kDynamic_GrAccessPattern,
GrResourceProvider::kNoPendingIO_Flag |
GrResourceProvider::kRequireGpuMemory_Flag,
fView->fGpuPoints.begin()));
if (!pointsBuffer) {
return;
}
sk_sp<GrBuffer> instanceBuffer(rp->createBuffer(fView->fInstanceData.count() * sizeof(int),
kVertex_GrBufferType, kDynamic_GrAccessPattern,
GrResourceProvider::kNoPendingIO_Flag |
GrResourceProvider::kRequireGpuMemory_Flag,
fView->fInstanceData.begin()));
if (!instanceBuffer) {
return;
}
GrPipeline pipeline(state->drawOpArgs().fProxy, GrPipeline::ScissorState::kDisabled,
SkBlendMode::kSrcOver);
GrCCPRCoverageProcessor ccprProc(fView->fMode, pointsBuffer.get());
SkDEBUGCODE(ccprProc.enableDebugVisualizations();)
GrMesh mesh(4 == vertexCount ? GrPrimitiveType::kLinesAdjacency : GrPrimitiveType::kTriangles);
mesh.setInstanced(instanceBuffer.get(), fView->fInstanceCount, 0, vertexCount);
if (glGpu) {
glGpu->handleDirtyContext();
GR_GL_CALL(glGpu->glInterface(), PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE));
GR_GL_CALL(glGpu->glInterface(), Enable(GR_GL_LINE_SMOOTH));
}
state->rtCommandBuffer()->draw(pipeline, ccprProc, &mesh, nullptr, 1, this->bounds());
if (glGpu) {
context->resetContext(kMisc_GrGLBackendState);
}
}
class CCPRGeometryView::Click : public SampleView::Click {
public:
Click(SkView* target, int ptIdx) : SampleView::Click(target), fPtIdx(ptIdx) {}
void doClick(SkPoint points[]) {
if (fPtIdx >= 0) {
this->dragPoint(points, fPtIdx);
} else {
for (int i = 0; i < 4; ++i) {
this->dragPoint(points, i);
}
}
}
private:
void dragPoint(SkPoint points[], int idx) {
SkIPoint delta = fICurr - fIPrev;
points[idx] += SkPoint::Make(delta.x(), delta.y());
}
int fPtIdx;
};
SkView::Click* CCPRGeometryView::onFindClickHandler(SkScalar x, SkScalar y, unsigned) {
for (int i = 0; i < 4; ++i) {
if (4 != num_points(fMode) && 2 == i) {
continue;
}
if (fabs(x - fPoints[i].x()) < 20 && fabsf(y - fPoints[i].y()) < 20) {
return new Click(this, i);
}
}
return new Click(this, -1);
}
bool CCPRGeometryView::onClick(SampleView::Click* click) {
Click* myClick = (Click*) click;
myClick->doClick(fPoints);
this->updateAndInval();
return true;
}
bool CCPRGeometryView::onQuery(SkEvent* evt) {
if (SampleCode::TitleQ(*evt)) {
SampleCode::TitleR(evt, "CCPRGeometry");
return true;
}
SkUnichar unichar;
if (SampleCode::CharQ(*evt, &unichar)) {
if (unichar >= '1' && unichar <= '7') {
fMode = Mode(unichar - '1');
if (fMode >= Mode::kCombinedTriangleHullsAndEdges) {
fMode = Mode(int(fMode) + 1);
}
if (fMode >= Mode::kLoopHulls) {
// '6' -> kSerpentineHulls, '7' -> kSerpentineCorners. updateGpuData converts to
// kLoop* if needed.
fMode = Mode(int(fMode) + 1);
}
this->updateAndInval();
return true;
}
if (unichar == 'D') {
SkDebugf(" SkPoint fPoints[4] = {\n");
SkDebugf(" {%ff, %ff},\n", fPoints[0].x(), fPoints[0].y());
SkDebugf(" {%ff, %ff},\n", fPoints[1].x(), fPoints[1].y());
SkDebugf(" {%ff, %ff},\n", fPoints[2].x(), fPoints[2].y());
SkDebugf(" {%ff, %ff}\n", fPoints[3].x(), fPoints[3].y());
SkDebugf(" };\n");
return true;
}
}
return this->INHERITED::onQuery(evt);
}
DEF_SAMPLE( return new CCPRGeometryView; )
#endif // SK_SUPPORT_GPU