skia2/tests/GrMemoryPoolTest.cpp
Brian Osman 50ea3c06b8 Add support for MSVC run-time checks (and control flow guard)
This enables four different options in the compiler, described
below. I also added enough masks to satisfy RTCc when running
all GMs in both 8888 and gl configs.

---

/RTCc - Detects when a value is assigned to a smaller data
type and results in data loss. This happens even when casting.
Masking is required to suppress this.

/RTCs - Various stack-related checks, including uninitialized
data (by initializing locals to a non-zero value), array bounds
checking, and stack pointer corruption that can occur with a
calling convention mismatch.

/RTCu - Reports when a variable is used without having been
initialized. Mostly redundant with compile-time checks.

/guard:cf - This is more of a security option, that computes
all possible targets for indirect calls at compile time, and
verifies that those are the only targets reached at compile
time. Also generates similar logic around switch statements
that turn into jump tables.

Bug: skia:
Change-Id: I7b527af8fd67dec0b6556f38bcd0efc3fd505856
Reviewed-on: https://skia-review.googlesource.com/c/188625
Commit-Queue: Brian Osman <brianosman@google.com>
Reviewed-by: Mike Klein <mtklein@google.com>
2019-02-04 20:55:24 +00:00

321 lines
9.1 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
#include "GrMemoryPool.h"
#include "SkRandom.h"
#include "SkTArray.h"
#include "SkTDArray.h"
#include "SkTemplates.h"
// A is the top of an inheritance tree of classes that overload op new and
// and delete to use a GrMemoryPool. The objects have values of different types
// that can be set and checked.
class A {
public:
A() {}
virtual void setValues(int v) {
fChar = static_cast<char>(v & 0xFF);
}
virtual bool checkValues(int v) {
return fChar == static_cast<char>(v & 0xFF);
}
virtual ~A() {}
void* operator new(size_t size) {
if (!gPool.get()) {
return ::operator new(size);
} else {
return gPool->allocate(size);
}
}
void operator delete(void* p) {
if (!gPool.get()) {
::operator delete(p);
} else {
return gPool->release(p);
}
}
static A* Create(SkRandom* r);
static void SetAllocator(size_t preallocSize, size_t minAllocSize) {
GrMemoryPool* pool = new GrMemoryPool(preallocSize, minAllocSize);
gPool.reset(pool);
}
static void ResetAllocator() {
gPool.reset(nullptr);
}
private:
static std::unique_ptr<GrMemoryPool> gPool;
char fChar;
};
std::unique_ptr<GrMemoryPool> A::gPool;
class B : public A {
public:
B() {}
virtual void setValues(int v) {
fDouble = static_cast<double>(v);
this->INHERITED::setValues(v);
}
virtual bool checkValues(int v) {
return fDouble == static_cast<double>(v) &&
this->INHERITED::checkValues(v);
}
virtual ~B() {}
private:
double fDouble;
typedef A INHERITED;
};
class C : public A {
public:
C() {}
virtual void setValues(int v) {
fInt64 = static_cast<int64_t>(v);
this->INHERITED::setValues(v);
}
virtual bool checkValues(int v) {
return fInt64 == static_cast<int64_t>(v) &&
this->INHERITED::checkValues(v);
}
virtual ~C() {}
private:
int64_t fInt64;
typedef A INHERITED;
};
// D derives from C and owns a dynamically created B
class D : public C {
public:
D() {
fB = new B();
}
virtual void setValues(int v) {
fVoidStar = reinterpret_cast<void*>(static_cast<intptr_t>(v));
this->INHERITED::setValues(v);
fB->setValues(v);
}
virtual bool checkValues(int v) {
return fVoidStar == reinterpret_cast<void*>(static_cast<intptr_t>(v)) &&
fB->checkValues(v) &&
this->INHERITED::checkValues(v);
}
virtual ~D() {
delete fB;
}
private:
void* fVoidStar;
B* fB;
typedef C INHERITED;
};
class E : public A {
public:
E() {}
virtual void setValues(int v) {
for (size_t i = 0; i < SK_ARRAY_COUNT(fIntArray); ++i) {
fIntArray[i] = v;
}
this->INHERITED::setValues(v);
}
virtual bool checkValues(int v) {
bool ok = true;
for (size_t i = 0; ok && i < SK_ARRAY_COUNT(fIntArray); ++i) {
if (fIntArray[i] != v) {
ok = false;
}
}
return ok && this->INHERITED::checkValues(v);
}
virtual ~E() {}
private:
int fIntArray[20];
typedef A INHERITED;
};
A* A::Create(SkRandom* r) {
switch (r->nextRangeU(0, 4)) {
case 0:
return new A;
case 1:
return new B;
case 2:
return new C;
case 3:
return new D;
case 4:
return new E;
default:
// suppress warning
return nullptr;
}
}
struct Rec {
A* fInstance;
int fValue;
};
DEF_TEST(GrMemoryPool, reporter) {
// prealloc and min alloc sizes for the pool
static const size_t gSizes[][2] = {
{0, 0},
{10 * sizeof(A), 20 * sizeof(A)},
{100 * sizeof(A), 100 * sizeof(A)},
{500 * sizeof(A), 500 * sizeof(A)},
{10000 * sizeof(A), 0},
{1, 100 * sizeof(A)},
};
// different percentages of creation vs deletion
static const float gCreateFraction[] = {1.f, .95f, 0.75f, .5f};
// number of create/destroys per test
static const int kNumIters = 20000;
// check that all the values stored in A objects are correct after this
// number of iterations
static const int kCheckPeriod = 500;
SkRandom r;
for (size_t s = 0; s < SK_ARRAY_COUNT(gSizes); ++s) {
A::SetAllocator(gSizes[s][0], gSizes[s][1]);
for (size_t c = 0; c < SK_ARRAY_COUNT(gCreateFraction); ++c) {
SkTDArray<Rec> instanceRecs;
for (int i = 0; i < kNumIters; ++i) {
float createOrDestroy = r.nextUScalar1();
if (createOrDestroy < gCreateFraction[c] ||
0 == instanceRecs.count()) {
Rec* rec = instanceRecs.append();
rec->fInstance = A::Create(&r);
rec->fValue = static_cast<int>(r.nextU());
rec->fInstance->setValues(rec->fValue);
} else {
int d = r.nextRangeU(0, instanceRecs.count() - 1);
Rec& rec = instanceRecs[d];
REPORTER_ASSERT(reporter, rec.fInstance->checkValues(rec.fValue));
delete rec.fInstance;
instanceRecs.removeShuffle(d);
}
if (0 == i % kCheckPeriod) {
for (int r = 0; r < instanceRecs.count(); ++r) {
Rec& rec = instanceRecs[r];
REPORTER_ASSERT(reporter, rec.fInstance->checkValues(rec.fValue));
}
}
}
for (int i = 0; i < instanceRecs.count(); ++i) {
Rec& rec = instanceRecs[i];
REPORTER_ASSERT(reporter, rec.fInstance->checkValues(rec.fValue));
delete rec.fInstance;
}
}
}
}
// GrMemoryPool requires that it's empty at the point of destruction. This helps
// achieving that by releasing all added memory in the destructor.
class AutoPoolReleaser {
public:
AutoPoolReleaser(GrMemoryPool& pool): fPool(pool) {
}
~AutoPoolReleaser() {
for (void* ptr: fAllocated) {
fPool.release(ptr);
}
}
void add(void* ptr) {
fAllocated.push_back(ptr);
}
private:
GrMemoryPool& fPool;
SkTArray<void*> fAllocated;
};
DEF_TEST(GrMemoryPoolAPI, reporter) {
constexpr size_t kSmallestMinAllocSize = GrMemoryPool::kSmallestMinAllocSize;
// Allocates memory until pool adds a new block (pool.size() changes).
auto allocateMemory = [](GrMemoryPool& pool, AutoPoolReleaser& r) {
size_t origPoolSize = pool.size();
while (pool.size() == origPoolSize) {
r.add(pool.allocate(31));
}
};
// Effective prealloc space capacity is >= kSmallestMinAllocSize.
{
GrMemoryPool pool(0, 0);
REPORTER_ASSERT(reporter, pool.preallocSize() == kSmallestMinAllocSize);
}
// Effective prealloc space capacity is >= minAllocSize.
{
constexpr size_t kMinAllocSize = kSmallestMinAllocSize * 2;
GrMemoryPool pool(kSmallestMinAllocSize, kMinAllocSize);
REPORTER_ASSERT(reporter, pool.preallocSize() == kMinAllocSize);
}
// Effective block size capacity >= kSmallestMinAllocSize.
{
GrMemoryPool pool(kSmallestMinAllocSize, kSmallestMinAllocSize / 2);
AutoPoolReleaser r(pool);
allocateMemory(pool, r);
REPORTER_ASSERT(reporter, pool.size() == kSmallestMinAllocSize);
}
// Pool allocates exactly preallocSize on creation.
{
constexpr size_t kPreallocSize = kSmallestMinAllocSize * 5;
GrMemoryPool pool(kPreallocSize, 0);
REPORTER_ASSERT(reporter, pool.preallocSize() == kPreallocSize);
}
// Pool allocates exactly minAllocSize when it expands.
{
constexpr size_t kMinAllocSize = kSmallestMinAllocSize * 7;
GrMemoryPool pool(0, kMinAllocSize);
AutoPoolReleaser r(pool);
allocateMemory(pool, r);
REPORTER_ASSERT(reporter, pool.size() == kMinAllocSize);
allocateMemory(pool, r);
REPORTER_ASSERT(reporter, pool.size() == 2 * kMinAllocSize);
}
// When asked to allocate amount > minAllocSize, pool allocates larger block
// to accommodate all internal structures.
{
constexpr size_t kMinAllocSize = kSmallestMinAllocSize * 2;
GrMemoryPool pool(kSmallestMinAllocSize, kMinAllocSize);
AutoPoolReleaser r(pool);
REPORTER_ASSERT(reporter, pool.size() == 0);
constexpr size_t hugeSize = 10 * kMinAllocSize;
r.add(pool.allocate(hugeSize));
REPORTER_ASSERT(reporter, pool.size() > hugeSize);
// Block size allocated to accommodate huge request doesn't include any extra
// space, so next allocation request allocates a new block.
size_t hugeBlockSize = pool.size();
r.add(pool.allocate(0));
REPORTER_ASSERT(reporter, pool.size() == hugeBlockSize + kMinAllocSize);
}
}