skia2/tests/PathOpsTestCommon.cpp
caryclark e4097e3a0b Fix last pathops skp bug
This fixes the last bug discovered by iterating through the 800K
skp corpus representing the top 1M websites. For every clip on the
stack, the paths are replaced with the pathop intersection. The
resulting draw is compared with the original draw for pixel errors.

At least two prominent bugs remain. In one, the winding value is
confused by a cubic with an inflection. In the other, a quad/cubic
pair, nearly coincident, fails to find an intersection.

These minor changes include ignoring very tiny self-intersections
of cubics, and processing degenerate edges that don't connect to
anything else.

R=reed@android.com
TBR=reed

Author: caryclark@google.com

Review URL: https://codereview.chromium.org/340103002
2014-06-18 07:24:19 -07:00

198 lines
5.7 KiB
C++

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "PathOpsTestCommon.h"
#include "SkPathOpsBounds.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsLine.h"
#include "SkPathOpsQuad.h"
#include "SkPathOpsTriangle.h"
void CubicToQuads(const SkDCubic& cubic, double precision, SkTArray<SkDQuad, true>& quads) {
SkTArray<double, true> ts;
cubic.toQuadraticTs(precision, &ts);
if (ts.count() <= 0) {
SkDQuad quad = cubic.toQuad();
quads.push_back(quad);
return;
}
double tStart = 0;
for (int i1 = 0; i1 <= ts.count(); ++i1) {
const double tEnd = i1 < ts.count() ? ts[i1] : 1;
SkDCubic part = cubic.subDivide(tStart, tEnd);
SkDQuad quad = part.toQuad();
quads.push_back(quad);
tStart = tEnd;
}
}
void CubicPathToQuads(const SkPath& cubicPath, SkPath* quadPath) {
quadPath->reset();
SkDCubic cubic;
SkTArray<SkDQuad, true> quads;
SkPath::RawIter iter(cubicPath);
uint8_t verb;
SkPoint pts[4];
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
quadPath->moveTo(pts[0].fX, pts[0].fY);
continue;
case SkPath::kLine_Verb:
quadPath->lineTo(pts[1].fX, pts[1].fY);
break;
case SkPath::kQuad_Verb:
quadPath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
break;
case SkPath::kCubic_Verb:
quads.reset();
cubic.set(pts);
CubicToQuads(cubic, cubic.calcPrecision(), quads);
for (int index = 0; index < quads.count(); ++index) {
SkPoint qPts[2] = {
quads[index][1].asSkPoint(),
quads[index][2].asSkPoint()
};
quadPath->quadTo(qPts[0].fX, qPts[0].fY, qPts[1].fX, qPts[1].fY);
}
break;
case SkPath::kClose_Verb:
quadPath->close();
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
}
void CubicPathToSimple(const SkPath& cubicPath, SkPath* simplePath) {
simplePath->reset();
SkDCubic cubic;
SkPath::RawIter iter(cubicPath);
uint8_t verb;
SkPoint pts[4];
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
simplePath->moveTo(pts[0].fX, pts[0].fY);
continue;
case SkPath::kLine_Verb:
simplePath->lineTo(pts[1].fX, pts[1].fY);
break;
case SkPath::kQuad_Verb:
simplePath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
break;
case SkPath::kCubic_Verb: {
cubic.set(pts);
double tInflects[2];
int inflections = cubic.findInflections(tInflects);
if (inflections > 1 && tInflects[0] > tInflects[1]) {
SkTSwap(tInflects[0], tInflects[1]);
}
double lo = 0;
for (int index = 0; index <= inflections; ++index) {
double hi = index < inflections ? tInflects[index] : 1;
SkDCubic part = cubic.subDivide(lo, hi);
SkPoint cPts[3];
cPts[0] = part[1].asSkPoint();
cPts[1] = part[2].asSkPoint();
cPts[2] = part[3].asSkPoint();
simplePath->cubicTo(cPts[0].fX, cPts[0].fY, cPts[1].fX, cPts[1].fY,
cPts[2].fX, cPts[2].fY);
lo = hi;
}
break;
}
case SkPath::kClose_Verb:
simplePath->close();
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
}
static bool SkDoubleIsNaN(double x) {
return x != x;
}
bool ValidBounds(const SkPathOpsBounds& bounds) {
if (SkScalarIsNaN(bounds.fLeft)) {
return false;
}
if (SkScalarIsNaN(bounds.fTop)) {
return false;
}
if (SkScalarIsNaN(bounds.fRight)) {
return false;
}
return !SkScalarIsNaN(bounds.fBottom);
}
bool ValidCubic(const SkDCubic& cubic) {
for (int index = 0; index < 4; ++index) {
if (!ValidPoint(cubic[index])) {
return false;
}
}
return true;
}
bool ValidLine(const SkDLine& line) {
for (int index = 0; index < 2; ++index) {
if (!ValidPoint(line[index])) {
return false;
}
}
return true;
}
bool ValidPoint(const SkDPoint& pt) {
if (SkDoubleIsNaN(pt.fX)) {
return false;
}
return !SkDoubleIsNaN(pt.fY);
}
bool ValidPoints(const SkPoint* pts, int count) {
for (int index = 0; index < count; ++index) {
if (SkScalarIsNaN(pts[index].fX)) {
return false;
}
if (SkScalarIsNaN(pts[index].fY)) {
return false;
}
}
return true;
}
bool ValidQuad(const SkDQuad& quad) {
for (int index = 0; index < 3; ++index) {
if (!ValidPoint(quad[index])) {
return false;
}
}
return true;
}
bool ValidTriangle(const SkDTriangle& triangle) {
for (int index = 0; index < 3; ++index) {
if (!ValidPoint(triangle.fPts[index])) {
return false;
}
}
return true;
}
bool ValidVector(const SkDVector& v) {
if (SkDoubleIsNaN(v.fX)) {
return false;
}
return !SkDoubleIsNaN(v.fY);
}