2ac6ce8e6e
Change-Id: I70e295a677b8cac3d578e3cd57472c833af03877 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/354336 Reviewed-by: Florin Malita <fmalita@chromium.org> Commit-Queue: Mike Reed <reed@google.com>
1977 lines
71 KiB
C++
1977 lines
71 KiB
C++
/*
|
|
* Copyright 2006 The Android Open Source Project
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#ifndef SkMatrix_DEFINED
|
|
#define SkMatrix_DEFINED
|
|
|
|
#include "include/core/SkRect.h"
|
|
#include "include/private/SkMacros.h"
|
|
#include "include/private/SkTo.h"
|
|
|
|
struct SkRSXform;
|
|
struct SkPoint3;
|
|
|
|
// Remove when clients are updated to live without this
|
|
#define SK_SUPPORT_LEGACY_MATRIX_RECTTORECT
|
|
|
|
/**
|
|
* When we transform points through a matrix containing perspective (the bottom row is something
|
|
* other than 0,0,1), the bruteforce math can produce confusing results (since we might divide
|
|
* by 0, or a negative w value). By default, methods that map rects and paths will apply
|
|
* perspective clipping, but this can be changed by specifying kYes to those methods.
|
|
*/
|
|
enum class SkApplyPerspectiveClip {
|
|
kNo, //!< Don't pre-clip the geometry before applying the (perspective) matrix
|
|
kYes, //!< Do pre-clip the geometry before applying the (perspective) matrix
|
|
};
|
|
|
|
/** \class SkMatrix
|
|
SkMatrix holds a 3x3 matrix for transforming coordinates. This allows mapping
|
|
SkPoint and vectors with translation, scaling, skewing, rotation, and
|
|
perspective.
|
|
|
|
SkMatrix elements are in row major order. SkMatrix does not have a constructor,
|
|
so it must be explicitly initialized. setIdentity() initializes SkMatrix
|
|
so it has no effect. setTranslate(), setScale(), setSkew(), setRotate(), set9 and setAll()
|
|
initializes all SkMatrix elements with the corresponding mapping.
|
|
|
|
SkMatrix includes a hidden variable that classifies the type of matrix to
|
|
improve performance. SkMatrix is not thread safe unless getType() is called first.
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_063
|
|
*/
|
|
SK_BEGIN_REQUIRE_DENSE
|
|
class SK_API SkMatrix {
|
|
public:
|
|
|
|
/** Creates an identity SkMatrix:
|
|
|
|
| 1 0 0 |
|
|
| 0 1 0 |
|
|
| 0 0 1 |
|
|
*/
|
|
constexpr SkMatrix() : SkMatrix(1,0,0, 0,1,0, 0,0,1, kIdentity_Mask | kRectStaysRect_Mask) {}
|
|
|
|
/** Sets SkMatrix to scale by (sx, sy). Returned matrix is:
|
|
|
|
| sx 0 0 |
|
|
| 0 sy 0 |
|
|
| 0 0 1 |
|
|
|
|
@param sx horizontal scale factor
|
|
@param sy vertical scale factor
|
|
@return SkMatrix with scale
|
|
*/
|
|
static SkMatrix SK_WARN_UNUSED_RESULT Scale(SkScalar sx, SkScalar sy) {
|
|
SkMatrix m;
|
|
m.setScale(sx, sy);
|
|
return m;
|
|
}
|
|
|
|
/** Sets SkMatrix to translate by (dx, dy). Returned matrix is:
|
|
|
|
| 1 0 dx |
|
|
| 0 1 dy |
|
|
| 0 0 1 |
|
|
|
|
@param dx horizontal translation
|
|
@param dy vertical translation
|
|
@return SkMatrix with translation
|
|
*/
|
|
static SkMatrix SK_WARN_UNUSED_RESULT Translate(SkScalar dx, SkScalar dy) {
|
|
SkMatrix m;
|
|
m.setTranslate(dx, dy);
|
|
return m;
|
|
}
|
|
static SkMatrix SK_WARN_UNUSED_RESULT Translate(SkVector t) { return Translate(t.x(), t.y()); }
|
|
static SkMatrix SK_WARN_UNUSED_RESULT Translate(SkIVector t) { return Translate(t.x(), t.y()); }
|
|
|
|
/** Sets SkMatrix to rotate by |deg| about a pivot point at (0, 0).
|
|
|
|
@param deg rotation angle in degrees (positive rotates clockwise)
|
|
@return SkMatrix with rotation
|
|
*/
|
|
static SkMatrix SK_WARN_UNUSED_RESULT RotateDeg(SkScalar deg) {
|
|
SkMatrix m;
|
|
m.setRotate(deg);
|
|
return m;
|
|
}
|
|
static SkMatrix SK_WARN_UNUSED_RESULT RotateDeg(SkScalar deg, SkPoint pt) {
|
|
SkMatrix m;
|
|
m.setRotate(deg, pt.x(), pt.y());
|
|
return m;
|
|
}
|
|
static SkMatrix SK_WARN_UNUSED_RESULT RotateRad(SkScalar rad) {
|
|
return RotateDeg(SkRadiansToDegrees(rad));
|
|
}
|
|
|
|
/** \enum SkMatrix::ScaleToFit
|
|
ScaleToFit describes how SkMatrix is constructed to map one SkRect to another.
|
|
ScaleToFit may allow SkMatrix to have unequal horizontal and vertical scaling,
|
|
or may restrict SkMatrix to square scaling. If restricted, ScaleToFit specifies
|
|
how SkMatrix maps to the side or center of the destination SkRect.
|
|
*/
|
|
enum ScaleToFit {
|
|
kFill_ScaleToFit, //!< scales in x and y to fill destination SkRect
|
|
kStart_ScaleToFit, //!< scales and aligns to left and top
|
|
kCenter_ScaleToFit, //!< scales and aligns to center
|
|
kEnd_ScaleToFit, //!< scales and aligns to right and bottom
|
|
};
|
|
|
|
/** Returns SkMatrix set to scale and translate src to dst. ScaleToFit selects
|
|
whether mapping completely fills dst or preserves the aspect ratio, and how to
|
|
align src within dst. Returns the identity SkMatrix if src is empty. If dst is
|
|
empty, returns SkMatrix set to:
|
|
|
|
| 0 0 0 |
|
|
| 0 0 0 |
|
|
| 0 0 1 |
|
|
|
|
@param src SkRect to map from
|
|
@param dst SkRect to map to
|
|
@param mode How to handle the mapping
|
|
@return SkMatrix mapping src to dst
|
|
*/
|
|
static SkMatrix SK_WARN_UNUSED_RESULT RectToRect(const SkRect& src, const SkRect& dst,
|
|
ScaleToFit mode = kFill_ScaleToFit) {
|
|
return MakeRectToRect(src, dst, mode);
|
|
}
|
|
|
|
/** Sets SkMatrix to:
|
|
|
|
| scaleX skewX transX |
|
|
| skewY scaleY transY |
|
|
| pers0 pers1 pers2 |
|
|
|
|
@param scaleX horizontal scale factor
|
|
@param skewX horizontal skew factor
|
|
@param transX horizontal translation
|
|
@param skewY vertical skew factor
|
|
@param scaleY vertical scale factor
|
|
@param transY vertical translation
|
|
@param pers0 input x-axis perspective factor
|
|
@param pers1 input y-axis perspective factor
|
|
@param pers2 perspective scale factor
|
|
@return SkMatrix constructed from parameters
|
|
*/
|
|
static SkMatrix SK_WARN_UNUSED_RESULT MakeAll(SkScalar scaleX, SkScalar skewX, SkScalar transX,
|
|
SkScalar skewY, SkScalar scaleY, SkScalar transY,
|
|
SkScalar pers0, SkScalar pers1, SkScalar pers2) {
|
|
SkMatrix m;
|
|
m.setAll(scaleX, skewX, transX, skewY, scaleY, transY, pers0, pers1, pers2);
|
|
return m;
|
|
}
|
|
|
|
/** \enum SkMatrix::TypeMask
|
|
Enum of bit fields for mask returned by getType().
|
|
Used to identify the complexity of SkMatrix, to optimize performance.
|
|
*/
|
|
enum TypeMask {
|
|
kIdentity_Mask = 0, //!< identity SkMatrix; all bits clear
|
|
kTranslate_Mask = 0x01, //!< translation SkMatrix
|
|
kScale_Mask = 0x02, //!< scale SkMatrix
|
|
kAffine_Mask = 0x04, //!< skew or rotate SkMatrix
|
|
kPerspective_Mask = 0x08, //!< perspective SkMatrix
|
|
};
|
|
|
|
/** Returns a bit field describing the transformations the matrix may
|
|
perform. The bit field is computed conservatively, so it may include
|
|
false positives. For example, when kPerspective_Mask is set, all
|
|
other bits are set.
|
|
|
|
@return kIdentity_Mask, or combinations of: kTranslate_Mask, kScale_Mask,
|
|
kAffine_Mask, kPerspective_Mask
|
|
*/
|
|
TypeMask getType() const {
|
|
if (fTypeMask & kUnknown_Mask) {
|
|
fTypeMask = this->computeTypeMask();
|
|
}
|
|
// only return the public masks
|
|
return (TypeMask)(fTypeMask & 0xF);
|
|
}
|
|
|
|
/** Returns true if SkMatrix is identity. Identity matrix is:
|
|
|
|
| 1 0 0 |
|
|
| 0 1 0 |
|
|
| 0 0 1 |
|
|
|
|
@return true if SkMatrix has no effect
|
|
*/
|
|
bool isIdentity() const {
|
|
return this->getType() == 0;
|
|
}
|
|
|
|
/** Returns true if SkMatrix at most scales and translates. SkMatrix may be identity,
|
|
contain only scale elements, only translate elements, or both. SkMatrix form is:
|
|
|
|
| scale-x 0 translate-x |
|
|
| 0 scale-y translate-y |
|
|
| 0 0 1 |
|
|
|
|
@return true if SkMatrix is identity; or scales, translates, or both
|
|
*/
|
|
bool isScaleTranslate() const {
|
|
return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
|
|
}
|
|
|
|
/** Returns true if SkMatrix is identity, or translates. SkMatrix form is:
|
|
|
|
| 1 0 translate-x |
|
|
| 0 1 translate-y |
|
|
| 0 0 1 |
|
|
|
|
@return true if SkMatrix is identity, or translates
|
|
*/
|
|
bool isTranslate() const { return !(this->getType() & ~(kTranslate_Mask)); }
|
|
|
|
/** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity,
|
|
or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all
|
|
cases, SkMatrix may also have translation. SkMatrix form is either:
|
|
|
|
| scale-x 0 translate-x |
|
|
| 0 scale-y translate-y |
|
|
| 0 0 1 |
|
|
|
|
or
|
|
|
|
| 0 rotate-x translate-x |
|
|
| rotate-y 0 translate-y |
|
|
| 0 0 1 |
|
|
|
|
for non-zero values of scale-x, scale-y, rotate-x, and rotate-y.
|
|
|
|
Also called preservesAxisAlignment(); use the one that provides better inline
|
|
documentation.
|
|
|
|
@return true if SkMatrix maps one SkRect into another
|
|
*/
|
|
bool rectStaysRect() const {
|
|
if (fTypeMask & kUnknown_Mask) {
|
|
fTypeMask = this->computeTypeMask();
|
|
}
|
|
return (fTypeMask & kRectStaysRect_Mask) != 0;
|
|
}
|
|
|
|
/** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity,
|
|
or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all
|
|
cases, SkMatrix may also have translation. SkMatrix form is either:
|
|
|
|
| scale-x 0 translate-x |
|
|
| 0 scale-y translate-y |
|
|
| 0 0 1 |
|
|
|
|
or
|
|
|
|
| 0 rotate-x translate-x |
|
|
| rotate-y 0 translate-y |
|
|
| 0 0 1 |
|
|
|
|
for non-zero values of scale-x, scale-y, rotate-x, and rotate-y.
|
|
|
|
Also called rectStaysRect(); use the one that provides better inline
|
|
documentation.
|
|
|
|
@return true if SkMatrix maps one SkRect into another
|
|
*/
|
|
bool preservesAxisAlignment() const { return this->rectStaysRect(); }
|
|
|
|
/** Returns true if the matrix contains perspective elements. SkMatrix form is:
|
|
|
|
| -- -- -- |
|
|
| -- -- -- |
|
|
| perspective-x perspective-y perspective-scale |
|
|
|
|
where perspective-x or perspective-y is non-zero, or perspective-scale is
|
|
not one. All other elements may have any value.
|
|
|
|
@return true if SkMatrix is in most general form
|
|
*/
|
|
bool hasPerspective() const {
|
|
return SkToBool(this->getPerspectiveTypeMaskOnly() &
|
|
kPerspective_Mask);
|
|
}
|
|
|
|
/** Returns true if SkMatrix contains only translation, rotation, reflection, and
|
|
uniform scale.
|
|
Returns false if SkMatrix contains different scales, skewing, perspective, or
|
|
degenerate forms that collapse to a line or point.
|
|
|
|
Describes that the SkMatrix makes rendering with and without the matrix are
|
|
visually alike; a transformed circle remains a circle. Mathematically, this is
|
|
referred to as similarity of a Euclidean space, or a similarity transformation.
|
|
|
|
Preserves right angles, keeping the arms of the angle equal lengths.
|
|
|
|
@param tol to be deprecated
|
|
@return true if SkMatrix only rotates, uniformly scales, translates
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_isSimilarity
|
|
*/
|
|
bool isSimilarity(SkScalar tol = SK_ScalarNearlyZero) const;
|
|
|
|
/** Returns true if SkMatrix contains only translation, rotation, reflection, and
|
|
scale. Scale may differ along rotated axes.
|
|
Returns false if SkMatrix skewing, perspective, or degenerate forms that collapse
|
|
to a line or point.
|
|
|
|
Preserves right angles, but not requiring that the arms of the angle
|
|
retain equal lengths.
|
|
|
|
@param tol to be deprecated
|
|
@return true if SkMatrix only rotates, scales, translates
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_preservesRightAngles
|
|
*/
|
|
bool preservesRightAngles(SkScalar tol = SK_ScalarNearlyZero) const;
|
|
|
|
/** SkMatrix organizes its values in row-major order. These members correspond to
|
|
each value in SkMatrix.
|
|
*/
|
|
static constexpr int kMScaleX = 0; //!< horizontal scale factor
|
|
static constexpr int kMSkewX = 1; //!< horizontal skew factor
|
|
static constexpr int kMTransX = 2; //!< horizontal translation
|
|
static constexpr int kMSkewY = 3; //!< vertical skew factor
|
|
static constexpr int kMScaleY = 4; //!< vertical scale factor
|
|
static constexpr int kMTransY = 5; //!< vertical translation
|
|
static constexpr int kMPersp0 = 6; //!< input x perspective factor
|
|
static constexpr int kMPersp1 = 7; //!< input y perspective factor
|
|
static constexpr int kMPersp2 = 8; //!< perspective bias
|
|
|
|
/** Affine arrays are in column-major order to match the matrix used by
|
|
PDF and XPS.
|
|
*/
|
|
static constexpr int kAScaleX = 0; //!< horizontal scale factor
|
|
static constexpr int kASkewY = 1; //!< vertical skew factor
|
|
static constexpr int kASkewX = 2; //!< horizontal skew factor
|
|
static constexpr int kAScaleY = 3; //!< vertical scale factor
|
|
static constexpr int kATransX = 4; //!< horizontal translation
|
|
static constexpr int kATransY = 5; //!< vertical translation
|
|
|
|
/** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is
|
|
defined.
|
|
|
|
@param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
|
|
kMPersp0, kMPersp1, kMPersp2
|
|
@return value corresponding to index
|
|
*/
|
|
SkScalar operator[](int index) const {
|
|
SkASSERT((unsigned)index < 9);
|
|
return fMat[index];
|
|
}
|
|
|
|
/** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is
|
|
defined.
|
|
|
|
@param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
|
|
kMPersp0, kMPersp1, kMPersp2
|
|
@return value corresponding to index
|
|
*/
|
|
SkScalar get(int index) const {
|
|
SkASSERT((unsigned)index < 9);
|
|
return fMat[index];
|
|
}
|
|
|
|
/** Returns one matrix value from a particular row/column. Asserts if index is out
|
|
of range and SK_DEBUG is defined.
|
|
|
|
@param r matrix row to fetch
|
|
@param c matrix column to fetch
|
|
@return value at the given matrix position
|
|
*/
|
|
SkScalar rc(int r, int c) const {
|
|
SkASSERT(r >= 0 && r <= 2);
|
|
SkASSERT(c >= 0 && c <= 2);
|
|
return fMat[r*3 + c];
|
|
}
|
|
|
|
/** Returns scale factor multiplied by x-axis input, contributing to x-axis output.
|
|
With mapPoints(), scales SkPoint along the x-axis.
|
|
|
|
@return horizontal scale factor
|
|
*/
|
|
SkScalar getScaleX() const { return fMat[kMScaleX]; }
|
|
|
|
/** Returns scale factor multiplied by y-axis input, contributing to y-axis output.
|
|
With mapPoints(), scales SkPoint along the y-axis.
|
|
|
|
@return vertical scale factor
|
|
*/
|
|
SkScalar getScaleY() const { return fMat[kMScaleY]; }
|
|
|
|
/** Returns scale factor multiplied by x-axis input, contributing to y-axis output.
|
|
With mapPoints(), skews SkPoint along the y-axis.
|
|
Skewing both axes can rotate SkPoint.
|
|
|
|
@return vertical skew factor
|
|
*/
|
|
SkScalar getSkewY() const { return fMat[kMSkewY]; }
|
|
|
|
/** Returns scale factor multiplied by y-axis input, contributing to x-axis output.
|
|
With mapPoints(), skews SkPoint along the x-axis.
|
|
Skewing both axes can rotate SkPoint.
|
|
|
|
@return horizontal scale factor
|
|
*/
|
|
SkScalar getSkewX() const { return fMat[kMSkewX]; }
|
|
|
|
/** Returns translation contributing to x-axis output.
|
|
With mapPoints(), moves SkPoint along the x-axis.
|
|
|
|
@return horizontal translation factor
|
|
*/
|
|
SkScalar getTranslateX() const { return fMat[kMTransX]; }
|
|
|
|
/** Returns translation contributing to y-axis output.
|
|
With mapPoints(), moves SkPoint along the y-axis.
|
|
|
|
@return vertical translation factor
|
|
*/
|
|
SkScalar getTranslateY() const { return fMat[kMTransY]; }
|
|
|
|
/** Returns factor scaling input x-axis relative to input y-axis.
|
|
|
|
@return input x-axis perspective factor
|
|
*/
|
|
SkScalar getPerspX() const { return fMat[kMPersp0]; }
|
|
|
|
/** Returns factor scaling input y-axis relative to input x-axis.
|
|
|
|
@return input y-axis perspective factor
|
|
*/
|
|
SkScalar getPerspY() const { return fMat[kMPersp1]; }
|
|
|
|
/** Returns writable SkMatrix value. Asserts if index is out of range and SK_DEBUG is
|
|
defined. Clears internal cache anticipating that caller will change SkMatrix value.
|
|
|
|
Next call to read SkMatrix state may recompute cache; subsequent writes to SkMatrix
|
|
value must be followed by dirtyMatrixTypeCache().
|
|
|
|
@param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
|
|
kMPersp0, kMPersp1, kMPersp2
|
|
@return writable value corresponding to index
|
|
*/
|
|
SkScalar& operator[](int index) {
|
|
SkASSERT((unsigned)index < 9);
|
|
this->setTypeMask(kUnknown_Mask);
|
|
return fMat[index];
|
|
}
|
|
|
|
/** Sets SkMatrix value. Asserts if index is out of range and SK_DEBUG is
|
|
defined. Safer than operator[]; internal cache is always maintained.
|
|
|
|
@param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
|
|
kMPersp0, kMPersp1, kMPersp2
|
|
@param value scalar to store in SkMatrix
|
|
*/
|
|
SkMatrix& set(int index, SkScalar value) {
|
|
SkASSERT((unsigned)index < 9);
|
|
fMat[index] = value;
|
|
this->setTypeMask(kUnknown_Mask);
|
|
return *this;
|
|
}
|
|
|
|
/** Sets horizontal scale factor.
|
|
|
|
@param v horizontal scale factor to store
|
|
*/
|
|
SkMatrix& setScaleX(SkScalar v) { return this->set(kMScaleX, v); }
|
|
|
|
/** Sets vertical scale factor.
|
|
|
|
@param v vertical scale factor to store
|
|
*/
|
|
SkMatrix& setScaleY(SkScalar v) { return this->set(kMScaleY, v); }
|
|
|
|
/** Sets vertical skew factor.
|
|
|
|
@param v vertical skew factor to store
|
|
*/
|
|
SkMatrix& setSkewY(SkScalar v) { return this->set(kMSkewY, v); }
|
|
|
|
/** Sets horizontal skew factor.
|
|
|
|
@param v horizontal skew factor to store
|
|
*/
|
|
SkMatrix& setSkewX(SkScalar v) { return this->set(kMSkewX, v); }
|
|
|
|
/** Sets horizontal translation.
|
|
|
|
@param v horizontal translation to store
|
|
*/
|
|
SkMatrix& setTranslateX(SkScalar v) { return this->set(kMTransX, v); }
|
|
|
|
/** Sets vertical translation.
|
|
|
|
@param v vertical translation to store
|
|
*/
|
|
SkMatrix& setTranslateY(SkScalar v) { return this->set(kMTransY, v); }
|
|
|
|
/** Sets input x-axis perspective factor, which causes mapXY() to vary input x-axis values
|
|
inversely proportional to input y-axis values.
|
|
|
|
@param v perspective factor
|
|
*/
|
|
SkMatrix& setPerspX(SkScalar v) { return this->set(kMPersp0, v); }
|
|
|
|
/** Sets input y-axis perspective factor, which causes mapXY() to vary input y-axis values
|
|
inversely proportional to input x-axis values.
|
|
|
|
@param v perspective factor
|
|
*/
|
|
SkMatrix& setPerspY(SkScalar v) { return this->set(kMPersp1, v); }
|
|
|
|
/** Sets all values from parameters. Sets matrix to:
|
|
|
|
| scaleX skewX transX |
|
|
| skewY scaleY transY |
|
|
| persp0 persp1 persp2 |
|
|
|
|
@param scaleX horizontal scale factor to store
|
|
@param skewX horizontal skew factor to store
|
|
@param transX horizontal translation to store
|
|
@param skewY vertical skew factor to store
|
|
@param scaleY vertical scale factor to store
|
|
@param transY vertical translation to store
|
|
@param persp0 input x-axis values perspective factor to store
|
|
@param persp1 input y-axis values perspective factor to store
|
|
@param persp2 perspective scale factor to store
|
|
*/
|
|
SkMatrix& setAll(SkScalar scaleX, SkScalar skewX, SkScalar transX,
|
|
SkScalar skewY, SkScalar scaleY, SkScalar transY,
|
|
SkScalar persp0, SkScalar persp1, SkScalar persp2) {
|
|
fMat[kMScaleX] = scaleX;
|
|
fMat[kMSkewX] = skewX;
|
|
fMat[kMTransX] = transX;
|
|
fMat[kMSkewY] = skewY;
|
|
fMat[kMScaleY] = scaleY;
|
|
fMat[kMTransY] = transY;
|
|
fMat[kMPersp0] = persp0;
|
|
fMat[kMPersp1] = persp1;
|
|
fMat[kMPersp2] = persp2;
|
|
this->setTypeMask(kUnknown_Mask);
|
|
return *this;
|
|
}
|
|
|
|
/** Copies nine scalar values contained by SkMatrix into buffer, in member value
|
|
ascending order: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
|
|
kMPersp0, kMPersp1, kMPersp2.
|
|
|
|
@param buffer storage for nine scalar values
|
|
*/
|
|
void get9(SkScalar buffer[9]) const {
|
|
memcpy(buffer, fMat, 9 * sizeof(SkScalar));
|
|
}
|
|
|
|
/** Sets SkMatrix to nine scalar values in buffer, in member value ascending order:
|
|
kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, kMPersp0, kMPersp1,
|
|
kMPersp2.
|
|
|
|
Sets matrix to:
|
|
|
|
| buffer[0] buffer[1] buffer[2] |
|
|
| buffer[3] buffer[4] buffer[5] |
|
|
| buffer[6] buffer[7] buffer[8] |
|
|
|
|
In the future, set9 followed by get9 may not return the same values. Since SkMatrix
|
|
maps non-homogeneous coordinates, scaling all nine values produces an equivalent
|
|
transformation, possibly improving precision.
|
|
|
|
@param buffer nine scalar values
|
|
*/
|
|
SkMatrix& set9(const SkScalar buffer[9]);
|
|
|
|
/** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to:
|
|
|
|
| 1 0 0 |
|
|
| 0 1 0 |
|
|
| 0 0 1 |
|
|
|
|
Also called setIdentity(); use the one that provides better inline
|
|
documentation.
|
|
*/
|
|
SkMatrix& reset();
|
|
|
|
/** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to:
|
|
|
|
| 1 0 0 |
|
|
| 0 1 0 |
|
|
| 0 0 1 |
|
|
|
|
Also called reset(); use the one that provides better inline
|
|
documentation.
|
|
*/
|
|
SkMatrix& setIdentity() { return this->reset(); }
|
|
|
|
/** Sets SkMatrix to translate by (dx, dy).
|
|
|
|
@param dx horizontal translation
|
|
@param dy vertical translation
|
|
*/
|
|
SkMatrix& setTranslate(SkScalar dx, SkScalar dy);
|
|
|
|
/** Sets SkMatrix to translate by (v.fX, v.fY).
|
|
|
|
@param v vector containing horizontal and vertical translation
|
|
*/
|
|
SkMatrix& setTranslate(const SkVector& v) { return this->setTranslate(v.fX, v.fY); }
|
|
|
|
/** Sets SkMatrix to scale by sx and sy, about a pivot point at (px, py).
|
|
The pivot point is unchanged when mapped with SkMatrix.
|
|
|
|
@param sx horizontal scale factor
|
|
@param sy vertical scale factor
|
|
@param px pivot on x-axis
|
|
@param py pivot on y-axis
|
|
*/
|
|
SkMatrix& setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
|
|
|
|
/** Sets SkMatrix to scale by sx and sy about at pivot point at (0, 0).
|
|
|
|
@param sx horizontal scale factor
|
|
@param sy vertical scale factor
|
|
*/
|
|
SkMatrix& setScale(SkScalar sx, SkScalar sy);
|
|
|
|
/** Sets SkMatrix to rotate by degrees about a pivot point at (px, py).
|
|
The pivot point is unchanged when mapped with SkMatrix.
|
|
|
|
Positive degrees rotates clockwise.
|
|
|
|
@param degrees angle of axes relative to upright axes
|
|
@param px pivot on x-axis
|
|
@param py pivot on y-axis
|
|
*/
|
|
SkMatrix& setRotate(SkScalar degrees, SkScalar px, SkScalar py);
|
|
|
|
/** Sets SkMatrix to rotate by degrees about a pivot point at (0, 0).
|
|
Positive degrees rotates clockwise.
|
|
|
|
@param degrees angle of axes relative to upright axes
|
|
*/
|
|
SkMatrix& setRotate(SkScalar degrees);
|
|
|
|
/** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (px, py).
|
|
The pivot point is unchanged when mapped with SkMatrix.
|
|
|
|
Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1).
|
|
Vector length specifies scale.
|
|
|
|
@param sinValue rotation vector x-axis component
|
|
@param cosValue rotation vector y-axis component
|
|
@param px pivot on x-axis
|
|
@param py pivot on y-axis
|
|
*/
|
|
SkMatrix& setSinCos(SkScalar sinValue, SkScalar cosValue,
|
|
SkScalar px, SkScalar py);
|
|
|
|
/** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (0, 0).
|
|
|
|
Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1).
|
|
Vector length specifies scale.
|
|
|
|
@param sinValue rotation vector x-axis component
|
|
@param cosValue rotation vector y-axis component
|
|
*/
|
|
SkMatrix& setSinCos(SkScalar sinValue, SkScalar cosValue);
|
|
|
|
/** Sets SkMatrix to rotate, scale, and translate using a compressed matrix form.
|
|
|
|
Vector (rsxForm.fSSin, rsxForm.fSCos) describes the angle of rotation relative
|
|
to (0, 1). Vector length specifies scale. Mapped point is rotated and scaled
|
|
by vector, then translated by (rsxForm.fTx, rsxForm.fTy).
|
|
|
|
@param rsxForm compressed SkRSXform matrix
|
|
@return reference to SkMatrix
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_setRSXform
|
|
*/
|
|
SkMatrix& setRSXform(const SkRSXform& rsxForm);
|
|
|
|
/** Sets SkMatrix to skew by kx and ky, about a pivot point at (px, py).
|
|
The pivot point is unchanged when mapped with SkMatrix.
|
|
|
|
@param kx horizontal skew factor
|
|
@param ky vertical skew factor
|
|
@param px pivot on x-axis
|
|
@param py pivot on y-axis
|
|
*/
|
|
SkMatrix& setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
|
|
|
|
/** Sets SkMatrix to skew by kx and ky, about a pivot point at (0, 0).
|
|
|
|
@param kx horizontal skew factor
|
|
@param ky vertical skew factor
|
|
*/
|
|
SkMatrix& setSkew(SkScalar kx, SkScalar ky);
|
|
|
|
/** Sets SkMatrix to SkMatrix a multiplied by SkMatrix b. Either a or b may be this.
|
|
|
|
Given:
|
|
|
|
| A B C | | J K L |
|
|
a = | D E F |, b = | M N O |
|
|
| G H I | | P Q R |
|
|
|
|
sets SkMatrix to:
|
|
|
|
| A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR |
|
|
a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
|
|
| G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR |
|
|
|
|
@param a SkMatrix on left side of multiply expression
|
|
@param b SkMatrix on right side of multiply expression
|
|
*/
|
|
SkMatrix& setConcat(const SkMatrix& a, const SkMatrix& b);
|
|
|
|
/** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from translation (dx, dy).
|
|
This can be thought of as moving the point to be mapped before applying SkMatrix.
|
|
|
|
Given:
|
|
|
|
| A B C | | 1 0 dx |
|
|
Matrix = | D E F |, T(dx, dy) = | 0 1 dy |
|
|
| G H I | | 0 0 1 |
|
|
|
|
sets SkMatrix to:
|
|
|
|
| A B C | | 1 0 dx | | A B A*dx+B*dy+C |
|
|
Matrix * T(dx, dy) = | D E F | | 0 1 dy | = | D E D*dx+E*dy+F |
|
|
| G H I | | 0 0 1 | | G H G*dx+H*dy+I |
|
|
|
|
@param dx x-axis translation before applying SkMatrix
|
|
@param dy y-axis translation before applying SkMatrix
|
|
*/
|
|
SkMatrix& preTranslate(SkScalar dx, SkScalar dy);
|
|
|
|
/** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy)
|
|
about pivot point (px, py).
|
|
This can be thought of as scaling about a pivot point before applying SkMatrix.
|
|
|
|
Given:
|
|
|
|
| A B C | | sx 0 dx |
|
|
Matrix = | D E F |, S(sx, sy, px, py) = | 0 sy dy |
|
|
| G H I | | 0 0 1 |
|
|
|
|
where
|
|
|
|
dx = px - sx * px
|
|
dy = py - sy * py
|
|
|
|
sets SkMatrix to:
|
|
|
|
| A B C | | sx 0 dx | | A*sx B*sy A*dx+B*dy+C |
|
|
Matrix * S(sx, sy, px, py) = | D E F | | 0 sy dy | = | D*sx E*sy D*dx+E*dy+F |
|
|
| G H I | | 0 0 1 | | G*sx H*sy G*dx+H*dy+I |
|
|
|
|
@param sx horizontal scale factor
|
|
@param sy vertical scale factor
|
|
@param px pivot on x-axis
|
|
@param py pivot on y-axis
|
|
*/
|
|
SkMatrix& preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
|
|
|
|
/** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy)
|
|
about pivot point (0, 0).
|
|
This can be thought of as scaling about the origin before applying SkMatrix.
|
|
|
|
Given:
|
|
|
|
| A B C | | sx 0 0 |
|
|
Matrix = | D E F |, S(sx, sy) = | 0 sy 0 |
|
|
| G H I | | 0 0 1 |
|
|
|
|
sets SkMatrix to:
|
|
|
|
| A B C | | sx 0 0 | | A*sx B*sy C |
|
|
Matrix * S(sx, sy) = | D E F | | 0 sy 0 | = | D*sx E*sy F |
|
|
| G H I | | 0 0 1 | | G*sx H*sy I |
|
|
|
|
@param sx horizontal scale factor
|
|
@param sy vertical scale factor
|
|
*/
|
|
SkMatrix& preScale(SkScalar sx, SkScalar sy);
|
|
|
|
/** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees
|
|
about pivot point (px, py).
|
|
This can be thought of as rotating about a pivot point before applying SkMatrix.
|
|
|
|
Positive degrees rotates clockwise.
|
|
|
|
Given:
|
|
|
|
| A B C | | c -s dx |
|
|
Matrix = | D E F |, R(degrees, px, py) = | s c dy |
|
|
| G H I | | 0 0 1 |
|
|
|
|
where
|
|
|
|
c = cos(degrees)
|
|
s = sin(degrees)
|
|
dx = s * py + (1 - c) * px
|
|
dy = -s * px + (1 - c) * py
|
|
|
|
sets SkMatrix to:
|
|
|
|
| A B C | | c -s dx | | Ac+Bs -As+Bc A*dx+B*dy+C |
|
|
Matrix * R(degrees, px, py) = | D E F | | s c dy | = | Dc+Es -Ds+Ec D*dx+E*dy+F |
|
|
| G H I | | 0 0 1 | | Gc+Hs -Gs+Hc G*dx+H*dy+I |
|
|
|
|
@param degrees angle of axes relative to upright axes
|
|
@param px pivot on x-axis
|
|
@param py pivot on y-axis
|
|
*/
|
|
SkMatrix& preRotate(SkScalar degrees, SkScalar px, SkScalar py);
|
|
|
|
/** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees
|
|
about pivot point (0, 0).
|
|
This can be thought of as rotating about the origin before applying SkMatrix.
|
|
|
|
Positive degrees rotates clockwise.
|
|
|
|
Given:
|
|
|
|
| A B C | | c -s 0 |
|
|
Matrix = | D E F |, R(degrees, px, py) = | s c 0 |
|
|
| G H I | | 0 0 1 |
|
|
|
|
where
|
|
|
|
c = cos(degrees)
|
|
s = sin(degrees)
|
|
|
|
sets SkMatrix to:
|
|
|
|
| A B C | | c -s 0 | | Ac+Bs -As+Bc C |
|
|
Matrix * R(degrees, px, py) = | D E F | | s c 0 | = | Dc+Es -Ds+Ec F |
|
|
| G H I | | 0 0 1 | | Gc+Hs -Gs+Hc I |
|
|
|
|
@param degrees angle of axes relative to upright axes
|
|
*/
|
|
SkMatrix& preRotate(SkScalar degrees);
|
|
|
|
/** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky)
|
|
about pivot point (px, py).
|
|
This can be thought of as skewing about a pivot point before applying SkMatrix.
|
|
|
|
Given:
|
|
|
|
| A B C | | 1 kx dx |
|
|
Matrix = | D E F |, K(kx, ky, px, py) = | ky 1 dy |
|
|
| G H I | | 0 0 1 |
|
|
|
|
where
|
|
|
|
dx = -kx * py
|
|
dy = -ky * px
|
|
|
|
sets SkMatrix to:
|
|
|
|
| A B C | | 1 kx dx | | A+B*ky A*kx+B A*dx+B*dy+C |
|
|
Matrix * K(kx, ky, px, py) = | D E F | | ky 1 dy | = | D+E*ky D*kx+E D*dx+E*dy+F |
|
|
| G H I | | 0 0 1 | | G+H*ky G*kx+H G*dx+H*dy+I |
|
|
|
|
@param kx horizontal skew factor
|
|
@param ky vertical skew factor
|
|
@param px pivot on x-axis
|
|
@param py pivot on y-axis
|
|
*/
|
|
SkMatrix& preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
|
|
|
|
/** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky)
|
|
about pivot point (0, 0).
|
|
This can be thought of as skewing about the origin before applying SkMatrix.
|
|
|
|
Given:
|
|
|
|
| A B C | | 1 kx 0 |
|
|
Matrix = | D E F |, K(kx, ky) = | ky 1 0 |
|
|
| G H I | | 0 0 1 |
|
|
|
|
sets SkMatrix to:
|
|
|
|
| A B C | | 1 kx 0 | | A+B*ky A*kx+B C |
|
|
Matrix * K(kx, ky) = | D E F | | ky 1 0 | = | D+E*ky D*kx+E F |
|
|
| G H I | | 0 0 1 | | G+H*ky G*kx+H I |
|
|
|
|
@param kx horizontal skew factor
|
|
@param ky vertical skew factor
|
|
*/
|
|
SkMatrix& preSkew(SkScalar kx, SkScalar ky);
|
|
|
|
/** Sets SkMatrix to SkMatrix multiplied by SkMatrix other.
|
|
This can be thought of mapping by other before applying SkMatrix.
|
|
|
|
Given:
|
|
|
|
| A B C | | J K L |
|
|
Matrix = | D E F |, other = | M N O |
|
|
| G H I | | P Q R |
|
|
|
|
sets SkMatrix to:
|
|
|
|
| A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR |
|
|
Matrix * other = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
|
|
| G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR |
|
|
|
|
@param other SkMatrix on right side of multiply expression
|
|
*/
|
|
SkMatrix& preConcat(const SkMatrix& other);
|
|
|
|
/** Sets SkMatrix to SkMatrix constructed from translation (dx, dy) multiplied by SkMatrix.
|
|
This can be thought of as moving the point to be mapped after applying SkMatrix.
|
|
|
|
Given:
|
|
|
|
| J K L | | 1 0 dx |
|
|
Matrix = | M N O |, T(dx, dy) = | 0 1 dy |
|
|
| P Q R | | 0 0 1 |
|
|
|
|
sets SkMatrix to:
|
|
|
|
| 1 0 dx | | J K L | | J+dx*P K+dx*Q L+dx*R |
|
|
T(dx, dy) * Matrix = | 0 1 dy | | M N O | = | M+dy*P N+dy*Q O+dy*R |
|
|
| 0 0 1 | | P Q R | | P Q R |
|
|
|
|
@param dx x-axis translation after applying SkMatrix
|
|
@param dy y-axis translation after applying SkMatrix
|
|
*/
|
|
SkMatrix& postTranslate(SkScalar dx, SkScalar dy);
|
|
|
|
/** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point
|
|
(px, py), multiplied by SkMatrix.
|
|
This can be thought of as scaling about a pivot point after applying SkMatrix.
|
|
|
|
Given:
|
|
|
|
| J K L | | sx 0 dx |
|
|
Matrix = | M N O |, S(sx, sy, px, py) = | 0 sy dy |
|
|
| P Q R | | 0 0 1 |
|
|
|
|
where
|
|
|
|
dx = px - sx * px
|
|
dy = py - sy * py
|
|
|
|
sets SkMatrix to:
|
|
|
|
| sx 0 dx | | J K L | | sx*J+dx*P sx*K+dx*Q sx*L+dx+R |
|
|
S(sx, sy, px, py) * Matrix = | 0 sy dy | | M N O | = | sy*M+dy*P sy*N+dy*Q sy*O+dy*R |
|
|
| 0 0 1 | | P Q R | | P Q R |
|
|
|
|
@param sx horizontal scale factor
|
|
@param sy vertical scale factor
|
|
@param px pivot on x-axis
|
|
@param py pivot on y-axis
|
|
*/
|
|
SkMatrix& postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
|
|
|
|
/** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point
|
|
(0, 0), multiplied by SkMatrix.
|
|
This can be thought of as scaling about the origin after applying SkMatrix.
|
|
|
|
Given:
|
|
|
|
| J K L | | sx 0 0 |
|
|
Matrix = | M N O |, S(sx, sy) = | 0 sy 0 |
|
|
| P Q R | | 0 0 1 |
|
|
|
|
sets SkMatrix to:
|
|
|
|
| sx 0 0 | | J K L | | sx*J sx*K sx*L |
|
|
S(sx, sy) * Matrix = | 0 sy 0 | | M N O | = | sy*M sy*N sy*O |
|
|
| 0 0 1 | | P Q R | | P Q R |
|
|
|
|
@param sx horizontal scale factor
|
|
@param sy vertical scale factor
|
|
*/
|
|
SkMatrix& postScale(SkScalar sx, SkScalar sy);
|
|
|
|
/** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point
|
|
(px, py), multiplied by SkMatrix.
|
|
This can be thought of as rotating about a pivot point after applying SkMatrix.
|
|
|
|
Positive degrees rotates clockwise.
|
|
|
|
Given:
|
|
|
|
| J K L | | c -s dx |
|
|
Matrix = | M N O |, R(degrees, px, py) = | s c dy |
|
|
| P Q R | | 0 0 1 |
|
|
|
|
where
|
|
|
|
c = cos(degrees)
|
|
s = sin(degrees)
|
|
dx = s * py + (1 - c) * px
|
|
dy = -s * px + (1 - c) * py
|
|
|
|
sets SkMatrix to:
|
|
|
|
|c -s dx| |J K L| |cJ-sM+dx*P cK-sN+dx*Q cL-sO+dx+R|
|
|
R(degrees, px, py) * Matrix = |s c dy| |M N O| = |sJ+cM+dy*P sK+cN+dy*Q sL+cO+dy*R|
|
|
|0 0 1| |P Q R| | P Q R|
|
|
|
|
@param degrees angle of axes relative to upright axes
|
|
@param px pivot on x-axis
|
|
@param py pivot on y-axis
|
|
*/
|
|
SkMatrix& postRotate(SkScalar degrees, SkScalar px, SkScalar py);
|
|
|
|
/** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point
|
|
(0, 0), multiplied by SkMatrix.
|
|
This can be thought of as rotating about the origin after applying SkMatrix.
|
|
|
|
Positive degrees rotates clockwise.
|
|
|
|
Given:
|
|
|
|
| J K L | | c -s 0 |
|
|
Matrix = | M N O |, R(degrees, px, py) = | s c 0 |
|
|
| P Q R | | 0 0 1 |
|
|
|
|
where
|
|
|
|
c = cos(degrees)
|
|
s = sin(degrees)
|
|
|
|
sets SkMatrix to:
|
|
|
|
| c -s dx | | J K L | | cJ-sM cK-sN cL-sO |
|
|
R(degrees, px, py) * Matrix = | s c dy | | M N O | = | sJ+cM sK+cN sL+cO |
|
|
| 0 0 1 | | P Q R | | P Q R |
|
|
|
|
@param degrees angle of axes relative to upright axes
|
|
*/
|
|
SkMatrix& postRotate(SkScalar degrees);
|
|
|
|
/** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point
|
|
(px, py), multiplied by SkMatrix.
|
|
This can be thought of as skewing about a pivot point after applying SkMatrix.
|
|
|
|
Given:
|
|
|
|
| J K L | | 1 kx dx |
|
|
Matrix = | M N O |, K(kx, ky, px, py) = | ky 1 dy |
|
|
| P Q R | | 0 0 1 |
|
|
|
|
where
|
|
|
|
dx = -kx * py
|
|
dy = -ky * px
|
|
|
|
sets SkMatrix to:
|
|
|
|
| 1 kx dx| |J K L| |J+kx*M+dx*P K+kx*N+dx*Q L+kx*O+dx+R|
|
|
K(kx, ky, px, py) * Matrix = |ky 1 dy| |M N O| = |ky*J+M+dy*P ky*K+N+dy*Q ky*L+O+dy*R|
|
|
| 0 0 1| |P Q R| | P Q R|
|
|
|
|
@param kx horizontal skew factor
|
|
@param ky vertical skew factor
|
|
@param px pivot on x-axis
|
|
@param py pivot on y-axis
|
|
*/
|
|
SkMatrix& postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
|
|
|
|
/** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point
|
|
(0, 0), multiplied by SkMatrix.
|
|
This can be thought of as skewing about the origin after applying SkMatrix.
|
|
|
|
Given:
|
|
|
|
| J K L | | 1 kx 0 |
|
|
Matrix = | M N O |, K(kx, ky) = | ky 1 0 |
|
|
| P Q R | | 0 0 1 |
|
|
|
|
sets SkMatrix to:
|
|
|
|
| 1 kx 0 | | J K L | | J+kx*M K+kx*N L+kx*O |
|
|
K(kx, ky) * Matrix = | ky 1 0 | | M N O | = | ky*J+M ky*K+N ky*L+O |
|
|
| 0 0 1 | | P Q R | | P Q R |
|
|
|
|
@param kx horizontal skew factor
|
|
@param ky vertical skew factor
|
|
*/
|
|
SkMatrix& postSkew(SkScalar kx, SkScalar ky);
|
|
|
|
/** Sets SkMatrix to SkMatrix other multiplied by SkMatrix.
|
|
This can be thought of mapping by other after applying SkMatrix.
|
|
|
|
Given:
|
|
|
|
| J K L | | A B C |
|
|
Matrix = | M N O |, other = | D E F |
|
|
| P Q R | | G H I |
|
|
|
|
sets SkMatrix to:
|
|
|
|
| A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR |
|
|
other * Matrix = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
|
|
| G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR |
|
|
|
|
@param other SkMatrix on left side of multiply expression
|
|
*/
|
|
SkMatrix& postConcat(const SkMatrix& other);
|
|
|
|
#ifndef SK_SUPPORT_LEGACY_MATRIX_RECTTORECT
|
|
private:
|
|
#endif
|
|
/** Sets SkMatrix to scale and translate src SkRect to dst SkRect. stf selects whether
|
|
mapping completely fills dst or preserves the aspect ratio, and how to align
|
|
src within dst. Returns false if src is empty, and sets SkMatrix to identity.
|
|
Returns true if dst is empty, and sets SkMatrix to:
|
|
|
|
| 0 0 0 |
|
|
| 0 0 0 |
|
|
| 0 0 1 |
|
|
|
|
@param src SkRect to map from
|
|
@param dst SkRect to map to
|
|
@return true if SkMatrix can represent SkRect mapping
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_setRectToRect
|
|
*/
|
|
bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf);
|
|
|
|
/** Returns SkMatrix set to scale and translate src SkRect to dst SkRect. stf selects
|
|
whether mapping completely fills dst or preserves the aspect ratio, and how to
|
|
align src within dst. Returns the identity SkMatrix if src is empty. If dst is
|
|
empty, returns SkMatrix set to:
|
|
|
|
| 0 0 0 |
|
|
| 0 0 0 |
|
|
| 0 0 1 |
|
|
|
|
@param src SkRect to map from
|
|
@param dst SkRect to map to
|
|
@return SkMatrix mapping src to dst
|
|
*/
|
|
static SkMatrix MakeRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf) {
|
|
SkMatrix m;
|
|
m.setRectToRect(src, dst, stf);
|
|
return m;
|
|
}
|
|
#ifndef SK_SUPPORT_LEGACY_MATRIX_RECTTORECT
|
|
public:
|
|
#endif
|
|
|
|
/** Sets SkMatrix to map src to dst. count must be zero or greater, and four or less.
|
|
|
|
If count is zero, sets SkMatrix to identity and returns true.
|
|
If count is one, sets SkMatrix to translate and returns true.
|
|
If count is two or more, sets SkMatrix to map SkPoint if possible; returns false
|
|
if SkMatrix cannot be constructed. If count is four, SkMatrix may include
|
|
perspective.
|
|
|
|
@param src SkPoint to map from
|
|
@param dst SkPoint to map to
|
|
@param count number of SkPoint in src and dst
|
|
@return true if SkMatrix was constructed successfully
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_setPolyToPoly
|
|
*/
|
|
bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count);
|
|
|
|
/** Sets inverse to reciprocal matrix, returning true if SkMatrix can be inverted.
|
|
Geometrically, if SkMatrix maps from source to destination, inverse SkMatrix
|
|
maps from destination to source. If SkMatrix can not be inverted, inverse is
|
|
unchanged.
|
|
|
|
@param inverse storage for inverted SkMatrix; may be nullptr
|
|
@return true if SkMatrix can be inverted
|
|
*/
|
|
bool SK_WARN_UNUSED_RESULT invert(SkMatrix* inverse) const {
|
|
// Allow the trivial case to be inlined.
|
|
if (this->isIdentity()) {
|
|
if (inverse) {
|
|
inverse->reset();
|
|
}
|
|
return true;
|
|
}
|
|
return this->invertNonIdentity(inverse);
|
|
}
|
|
|
|
/** Fills affine with identity values in column major order.
|
|
Sets affine to:
|
|
|
|
| 1 0 0 |
|
|
| 0 1 0 |
|
|
|
|
Affine 3 by 2 matrices in column major order are used by OpenGL and XPS.
|
|
|
|
@param affine storage for 3 by 2 affine matrix
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_SetAffineIdentity
|
|
*/
|
|
static void SetAffineIdentity(SkScalar affine[6]);
|
|
|
|
/** Fills affine in column major order. Sets affine to:
|
|
|
|
| scale-x skew-x translate-x |
|
|
| skew-y scale-y translate-y |
|
|
|
|
If SkMatrix contains perspective, returns false and leaves affine unchanged.
|
|
|
|
@param affine storage for 3 by 2 affine matrix; may be nullptr
|
|
@return true if SkMatrix does not contain perspective
|
|
*/
|
|
bool SK_WARN_UNUSED_RESULT asAffine(SkScalar affine[6]) const;
|
|
|
|
/** Sets SkMatrix to affine values, passed in column major order. Given affine,
|
|
column, then row, as:
|
|
|
|
| scale-x skew-x translate-x |
|
|
| skew-y scale-y translate-y |
|
|
|
|
SkMatrix is set, row, then column, to:
|
|
|
|
| scale-x skew-x translate-x |
|
|
| skew-y scale-y translate-y |
|
|
| 0 0 1 |
|
|
|
|
@param affine 3 by 2 affine matrix
|
|
*/
|
|
SkMatrix& setAffine(const SkScalar affine[6]);
|
|
|
|
/**
|
|
* A matrix is categorized as 'perspective' if the bottom row is not [0, 0, 1].
|
|
* However, for most uses (e.g. mapPoints) a bottom row of [0, 0, X] behaves like a
|
|
* non-perspective matrix, though it will be categorized as perspective. Calling
|
|
* normalizePerspective() will change the matrix such that, if its bottom row was [0, 0, X],
|
|
* it will be changed to [0, 0, 1] by scaling the rest of the matrix by 1/X.
|
|
*
|
|
* | A B C | | A/X B/X C/X |
|
|
* | D E F | -> | D/X E/X F/X | for X != 0
|
|
* | 0 0 X | | 0 0 1 |
|
|
*/
|
|
void normalizePerspective() {
|
|
if (fMat[8] != 1) {
|
|
this->doNormalizePerspective();
|
|
}
|
|
}
|
|
|
|
/** Maps src SkPoint array of length count to dst SkPoint array of equal or greater
|
|
length. SkPoint are mapped by multiplying each SkPoint by SkMatrix. Given:
|
|
|
|
| A B C | | x |
|
|
Matrix = | D E F |, pt = | y |
|
|
| G H I | | 1 |
|
|
|
|
where
|
|
|
|
for (i = 0; i < count; ++i) {
|
|
x = src[i].fX
|
|
y = src[i].fY
|
|
}
|
|
|
|
each dst SkPoint is computed as:
|
|
|
|
|A B C| |x| Ax+By+C Dx+Ey+F
|
|
Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
|
|
|G H I| |1| Gx+Hy+I Gx+Hy+I
|
|
|
|
src and dst may point to the same storage.
|
|
|
|
@param dst storage for mapped SkPoint
|
|
@param src SkPoint to transform
|
|
@param count number of SkPoint to transform
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_mapPoints
|
|
*/
|
|
void mapPoints(SkPoint dst[], const SkPoint src[], int count) const;
|
|
|
|
/** Maps pts SkPoint array of length count in place. SkPoint are mapped by multiplying
|
|
each SkPoint by SkMatrix. Given:
|
|
|
|
| A B C | | x |
|
|
Matrix = | D E F |, pt = | y |
|
|
| G H I | | 1 |
|
|
|
|
where
|
|
|
|
for (i = 0; i < count; ++i) {
|
|
x = pts[i].fX
|
|
y = pts[i].fY
|
|
}
|
|
|
|
each resulting pts SkPoint is computed as:
|
|
|
|
|A B C| |x| Ax+By+C Dx+Ey+F
|
|
Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
|
|
|G H I| |1| Gx+Hy+I Gx+Hy+I
|
|
|
|
@param pts storage for mapped SkPoint
|
|
@param count number of SkPoint to transform
|
|
*/
|
|
void mapPoints(SkPoint pts[], int count) const {
|
|
this->mapPoints(pts, pts, count);
|
|
}
|
|
|
|
/** Maps src SkPoint3 array of length count to dst SkPoint3 array, which must of length count or
|
|
greater. SkPoint3 array is mapped by multiplying each SkPoint3 by SkMatrix. Given:
|
|
|
|
| A B C | | x |
|
|
Matrix = | D E F |, src = | y |
|
|
| G H I | | z |
|
|
|
|
each resulting dst SkPoint is computed as:
|
|
|
|
|A B C| |x|
|
|
Matrix * src = |D E F| |y| = |Ax+By+Cz Dx+Ey+Fz Gx+Hy+Iz|
|
|
|G H I| |z|
|
|
|
|
@param dst storage for mapped SkPoint3 array
|
|
@param src SkPoint3 array to transform
|
|
@param count items in SkPoint3 array to transform
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_mapHomogeneousPoints
|
|
*/
|
|
void mapHomogeneousPoints(SkPoint3 dst[], const SkPoint3 src[], int count) const;
|
|
|
|
/**
|
|
* Returns homogeneous points, starting with 2D src points (with implied w = 1).
|
|
*/
|
|
void mapHomogeneousPoints(SkPoint3 dst[], const SkPoint src[], int count) const;
|
|
|
|
/** Returns SkPoint pt multiplied by SkMatrix. Given:
|
|
|
|
| A B C | | x |
|
|
Matrix = | D E F |, pt = | y |
|
|
| G H I | | 1 |
|
|
|
|
result is computed as:
|
|
|
|
|A B C| |x| Ax+By+C Dx+Ey+F
|
|
Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
|
|
|G H I| |1| Gx+Hy+I Gx+Hy+I
|
|
|
|
@param p SkPoint to map
|
|
@return mapped SkPoint
|
|
*/
|
|
SkPoint mapPoint(SkPoint pt) const {
|
|
SkPoint result;
|
|
this->mapXY(pt.x(), pt.y(), &result);
|
|
return result;
|
|
}
|
|
|
|
/** Maps SkPoint (x, y) to result. SkPoint is mapped by multiplying by SkMatrix. Given:
|
|
|
|
| A B C | | x |
|
|
Matrix = | D E F |, pt = | y |
|
|
| G H I | | 1 |
|
|
|
|
result is computed as:
|
|
|
|
|A B C| |x| Ax+By+C Dx+Ey+F
|
|
Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
|
|
|G H I| |1| Gx+Hy+I Gx+Hy+I
|
|
|
|
@param x x-axis value of SkPoint to map
|
|
@param y y-axis value of SkPoint to map
|
|
@param result storage for mapped SkPoint
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_mapXY
|
|
*/
|
|
void mapXY(SkScalar x, SkScalar y, SkPoint* result) const;
|
|
|
|
/** Returns SkPoint (x, y) multiplied by SkMatrix. Given:
|
|
|
|
| A B C | | x |
|
|
Matrix = | D E F |, pt = | y |
|
|
| G H I | | 1 |
|
|
|
|
result is computed as:
|
|
|
|
|A B C| |x| Ax+By+C Dx+Ey+F
|
|
Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
|
|
|G H I| |1| Gx+Hy+I Gx+Hy+I
|
|
|
|
@param x x-axis value of SkPoint to map
|
|
@param y y-axis value of SkPoint to map
|
|
@return mapped SkPoint
|
|
*/
|
|
SkPoint mapXY(SkScalar x, SkScalar y) const {
|
|
SkPoint result;
|
|
this->mapXY(x,y, &result);
|
|
return result;
|
|
}
|
|
|
|
|
|
/** Returns (0, 0) multiplied by SkMatrix. Given:
|
|
|
|
| A B C | | 0 |
|
|
Matrix = | D E F |, pt = | 0 |
|
|
| G H I | | 1 |
|
|
|
|
result is computed as:
|
|
|
|
|A B C| |0| C F
|
|
Matrix * pt = |D E F| |0| = |C F I| = - , -
|
|
|G H I| |1| I I
|
|
|
|
@return mapped (0, 0)
|
|
*/
|
|
SkPoint mapOrigin() const {
|
|
SkScalar x = this->getTranslateX(),
|
|
y = this->getTranslateY();
|
|
if (this->hasPerspective()) {
|
|
SkScalar w = fMat[kMPersp2];
|
|
if (w) { w = 1 / w; }
|
|
x *= w;
|
|
y *= w;
|
|
}
|
|
return {x, y};
|
|
}
|
|
|
|
/** Maps src vector array of length count to vector SkPoint array of equal or greater
|
|
length. Vectors are mapped by multiplying each vector by SkMatrix, treating
|
|
SkMatrix translation as zero. Given:
|
|
|
|
| A B 0 | | x |
|
|
Matrix = | D E 0 |, src = | y |
|
|
| G H I | | 1 |
|
|
|
|
where
|
|
|
|
for (i = 0; i < count; ++i) {
|
|
x = src[i].fX
|
|
y = src[i].fY
|
|
}
|
|
|
|
each dst vector is computed as:
|
|
|
|
|A B 0| |x| Ax+By Dx+Ey
|
|
Matrix * src = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , -------
|
|
|G H I| |1| Gx+Hy+I Gx+Hy+I
|
|
|
|
src and dst may point to the same storage.
|
|
|
|
@param dst storage for mapped vectors
|
|
@param src vectors to transform
|
|
@param count number of vectors to transform
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_mapVectors
|
|
*/
|
|
void mapVectors(SkVector dst[], const SkVector src[], int count) const;
|
|
|
|
/** Maps vecs vector array of length count in place, multiplying each vector by
|
|
SkMatrix, treating SkMatrix translation as zero. Given:
|
|
|
|
| A B 0 | | x |
|
|
Matrix = | D E 0 |, vec = | y |
|
|
| G H I | | 1 |
|
|
|
|
where
|
|
|
|
for (i = 0; i < count; ++i) {
|
|
x = vecs[i].fX
|
|
y = vecs[i].fY
|
|
}
|
|
|
|
each result vector is computed as:
|
|
|
|
|A B 0| |x| Ax+By Dx+Ey
|
|
Matrix * vec = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , -------
|
|
|G H I| |1| Gx+Hy+I Gx+Hy+I
|
|
|
|
@param vecs vectors to transform, and storage for mapped vectors
|
|
@param count number of vectors to transform
|
|
*/
|
|
void mapVectors(SkVector vecs[], int count) const {
|
|
this->mapVectors(vecs, vecs, count);
|
|
}
|
|
|
|
/** Maps vector (dx, dy) to result. Vector is mapped by multiplying by SkMatrix,
|
|
treating SkMatrix translation as zero. Given:
|
|
|
|
| A B 0 | | dx |
|
|
Matrix = | D E 0 |, vec = | dy |
|
|
| G H I | | 1 |
|
|
|
|
each result vector is computed as:
|
|
|
|
|A B 0| |dx| A*dx+B*dy D*dx+E*dy
|
|
Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , -----------
|
|
|G H I| | 1| G*dx+H*dy+I G*dx+*dHy+I
|
|
|
|
@param dx x-axis value of vector to map
|
|
@param dy y-axis value of vector to map
|
|
@param result storage for mapped vector
|
|
*/
|
|
void mapVector(SkScalar dx, SkScalar dy, SkVector* result) const {
|
|
SkVector vec = { dx, dy };
|
|
this->mapVectors(result, &vec, 1);
|
|
}
|
|
|
|
/** Returns vector (dx, dy) multiplied by SkMatrix, treating SkMatrix translation as zero.
|
|
Given:
|
|
|
|
| A B 0 | | dx |
|
|
Matrix = | D E 0 |, vec = | dy |
|
|
| G H I | | 1 |
|
|
|
|
each result vector is computed as:
|
|
|
|
|A B 0| |dx| A*dx+B*dy D*dx+E*dy
|
|
Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , -----------
|
|
|G H I| | 1| G*dx+H*dy+I G*dx+*dHy+I
|
|
|
|
@param dx x-axis value of vector to map
|
|
@param dy y-axis value of vector to map
|
|
@return mapped vector
|
|
*/
|
|
SkVector mapVector(SkScalar dx, SkScalar dy) const {
|
|
SkVector vec = { dx, dy };
|
|
this->mapVectors(&vec, &vec, 1);
|
|
return vec;
|
|
}
|
|
|
|
/** Sets dst to bounds of src corners mapped by SkMatrix.
|
|
Returns true if mapped corners are dst corners.
|
|
|
|
Returned value is the same as calling rectStaysRect().
|
|
|
|
@param dst storage for bounds of mapped SkPoint
|
|
@param src SkRect to map
|
|
@param pc whether to apply perspective clipping
|
|
@return true if dst is equivalent to mapped src
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_mapRect
|
|
*/
|
|
bool mapRect(SkRect* dst, const SkRect& src,
|
|
SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const;
|
|
|
|
/** Sets rect to bounds of rect corners mapped by SkMatrix.
|
|
Returns true if mapped corners are computed rect corners.
|
|
|
|
Returned value is the same as calling rectStaysRect().
|
|
|
|
@param rect rectangle to map, and storage for bounds of mapped corners
|
|
@param pc whether to apply perspective clipping
|
|
@return true if result is equivalent to mapped rect
|
|
*/
|
|
bool mapRect(SkRect* rect, SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const {
|
|
return this->mapRect(rect, *rect, pc);
|
|
}
|
|
|
|
/** Returns bounds of src corners mapped by SkMatrix.
|
|
|
|
@param src rectangle to map
|
|
@return mapped bounds
|
|
*/
|
|
SkRect mapRect(const SkRect& src,
|
|
SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const {
|
|
SkRect dst;
|
|
(void)this->mapRect(&dst, src, pc);
|
|
return dst;
|
|
}
|
|
|
|
/** Maps four corners of rect to dst. SkPoint are mapped by multiplying each
|
|
rect corner by SkMatrix. rect corner is processed in this order:
|
|
(rect.fLeft, rect.fTop), (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom),
|
|
(rect.fLeft, rect.fBottom).
|
|
|
|
rect may be empty: rect.fLeft may be greater than or equal to rect.fRight;
|
|
rect.fTop may be greater than or equal to rect.fBottom.
|
|
|
|
Given:
|
|
|
|
| A B C | | x |
|
|
Matrix = | D E F |, pt = | y |
|
|
| G H I | | 1 |
|
|
|
|
where pt is initialized from each of (rect.fLeft, rect.fTop),
|
|
(rect.fRight, rect.fTop), (rect.fRight, rect.fBottom), (rect.fLeft, rect.fBottom),
|
|
each dst SkPoint is computed as:
|
|
|
|
|A B C| |x| Ax+By+C Dx+Ey+F
|
|
Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
|
|
|G H I| |1| Gx+Hy+I Gx+Hy+I
|
|
|
|
@param dst storage for mapped corner SkPoint
|
|
@param rect SkRect to map
|
|
|
|
Note: this does not perform perspective clipping (as that might result in more than
|
|
4 points, so results are suspect if the matrix contains perspective.
|
|
*/
|
|
void mapRectToQuad(SkPoint dst[4], const SkRect& rect) const {
|
|
// This could potentially be faster if we only transformed each x and y of the rect once.
|
|
rect.toQuad(dst);
|
|
this->mapPoints(dst, 4);
|
|
}
|
|
|
|
/** Sets dst to bounds of src corners mapped by SkMatrix. If matrix contains
|
|
elements other than scale or translate: asserts if SK_DEBUG is defined;
|
|
otherwise, results are undefined.
|
|
|
|
@param dst storage for bounds of mapped SkPoint
|
|
@param src SkRect to map
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_mapRectScaleTranslate
|
|
*/
|
|
void mapRectScaleTranslate(SkRect* dst, const SkRect& src) const;
|
|
|
|
/** Returns geometric mean radius of ellipse formed by constructing circle of
|
|
size radius, and mapping constructed circle with SkMatrix. The result squared is
|
|
equal to the major axis length times the minor axis length.
|
|
Result is not meaningful if SkMatrix contains perspective elements.
|
|
|
|
@param radius circle size to map
|
|
@return average mapped radius
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_mapRadius
|
|
*/
|
|
SkScalar mapRadius(SkScalar radius) const;
|
|
|
|
/** Compares a and b; returns true if a and b are numerically equal. Returns true
|
|
even if sign of zero values are different. Returns false if either SkMatrix
|
|
contains NaN, even if the other SkMatrix also contains NaN.
|
|
|
|
@param a SkMatrix to compare
|
|
@param b SkMatrix to compare
|
|
@return true if SkMatrix a and SkMatrix b are numerically equal
|
|
*/
|
|
friend SK_API bool operator==(const SkMatrix& a, const SkMatrix& b);
|
|
|
|
/** Compares a and b; returns true if a and b are not numerically equal. Returns false
|
|
even if sign of zero values are different. Returns true if either SkMatrix
|
|
contains NaN, even if the other SkMatrix also contains NaN.
|
|
|
|
@param a SkMatrix to compare
|
|
@param b SkMatrix to compare
|
|
@return true if SkMatrix a and SkMatrix b are numerically not equal
|
|
*/
|
|
friend SK_API bool operator!=(const SkMatrix& a, const SkMatrix& b) {
|
|
return !(a == b);
|
|
}
|
|
|
|
/** Writes text representation of SkMatrix to standard output. Floating point values
|
|
are written with limited precision; it may not be possible to reconstruct
|
|
original SkMatrix from output.
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_dump
|
|
*/
|
|
void dump() const;
|
|
|
|
/** Returns the minimum scaling factor of SkMatrix by decomposing the scaling and
|
|
skewing elements.
|
|
Returns -1 if scale factor overflows or SkMatrix contains perspective.
|
|
|
|
@return minimum scale factor
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_getMinScale
|
|
*/
|
|
SkScalar getMinScale() const;
|
|
|
|
/** Returns the maximum scaling factor of SkMatrix by decomposing the scaling and
|
|
skewing elements.
|
|
Returns -1 if scale factor overflows or SkMatrix contains perspective.
|
|
|
|
@return maximum scale factor
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_getMaxScale
|
|
*/
|
|
SkScalar getMaxScale() const;
|
|
|
|
/** Sets scaleFactors[0] to the minimum scaling factor, and scaleFactors[1] to the
|
|
maximum scaling factor. Scaling factors are computed by decomposing
|
|
the SkMatrix scaling and skewing elements.
|
|
|
|
Returns true if scaleFactors are found; otherwise, returns false and sets
|
|
scaleFactors to undefined values.
|
|
|
|
@param scaleFactors storage for minimum and maximum scale factors
|
|
@return true if scale factors were computed correctly
|
|
*/
|
|
bool SK_WARN_UNUSED_RESULT getMinMaxScales(SkScalar scaleFactors[2]) const;
|
|
|
|
/** Decomposes SkMatrix into scale components and whatever remains. Returns false if
|
|
SkMatrix could not be decomposed.
|
|
|
|
Sets scale to portion of SkMatrix that scale axes. Sets remaining to SkMatrix
|
|
with scaling factored out. remaining may be passed as nullptr
|
|
to determine if SkMatrix can be decomposed without computing remainder.
|
|
|
|
Returns true if scale components are found. scale and remaining are
|
|
unchanged if SkMatrix contains perspective; scale factors are not finite, or
|
|
are nearly zero.
|
|
|
|
On success: Matrix = Remaining * scale.
|
|
|
|
@param scale axes scaling factors; may be nullptr
|
|
@param remaining SkMatrix without scaling; may be nullptr
|
|
@return true if scale can be computed
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_decomposeScale
|
|
*/
|
|
bool decomposeScale(SkSize* scale, SkMatrix* remaining = nullptr) const;
|
|
|
|
/** Returns reference to const identity SkMatrix. Returned SkMatrix is set to:
|
|
|
|
| 1 0 0 |
|
|
| 0 1 0 |
|
|
| 0 0 1 |
|
|
|
|
@return const identity SkMatrix
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_I
|
|
*/
|
|
static const SkMatrix& I();
|
|
|
|
/** Returns reference to a const SkMatrix with invalid values. Returned SkMatrix is set
|
|
to:
|
|
|
|
| SK_ScalarMax SK_ScalarMax SK_ScalarMax |
|
|
| SK_ScalarMax SK_ScalarMax SK_ScalarMax |
|
|
| SK_ScalarMax SK_ScalarMax SK_ScalarMax |
|
|
|
|
@return const invalid SkMatrix
|
|
|
|
example: https://fiddle.skia.org/c/@Matrix_InvalidMatrix
|
|
*/
|
|
static const SkMatrix& InvalidMatrix();
|
|
|
|
/** Returns SkMatrix a multiplied by SkMatrix b.
|
|
|
|
Given:
|
|
|
|
| A B C | | J K L |
|
|
a = | D E F |, b = | M N O |
|
|
| G H I | | P Q R |
|
|
|
|
sets SkMatrix to:
|
|
|
|
| A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR |
|
|
a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
|
|
| G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR |
|
|
|
|
@param a SkMatrix on left side of multiply expression
|
|
@param b SkMatrix on right side of multiply expression
|
|
@return SkMatrix computed from a times b
|
|
*/
|
|
static SkMatrix Concat(const SkMatrix& a, const SkMatrix& b) {
|
|
SkMatrix result;
|
|
result.setConcat(a, b);
|
|
return result;
|
|
}
|
|
|
|
friend SkMatrix operator*(const SkMatrix& a, const SkMatrix& b) {
|
|
return Concat(a, b);
|
|
}
|
|
|
|
/** Sets internal cache to unknown state. Use to force update after repeated
|
|
modifications to SkMatrix element reference returned by operator[](int index).
|
|
*/
|
|
void dirtyMatrixTypeCache() {
|
|
this->setTypeMask(kUnknown_Mask);
|
|
}
|
|
|
|
/** Initializes SkMatrix with scale and translate elements.
|
|
|
|
| sx 0 tx |
|
|
| 0 sy ty |
|
|
| 0 0 1 |
|
|
|
|
@param sx horizontal scale factor to store
|
|
@param sy vertical scale factor to store
|
|
@param tx horizontal translation to store
|
|
@param ty vertical translation to store
|
|
*/
|
|
void setScaleTranslate(SkScalar sx, SkScalar sy, SkScalar tx, SkScalar ty) {
|
|
fMat[kMScaleX] = sx;
|
|
fMat[kMSkewX] = 0;
|
|
fMat[kMTransX] = tx;
|
|
|
|
fMat[kMSkewY] = 0;
|
|
fMat[kMScaleY] = sy;
|
|
fMat[kMTransY] = ty;
|
|
|
|
fMat[kMPersp0] = 0;
|
|
fMat[kMPersp1] = 0;
|
|
fMat[kMPersp2] = 1;
|
|
|
|
int mask = 0;
|
|
if (sx != 1 || sy != 1) {
|
|
mask |= kScale_Mask;
|
|
}
|
|
if (tx || ty) {
|
|
mask |= kTranslate_Mask;
|
|
}
|
|
this->setTypeMask(mask | kRectStaysRect_Mask);
|
|
}
|
|
|
|
/** Returns true if all elements of the matrix are finite. Returns false if any
|
|
element is infinity, or NaN.
|
|
|
|
@return true if matrix has only finite elements
|
|
*/
|
|
bool isFinite() const { return SkScalarsAreFinite(fMat, 9); }
|
|
|
|
private:
|
|
/** Set if the matrix will map a rectangle to another rectangle. This
|
|
can be true if the matrix is scale-only, or rotates a multiple of
|
|
90 degrees.
|
|
|
|
This bit will be set on identity matrices
|
|
*/
|
|
static constexpr int kRectStaysRect_Mask = 0x10;
|
|
|
|
/** Set if the perspective bit is valid even though the rest of
|
|
the matrix is Unknown.
|
|
*/
|
|
static constexpr int kOnlyPerspectiveValid_Mask = 0x40;
|
|
|
|
static constexpr int kUnknown_Mask = 0x80;
|
|
|
|
static constexpr int kORableMasks = kTranslate_Mask |
|
|
kScale_Mask |
|
|
kAffine_Mask |
|
|
kPerspective_Mask;
|
|
|
|
static constexpr int kAllMasks = kTranslate_Mask |
|
|
kScale_Mask |
|
|
kAffine_Mask |
|
|
kPerspective_Mask |
|
|
kRectStaysRect_Mask;
|
|
|
|
SkScalar fMat[9];
|
|
mutable int32_t fTypeMask;
|
|
|
|
constexpr SkMatrix(SkScalar sx, SkScalar kx, SkScalar tx,
|
|
SkScalar ky, SkScalar sy, SkScalar ty,
|
|
SkScalar p0, SkScalar p1, SkScalar p2, int typeMask)
|
|
: fMat{sx, kx, tx,
|
|
ky, sy, ty,
|
|
p0, p1, p2}
|
|
, fTypeMask(typeMask) {}
|
|
|
|
static void ComputeInv(SkScalar dst[9], const SkScalar src[9], double invDet, bool isPersp);
|
|
|
|
uint8_t computeTypeMask() const;
|
|
uint8_t computePerspectiveTypeMask() const;
|
|
|
|
void setTypeMask(int mask) {
|
|
// allow kUnknown or a valid mask
|
|
SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask ||
|
|
((kUnknown_Mask | kOnlyPerspectiveValid_Mask) & mask)
|
|
== (kUnknown_Mask | kOnlyPerspectiveValid_Mask));
|
|
fTypeMask = mask;
|
|
}
|
|
|
|
void orTypeMask(int mask) {
|
|
SkASSERT((mask & kORableMasks) == mask);
|
|
fTypeMask |= mask;
|
|
}
|
|
|
|
void clearTypeMask(int mask) {
|
|
// only allow a valid mask
|
|
SkASSERT((mask & kAllMasks) == mask);
|
|
fTypeMask &= ~mask;
|
|
}
|
|
|
|
TypeMask getPerspectiveTypeMaskOnly() const {
|
|
if ((fTypeMask & kUnknown_Mask) &&
|
|
!(fTypeMask & kOnlyPerspectiveValid_Mask)) {
|
|
fTypeMask = this->computePerspectiveTypeMask();
|
|
}
|
|
return (TypeMask)(fTypeMask & 0xF);
|
|
}
|
|
|
|
/** Returns true if we already know that the matrix is identity;
|
|
false otherwise.
|
|
*/
|
|
bool isTriviallyIdentity() const {
|
|
if (fTypeMask & kUnknown_Mask) {
|
|
return false;
|
|
}
|
|
return ((fTypeMask & 0xF) == 0);
|
|
}
|
|
|
|
inline void updateTranslateMask() {
|
|
if ((fMat[kMTransX] != 0) | (fMat[kMTransY] != 0)) {
|
|
fTypeMask |= kTranslate_Mask;
|
|
} else {
|
|
fTypeMask &= ~kTranslate_Mask;
|
|
}
|
|
}
|
|
|
|
typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y,
|
|
SkPoint* result);
|
|
|
|
static MapXYProc GetMapXYProc(TypeMask mask) {
|
|
SkASSERT((mask & ~kAllMasks) == 0);
|
|
return gMapXYProcs[mask & kAllMasks];
|
|
}
|
|
|
|
MapXYProc getMapXYProc() const {
|
|
return GetMapXYProc(this->getType());
|
|
}
|
|
|
|
typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[],
|
|
const SkPoint src[], int count);
|
|
|
|
static MapPtsProc GetMapPtsProc(TypeMask mask) {
|
|
SkASSERT((mask & ~kAllMasks) == 0);
|
|
return gMapPtsProcs[mask & kAllMasks];
|
|
}
|
|
|
|
MapPtsProc getMapPtsProc() const {
|
|
return GetMapPtsProc(this->getType());
|
|
}
|
|
|
|
bool SK_WARN_UNUSED_RESULT invertNonIdentity(SkMatrix* inverse) const;
|
|
|
|
static bool Poly2Proc(const SkPoint[], SkMatrix*);
|
|
static bool Poly3Proc(const SkPoint[], SkMatrix*);
|
|
static bool Poly4Proc(const SkPoint[], SkMatrix*);
|
|
|
|
static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
|
|
static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
|
|
static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
|
|
static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
|
|
static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
|
|
static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
|
|
static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
|
|
|
|
static const MapXYProc gMapXYProcs[];
|
|
|
|
static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int);
|
|
static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
|
|
static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
|
|
static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[],
|
|
int count);
|
|
static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
|
|
|
|
static void Affine_vpts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
|
|
|
|
static const MapPtsProc gMapPtsProcs[];
|
|
|
|
// return the number of bytes written, whether or not buffer is null
|
|
size_t writeToMemory(void* buffer) const;
|
|
/**
|
|
* Reads data from the buffer parameter
|
|
*
|
|
* @param buffer Memory to read from
|
|
* @param length Amount of memory available in the buffer
|
|
* @return number of bytes read (must be a multiple of 4) or
|
|
* 0 if there was not enough memory available
|
|
*/
|
|
size_t readFromMemory(const void* buffer, size_t length);
|
|
|
|
// legacy method -- still needed? why not just postScale(1/divx, ...)?
|
|
bool postIDiv(int divx, int divy);
|
|
void doNormalizePerspective();
|
|
|
|
friend class SkPerspIter;
|
|
friend class SkMatrixPriv;
|
|
friend class SerializationTest;
|
|
};
|
|
SK_END_REQUIRE_DENSE
|
|
|
|
#endif
|