skia2/tests/GrMeshTest.cpp
Ethan Nicholas abff956455 initClassID no longer auto-allocates ids
Auto-allocated IDs mean that the IDs depend upon the order in which
classes happen to get initialized and are therefore not consistent
from run to run. This change paves the way for a persistent shader
cache by fixing the IDs in an enum.

Bug: skia:
Change-Id: I3e923c6c54f41b3b3eb616458abee83e0909c09f
Reviewed-on: https://skia-review.googlesource.com/56401
Commit-Queue: Ethan Nicholas <ethannicholas@google.com>
Reviewed-by: Brian Salomon <bsalomon@google.com>
2017-10-09 15:20:33 +00:00

410 lines
15 KiB
C++

/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTypes.h"
#include "Test.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrGeometryProcessor.h"
#include "GrGpuCommandBuffer.h"
#include "GrOpFlushState.h"
#include "GrRenderTargetContext.h"
#include "GrRenderTargetContextPriv.h"
#include "GrResourceProvider.h"
#include "GrResourceKey.h"
#include "SkMakeUnique.h"
#include "glsl/GrGLSLVertexShaderBuilder.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLVarying.h"
#include <array>
#include <vector>
GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey);
static constexpr int kBoxSize = 2;
static constexpr int kBoxCountY = 8;
static constexpr int kBoxCountX = 8;
static constexpr int kBoxCount = kBoxCountY * kBoxCountX;
static constexpr int kImageWidth = kBoxCountY * kBoxSize;
static constexpr int kImageHeight = kBoxCountX * kBoxSize;
static constexpr int kIndexPatternRepeatCount = 3;
constexpr uint16_t kIndexPattern[6] = {0, 1, 2, 1, 2, 3};
class DrawMeshHelper {
public:
DrawMeshHelper(GrOpFlushState* state) : fState(state) {}
sk_sp<const GrBuffer> getIndexBuffer();
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const SkTArray<T>& data) {
return this->makeVertexBuffer(data.begin(), data.count());
}
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const std::vector<T>& data) {
return this->makeVertexBuffer(data.data(), data.size());
}
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const T* data, int count);
void drawMesh(const GrMesh& mesh);
private:
GrOpFlushState* fState;
};
struct Box {
float fX, fY;
GrColor fColor;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* This is a GPU-backend specific test. It tries to test all possible usecases of GrMesh. The test
* works by drawing checkerboards of colored boxes, reading back the pixels, and comparing with
* expected results. The boxes are drawn on integer boundaries and the (opaque) colors are chosen
* from the set (r,g,b) = (0,255)^3, so the GPU renderings ought to produce exact matches.
*/
static void run_test(const char* testName, skiatest::Reporter*, const sk_sp<GrRenderTargetContext>&,
const SkBitmap& gold, std::function<void(DrawMeshHelper*)> testFn);
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(GrMeshTest, reporter, ctxInfo) {
GrContext* const context = ctxInfo.grContext();
sk_sp<GrRenderTargetContext> rtc(
context->makeDeferredRenderTargetContext(SkBackingFit::kExact, kImageWidth, kImageHeight,
kRGBA_8888_GrPixelConfig, nullptr));
if (!rtc) {
ERRORF(reporter, "could not create render target context.");
return;
}
SkTArray<Box> boxes;
SkTArray<std::array<Box, 4>> vertexData;
SkBitmap gold;
// ---- setup ----------
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
gold.allocN32Pixels(kImageWidth, kImageHeight);
SkCanvas goldCanvas(gold);
for (int y = 0; y < kBoxCountY; ++y) {
for (int x = 0; x < kBoxCountX; ++x) {
int c = y + x;
int rgb[3] = {-(c & 1) & 0xff, -((c >> 1) & 1) & 0xff, -((c >> 2) & 1) & 0xff};
const Box box = boxes.push_back() = {
float(x * kBoxSize),
float(y * kBoxSize),
GrColorPackRGBA(rgb[0], rgb[1], rgb[2], 255)
};
std::array<Box, 4>& boxVertices = vertexData.push_back();
for (int i = 0; i < 4; ++i) {
boxVertices[i] = {
box.fX + (i/2) * kBoxSize,
box.fY + (i%2) * kBoxSize,
box.fColor
};
}
paint.setARGB(255, rgb[0], rgb[1], rgb[2]);
goldCanvas.drawRect(SkRect::MakeXYWH(box.fX, box.fY, kBoxSize, kBoxSize), paint);
}
}
goldCanvas.flush();
// ---- tests ----------
#define VALIDATE(buff) \
if (!buff) { \
ERRORF(reporter, #buff " is null."); \
return; \
}
run_test("setNonIndexedNonInstanced", reporter, rtc, gold, [&](DrawMeshHelper* helper) {
SkTArray<Box> expandedVertexData;
for (int i = 0; i < kBoxCount; ++i) {
for (int j = 0; j < 6; ++j) {
expandedVertexData.push_back(vertexData[i][kIndexPattern[j]]);
}
}
// Draw boxes one line at a time to exercise base vertex.
auto vbuff = helper->makeVertexBuffer(expandedVertexData);
VALIDATE(vbuff);
for (int y = 0; y < kBoxCountY; ++y) {
GrMesh mesh(GrPrimitiveType::kTriangles);
mesh.setNonIndexedNonInstanced(kBoxCountX * 6);
mesh.setVertexData(vbuff.get(), y * kBoxCountX * 6);
helper->drawMesh(mesh);
}
});
run_test("setIndexed", reporter, rtc, gold, [&](DrawMeshHelper* helper) {
auto ibuff = helper->getIndexBuffer();
VALIDATE(ibuff);
auto vbuff = helper->makeVertexBuffer(vertexData);
VALIDATE(vbuff);
int baseRepetition = 0;
int i = 0;
// Start at various repetitions within the patterned index buffer to exercise base index.
while (i < kBoxCount) {
GR_STATIC_ASSERT(kIndexPatternRepeatCount >= 3);
int repetitionCount = SkTMin(3 - baseRepetition, kBoxCount - i);
GrMesh mesh(GrPrimitiveType::kTriangles);
mesh.setIndexed(ibuff.get(), repetitionCount * 6, baseRepetition * 6,
baseRepetition * 4, (baseRepetition + repetitionCount) * 4 - 1);
mesh.setVertexData(vbuff.get(), (i - baseRepetition) * 4);
helper->drawMesh(mesh);
baseRepetition = (baseRepetition + 1) % 3;
i += repetitionCount;
}
});
run_test("setIndexedPatterned", reporter, rtc, gold, [&](DrawMeshHelper* helper) {
auto ibuff = helper->getIndexBuffer();
VALIDATE(ibuff);
auto vbuff = helper->makeVertexBuffer(vertexData);
VALIDATE(vbuff);
// Draw boxes one line at a time to exercise base vertex. setIndexedPatterned does not
// support a base index.
for (int y = 0; y < kBoxCountY; ++y) {
GrMesh mesh(GrPrimitiveType::kTriangles);
mesh.setIndexedPatterned(ibuff.get(), 6, 4, kBoxCountX, kIndexPatternRepeatCount);
mesh.setVertexData(vbuff.get(), y * kBoxCountX * 4);
helper->drawMesh(mesh);
}
});
for (bool indexed : {false, true}) {
if (!context->caps()->instanceAttribSupport()) {
break;
}
run_test(indexed ? "setIndexedInstanced" : "setInstanced",
reporter, rtc, gold, [&](DrawMeshHelper* helper) {
auto idxbuff = indexed ? helper->getIndexBuffer() : nullptr;
auto instbuff = helper->makeVertexBuffer(boxes);
VALIDATE(instbuff);
auto vbuff = helper->makeVertexBuffer(std::vector<float>{0,0, 0,1, 1,0, 1,1});
VALIDATE(vbuff);
auto vbuff2 = helper->makeVertexBuffer( // for testing base vertex.
std::vector<float>{-1,-1, -1,-1, 0,0, 0,1, 1,0, 1,1});
VALIDATE(vbuff2);
// Draw boxes one line at a time to exercise base instance, base vertex, and null vertex
// buffer. setIndexedInstanced intentionally does not support a base index.
for (int y = 0; y < kBoxCountY; ++y) {
GrMesh mesh(indexed ? GrPrimitiveType::kTriangles
: GrPrimitiveType::kTriangleStrip);
if (indexed) {
VALIDATE(idxbuff);
mesh.setIndexedInstanced(idxbuff.get(), 6,
instbuff.get(), kBoxCountX, y * kBoxCountX);
} else {
mesh.setInstanced(instbuff.get(), kBoxCountX, y * kBoxCountX, 4);
}
switch (y % 3) {
case 0:
if (context->caps()->shaderCaps()->vertexIDSupport()) {
if (y % 2) {
// We don't need this call because it's the initial state of GrMesh.
mesh.setVertexData(nullptr);
}
break;
}
// Fallthru.
case 1:
mesh.setVertexData(vbuff.get());
break;
case 2:
mesh.setVertexData(vbuff2.get(), 2);
break;
}
helper->drawMesh(mesh);
}
});
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
class GrMeshTestOp : public GrDrawOp {
public:
DEFINE_OP_CLASS_ID
GrMeshTestOp(std::function<void(DrawMeshHelper*)> testFn)
: INHERITED(ClassID())
, fTestFn(testFn) {
this->setBounds(SkRect::MakeIWH(kImageWidth, kImageHeight),
HasAABloat::kNo, IsZeroArea::kNo);
}
private:
const char* name() const override { return "GrMeshTestOp"; }
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
RequiresDstTexture finalize(const GrCaps&, const GrAppliedClip*,
GrPixelConfigIsClamped) override {
return RequiresDstTexture::kNo;
}
bool onCombineIfPossible(GrOp* other, const GrCaps& caps) override { return false; }
void onPrepare(GrOpFlushState*) override {}
void onExecute(GrOpFlushState* state) override {
DrawMeshHelper helper(state);
fTestFn(&helper);
}
std::function<void(DrawMeshHelper*)> fTestFn;
typedef GrDrawOp INHERITED;
};
class GrMeshTestProcessor : public GrGeometryProcessor {
public:
GrMeshTestProcessor(bool instanced, bool hasVertexBuffer)
: INHERITED(kGrMeshTestProcessor_ClassID)
, fInstanceLocation(nullptr)
, fVertex(nullptr)
, fColor(nullptr) {
if (instanced) {
fInstanceLocation = &this->addInstanceAttrib("location", kHalf2_GrVertexAttribType);
if (hasVertexBuffer) {
fVertex = &this->addVertexAttrib("vertex", kHalf2_GrVertexAttribType);
}
fColor = &this->addInstanceAttrib("color", kUByte4_norm_GrVertexAttribType);
} else {
fVertex = &this->addVertexAttrib("vertex", kHalf2_GrVertexAttribType);
fColor = &this->addVertexAttrib("color", kUByte4_norm_GrVertexAttribType);
}
}
const char* name() const override { return "GrMeshTest Processor"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const final {
b->add32(SkToBool(fInstanceLocation));
b->add32(SkToBool(fVertex));
}
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const final;
protected:
const Attribute* fInstanceLocation;
const Attribute* fVertex;
const Attribute* fColor;
friend class GLSLMeshTestProcessor;
typedef GrGeometryProcessor INHERITED;
};
class GLSLMeshTestProcessor : public GrGLSLGeometryProcessor {
void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor&,
FPCoordTransformIter&& transformIter) final {}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final {
const GrMeshTestProcessor& mp = args.fGP.cast<GrMeshTestProcessor>();
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
varyingHandler->emitAttributes(mp);
varyingHandler->addPassThroughAttribute(mp.fColor, args.fOutputColor);
GrGLSLVertexBuilder* v = args.fVertBuilder;
if (!mp.fInstanceLocation) {
v->codeAppendf("float2 vertex = %s;", mp.fVertex->fName);
} else {
if (mp.fVertex) {
v->codeAppendf("float2 offset = %s;", mp.fVertex->fName);
} else {
v->codeAppend ("float2 offset = float2(sk_VertexID / 2, sk_VertexID % 2);");
}
v->codeAppendf("float2 vertex = %s + offset * %i;",
mp.fInstanceLocation->fName, kBoxSize);
}
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex");
GrGLSLPPFragmentBuilder* f = args.fFragBuilder;
f->codeAppendf("%s = half4(1);", args.fOutputCoverage);
}
};
GrGLSLPrimitiveProcessor* GrMeshTestProcessor::createGLSLInstance(const GrShaderCaps&) const {
return new GLSLMeshTestProcessor;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
sk_sp<const GrBuffer> DrawMeshHelper::makeVertexBuffer(const T* data, int count) {
return sk_sp<const GrBuffer>(
fState->resourceProvider()->createBuffer(
count * sizeof(T), kVertex_GrBufferType, kDynamic_GrAccessPattern,
GrResourceProvider::kNoPendingIO_Flag |
GrResourceProvider::kRequireGpuMemory_Flag, data));
}
sk_sp<const GrBuffer> DrawMeshHelper::getIndexBuffer() {
GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey);
return sk_sp<const GrBuffer>(
fState->resourceProvider()->findOrCreatePatternedIndexBuffer(
kIndexPattern, 6, kIndexPatternRepeatCount, 4, gIndexBufferKey));
}
void DrawMeshHelper::drawMesh(const GrMesh& mesh) {
GrRenderTargetProxy* proxy = fState->drawOpArgs().fProxy;
GrPipeline pipeline(proxy, GrPipeline::ScissorState::kDisabled, SkBlendMode::kSrc);
GrMeshTestProcessor mtp(mesh.isInstanced(), mesh.hasVertexData());
fState->rtCommandBuffer()->draw(pipeline, mtp, &mesh, nullptr, 1,
SkRect::MakeIWH(kImageWidth, kImageHeight));
}
static void run_test(const char* testName, skiatest::Reporter* reporter,
const sk_sp<GrRenderTargetContext>& rtc, const SkBitmap& gold,
std::function<void(DrawMeshHelper*)> testFn) {
const int w = gold.width(), h = gold.height(), rowBytes = gold.rowBytes();
const uint32_t* goldPx = reinterpret_cast<const uint32_t*>(gold.getPixels());
if (h != rtc->height() || w != rtc->width()) {
ERRORF(reporter, "[%s] expectation and rtc not compatible (?).", testName);
return;
}
if (sizeof(uint32_t) * kImageWidth != gold.rowBytes()) {
ERRORF(reporter, "unexpected row bytes in gold image.", testName);
return;
}
SkAutoSTMalloc<kImageHeight * kImageWidth, uint32_t> resultPx(h * rowBytes);
rtc->clear(nullptr, 0xbaaaaaad, true);
rtc->priv().testingOnly_addDrawOp(skstd::make_unique<GrMeshTestOp>(testFn));
rtc->readPixels(gold.info(), resultPx, rowBytes, 0, 0, 0);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
uint32_t expected = goldPx[y * kImageWidth + x];
uint32_t actual = resultPx[y * kImageWidth + x];
if (expected != actual) {
ERRORF(reporter, "[%s] pixel (%i,%i): got 0x%x expected 0x%x",
testName, x, y, actual, expected);
return;
}
}
}
}
#endif