73ca6243b3
mostly working on cubic/cubic intersect git-svn-id: http://skia.googlecode.com/svn/trunk@7266 2bbb7eff-a529-9590-31e7-b0007b416f81
346 lines
13 KiB
C++
346 lines
13 KiB
C++
/*
|
|
* Copyright 2012 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
#include "CurveIntersection.h"
|
|
#include "Intersections.h"
|
|
#include "LineIntersection.h"
|
|
#include <algorithm> // used for std::swap
|
|
|
|
/* Determine the intersection point of two lines. This assumes the lines are not parallel,
|
|
and that that the lines are infinite.
|
|
From http://en.wikipedia.org/wiki/Line-line_intersection
|
|
*/
|
|
void lineIntersect(const _Line& a, const _Line& b, _Point& p) {
|
|
double axLen = a[1].x - a[0].x;
|
|
double ayLen = a[1].y - a[0].y;
|
|
double bxLen = b[1].x - b[0].x;
|
|
double byLen = b[1].y - b[0].y;
|
|
double denom = byLen * axLen - ayLen * bxLen;
|
|
assert(denom);
|
|
double term1 = a[1].x * a[0].y - a[1].y * a[0].x;
|
|
double term2 = b[1].x * b[0].y - b[1].y * b[0].x;
|
|
p.x = (term1 * bxLen - axLen * term2) / denom;
|
|
p.y = (term1 * byLen - ayLen * term2) / denom;
|
|
}
|
|
|
|
/*
|
|
Determine the intersection point of two line segments
|
|
Return FALSE if the lines don't intersect
|
|
from: http://paulbourke.net/geometry/lineline2d/
|
|
*/
|
|
|
|
int intersect(const _Line& a, const _Line& b, double aRange[2], double bRange[2]) {
|
|
double axLen = a[1].x - a[0].x;
|
|
double ayLen = a[1].y - a[0].y;
|
|
double bxLen = b[1].x - b[0].x;
|
|
double byLen = b[1].y - b[0].y;
|
|
/* Slopes match when denom goes to zero:
|
|
axLen / ayLen == bxLen / byLen
|
|
(ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
|
|
byLen * axLen == ayLen * bxLen
|
|
byLen * axLen - ayLen * bxLen == 0 ( == denom )
|
|
*/
|
|
double denom = byLen * axLen - ayLen * bxLen;
|
|
if (approximately_zero(denom)) {
|
|
/* See if the axis intercepts match:
|
|
ay - ax * ayLen / axLen == by - bx * ayLen / axLen
|
|
axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen)
|
|
axLen * ay - ax * ayLen == axLen * by - bx * ayLen
|
|
*/
|
|
// FIXME: need to use AlmostEqualUlps variant instead
|
|
if (approximately_equal_squared(axLen * a[0].y - ayLen * a[0].x,
|
|
axLen * b[0].y - ayLen * b[0].x)) {
|
|
const double* aPtr;
|
|
const double* bPtr;
|
|
if (fabs(axLen) > fabs(ayLen) || fabs(bxLen) > fabs(byLen)) {
|
|
aPtr = &a[0].x;
|
|
bPtr = &b[0].x;
|
|
} else {
|
|
aPtr = &a[0].y;
|
|
bPtr = &b[0].y;
|
|
}
|
|
#if 0 // sorting edges fails to preserve original direction
|
|
double aMin = aPtr[0];
|
|
double aMax = aPtr[2];
|
|
double bMin = bPtr[0];
|
|
double bMax = bPtr[2];
|
|
if (aMin > aMax) {
|
|
std::swap(aMin, aMax);
|
|
}
|
|
if (bMin > bMax) {
|
|
std::swap(bMin, bMax);
|
|
}
|
|
if (aMax < bMin || bMax < aMin) {
|
|
return 0;
|
|
}
|
|
if (aRange) {
|
|
aRange[0] = bMin <= aMin ? 0 : (bMin - aMin) / (aMax - aMin);
|
|
aRange[1] = bMax >= aMax ? 1 : (bMax - aMin) / (aMax - aMin);
|
|
}
|
|
int bIn = (aPtr[0] - aPtr[2]) * (bPtr[0] - bPtr[2]) < 0;
|
|
if (bRange) {
|
|
bRange[bIn] = aMin <= bMin ? 0 : (aMin - bMin) / (bMax - bMin);
|
|
bRange[!bIn] = aMax >= bMax ? 1 : (aMax - bMin) / (bMax - bMin);
|
|
}
|
|
return 1 + ((aRange[0] != aRange[1]) || (bRange[0] != bRange[1]));
|
|
#else
|
|
assert(aRange);
|
|
assert(bRange);
|
|
double a0 = aPtr[0];
|
|
double a1 = aPtr[2];
|
|
double b0 = bPtr[0];
|
|
double b1 = bPtr[2];
|
|
// OPTIMIZATION: restructure to reject before the divide
|
|
// e.g., if ((a0 - b0) * (a0 - a1) < 0 || abs(a0 - b0) > abs(a0 - a1))
|
|
// (except efficient)
|
|
double at0 = (a0 - b0) / (a0 - a1);
|
|
double at1 = (a0 - b1) / (a0 - a1);
|
|
if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
|
|
return 0;
|
|
}
|
|
aRange[0] = std::max(std::min(at0, 1.0), 0.0);
|
|
aRange[1] = std::max(std::min(at1, 1.0), 0.0);
|
|
int bIn = (a0 - a1) * (b0 - b1) < 0;
|
|
bRange[bIn] = std::max(std::min((b0 - a0) / (b0 - b1), 1.0), 0.0);
|
|
bRange[!bIn] = std::max(std::min((b0 - a1) / (b0 - b1), 1.0), 0.0);
|
|
bool second = fabs(aRange[0] - aRange[1]) > FLT_EPSILON;
|
|
assert((fabs(bRange[0] - bRange[1]) <= FLT_EPSILON) ^ second);
|
|
return 1 + second;
|
|
#endif
|
|
}
|
|
}
|
|
double ab0y = a[0].y - b[0].y;
|
|
double ab0x = a[0].x - b[0].x;
|
|
double numerA = ab0y * bxLen - byLen * ab0x;
|
|
if ((numerA < 0 && denom > numerA) || (numerA > 0 && denom < numerA)) {
|
|
return 0;
|
|
}
|
|
double numerB = ab0y * axLen - ayLen * ab0x;
|
|
if ((numerB < 0 && denom > numerB) || (numerB > 0 && denom < numerB)) {
|
|
return 0;
|
|
}
|
|
/* Is the intersection along the the segments */
|
|
if (aRange) {
|
|
aRange[0] = numerA / denom;
|
|
}
|
|
if (bRange) {
|
|
bRange[0] = numerB / denom;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int horizontalIntersect(const _Line& line, double y, double tRange[2]) {
|
|
double min = line[0].y;
|
|
double max = line[1].y;
|
|
if (min > max) {
|
|
std::swap(min, max);
|
|
}
|
|
if (min > y || max < y) {
|
|
return 0;
|
|
}
|
|
if (AlmostEqualUlps(min, max)) {
|
|
tRange[0] = 0;
|
|
tRange[1] = 1;
|
|
return 2;
|
|
}
|
|
tRange[0] = (y - line[0].y) / (line[1].y - line[0].y);
|
|
return 1;
|
|
}
|
|
|
|
// OPTIMIZATION Given: dy = line[1].y - line[0].y
|
|
// and: xIntercept / (y - line[0].y) == (line[1].x - line[0].x) / dy
|
|
// then: xIntercept * dy == (line[1].x - line[0].x) * (y - line[0].y)
|
|
// Assuming that dy is always > 0, the line segment intercepts if:
|
|
// left * dy <= xIntercept * dy <= right * dy
|
|
// thus: left * dy <= (line[1].x - line[0].x) * (y - line[0].y) <= right * dy
|
|
// (clever as this is, it does not give us the t value, so may be useful only
|
|
// as a quick reject -- and maybe not then; it takes 3 muls, 3 adds, 2 cmps)
|
|
int horizontalLineIntersect(const _Line& line, double left, double right,
|
|
double y, double tRange[2]) {
|
|
int result = horizontalIntersect(line, y, tRange);
|
|
if (result != 1) {
|
|
// FIXME: this is incorrect if result == 2
|
|
return result;
|
|
}
|
|
double xIntercept = line[0].x + tRange[0] * (line[1].x - line[0].x);
|
|
if (xIntercept > right || xIntercept < left) {
|
|
return 0;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int horizontalIntersect(const _Line& line, double left, double right,
|
|
double y, bool flipped, Intersections& intersections) {
|
|
int result = horizontalIntersect(line, y, intersections.fT[0]);
|
|
switch (result) {
|
|
case 0:
|
|
break;
|
|
case 1: {
|
|
double xIntercept = line[0].x + intersections.fT[0][0]
|
|
* (line[1].x - line[0].x);
|
|
if (xIntercept > right || xIntercept < left) {
|
|
return 0;
|
|
}
|
|
intersections.fT[1][0] = (xIntercept - left) / (right - left);
|
|
break;
|
|
}
|
|
case 2:
|
|
#if 0 // sorting edges fails to preserve original direction
|
|
double lineL = line[0].x;
|
|
double lineR = line[1].x;
|
|
if (lineL > lineR) {
|
|
std::swap(lineL, lineR);
|
|
}
|
|
double overlapL = std::max(left, lineL);
|
|
double overlapR = std::min(right, lineR);
|
|
if (overlapL > overlapR) {
|
|
return 0;
|
|
}
|
|
if (overlapL == overlapR) {
|
|
result = 1;
|
|
}
|
|
intersections.fT[0][0] = (overlapL - line[0].x) / (line[1].x - line[0].x);
|
|
intersections.fT[1][0] = (overlapL - left) / (right - left);
|
|
if (result > 1) {
|
|
intersections.fT[0][1] = (overlapR - line[0].x) / (line[1].x - line[0].x);
|
|
intersections.fT[1][1] = (overlapR - left) / (right - left);
|
|
}
|
|
#else
|
|
double a0 = line[0].x;
|
|
double a1 = line[1].x;
|
|
double b0 = flipped ? right : left;
|
|
double b1 = flipped ? left : right;
|
|
// FIXME: share common code below
|
|
double at0 = (a0 - b0) / (a0 - a1);
|
|
double at1 = (a0 - b1) / (a0 - a1);
|
|
if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
|
|
return 0;
|
|
}
|
|
intersections.fT[0][0] = std::max(std::min(at0, 1.0), 0.0);
|
|
intersections.fT[0][1] = std::max(std::min(at1, 1.0), 0.0);
|
|
int bIn = (a0 - a1) * (b0 - b1) < 0;
|
|
intersections.fT[1][bIn] = std::max(std::min((b0 - a0) / (b0 - b1),
|
|
1.0), 0.0);
|
|
intersections.fT[1][!bIn] = std::max(std::min((b0 - a1) / (b0 - b1),
|
|
1.0), 0.0);
|
|
bool second = fabs(intersections.fT[0][0] - intersections.fT[0][1])
|
|
> FLT_EPSILON;
|
|
assert((fabs(intersections.fT[1][0] - intersections.fT[1][1])
|
|
<= FLT_EPSILON) ^ second);
|
|
return 1 + second;
|
|
#endif
|
|
break;
|
|
}
|
|
if (flipped) {
|
|
// OPTIMIZATION: instead of swapping, pass original line, use [1].x - [0].x
|
|
for (int index = 0; index < result; ++index) {
|
|
intersections.fT[1][index] = 1 - intersections.fT[1][index];
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int verticalIntersect(const _Line& line, double x, double tRange[2]) {
|
|
double min = line[0].x;
|
|
double max = line[1].x;
|
|
if (min > max) {
|
|
std::swap(min, max);
|
|
}
|
|
if (min > x || max < x) {
|
|
return 0;
|
|
}
|
|
if (AlmostEqualUlps(min, max)) {
|
|
tRange[0] = 0;
|
|
tRange[1] = 1;
|
|
return 2;
|
|
}
|
|
tRange[0] = (x - line[0].x) / (line[1].x - line[0].x);
|
|
return 1;
|
|
}
|
|
|
|
int verticalIntersect(const _Line& line, double top, double bottom,
|
|
double x, bool flipped, Intersections& intersections) {
|
|
int result = verticalIntersect(line, x, intersections.fT[0]);
|
|
switch (result) {
|
|
case 0:
|
|
break;
|
|
case 1: {
|
|
double yIntercept = line[0].y + intersections.fT[0][0]
|
|
* (line[1].y - line[0].y);
|
|
if (yIntercept > bottom || yIntercept < top) {
|
|
return 0;
|
|
}
|
|
intersections.fT[1][0] = (yIntercept - top) / (bottom - top);
|
|
break;
|
|
}
|
|
case 2:
|
|
#if 0 // sorting edges fails to preserve original direction
|
|
double lineT = line[0].y;
|
|
double lineB = line[1].y;
|
|
if (lineT > lineB) {
|
|
std::swap(lineT, lineB);
|
|
}
|
|
double overlapT = std::max(top, lineT);
|
|
double overlapB = std::min(bottom, lineB);
|
|
if (overlapT > overlapB) {
|
|
return 0;
|
|
}
|
|
if (overlapT == overlapB) {
|
|
result = 1;
|
|
}
|
|
intersections.fT[0][0] = (overlapT - line[0].y) / (line[1].y - line[0].y);
|
|
intersections.fT[1][0] = (overlapT - top) / (bottom - top);
|
|
if (result > 1) {
|
|
intersections.fT[0][1] = (overlapB - line[0].y) / (line[1].y - line[0].y);
|
|
intersections.fT[1][1] = (overlapB - top) / (bottom - top);
|
|
}
|
|
#else
|
|
double a0 = line[0].y;
|
|
double a1 = line[1].y;
|
|
double b0 = flipped ? bottom : top;
|
|
double b1 = flipped ? top : bottom;
|
|
// FIXME: share common code above
|
|
double at0 = (a0 - b0) / (a0 - a1);
|
|
double at1 = (a0 - b1) / (a0 - a1);
|
|
if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
|
|
return 0;
|
|
}
|
|
intersections.fT[0][0] = std::max(std::min(at0, 1.0), 0.0);
|
|
intersections.fT[0][1] = std::max(std::min(at1, 1.0), 0.0);
|
|
int bIn = (a0 - a1) * (b0 - b1) < 0;
|
|
intersections.fT[1][bIn] = std::max(std::min((b0 - a0) / (b0 - b1),
|
|
1.0), 0.0);
|
|
intersections.fT[1][!bIn] = std::max(std::min((b0 - a1) / (b0 - b1),
|
|
1.0), 0.0);
|
|
bool second = fabs(intersections.fT[0][0] - intersections.fT[0][1])
|
|
> FLT_EPSILON;
|
|
assert((fabs(intersections.fT[1][0] - intersections.fT[1][1])
|
|
<= FLT_EPSILON) ^ second);
|
|
return 1 + second;
|
|
#endif
|
|
break;
|
|
}
|
|
if (flipped) {
|
|
// OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y
|
|
for (int index = 0; index < result; ++index) {
|
|
intersections.fT[1][index] = 1 - intersections.fT[1][index];
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// from http://www.bryceboe.com/wordpress/wp-content/uploads/2006/10/intersect.py
|
|
// 4 subs, 2 muls, 1 cmp
|
|
static bool ccw(const _Point& A, const _Point& B, const _Point& C) {
|
|
return (C.y - A.y) * (B.x - A.x) > (B.y - A.y) * (C.x - A.x);
|
|
}
|
|
|
|
// 16 subs, 8 muls, 6 cmps
|
|
bool testIntersect(const _Line& a, const _Line& b) {
|
|
return ccw(a[0], b[0], b[1]) != ccw(a[1], b[0], b[1])
|
|
&& ccw(a[0], a[1], b[0]) != ccw(a[0], a[1], b[1]);
|
|
}
|