05c4bad470
git-svn-id: http://skia.googlecode.com/svn/trunk@7294 2bbb7eff-a529-9590-31e7-b0007b416f81
6241 lines
218 KiB
C++
6241 lines
218 KiB
C++
/*
|
|
* Copyright 2012 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
#include "Simplify.h"
|
|
|
|
#undef SkASSERT
|
|
#define SkASSERT(cond) while (!(cond)) { sk_throw(); }
|
|
|
|
// Terminology:
|
|
// A Path contains one of more Contours
|
|
// A Contour is made up of Segment array
|
|
// A Segment is described by a Verb and a Point array with 2, 3, or 4 points
|
|
// A Verb is one of Line, Quad(ratic), or Cubic
|
|
// A Segment contains a Span array
|
|
// A Span is describes a portion of a Segment using starting and ending T
|
|
// T values range from 0 to 1, where 0 is the first Point in the Segment
|
|
// An Edge is a Segment generated from a Span
|
|
|
|
// FIXME: remove once debugging is complete
|
|
#ifdef SK_DEBUG
|
|
int gDebugMaxWindSum = SK_MaxS32;
|
|
int gDebugMaxWindValue = SK_MaxS32;
|
|
#endif
|
|
|
|
#define PIN_ADD_T 0
|
|
#define TRY_ROTATE 1
|
|
#define ONE_PASS_COINCIDENCE_CHECK 0
|
|
#define APPROXIMATE_CUBICS 1
|
|
|
|
#define DEBUG_UNUSED 0 // set to expose unused functions
|
|
#define FORCE_RELEASE 0 // set force release to 1 for multiple thread -- no debugging
|
|
|
|
#if FORCE_RELEASE || defined SK_RELEASE
|
|
|
|
const bool gRunTestsInOneThread = false;
|
|
|
|
#define DEBUG_ACTIVE_SPANS 0
|
|
#define DEBUG_ACTIVE_SPANS_SHORT_FORM 0
|
|
#define DEBUG_ADD_INTERSECTING_TS 0
|
|
#define DEBUG_ADD_T_PAIR 0
|
|
#define DEBUG_ANGLE 0
|
|
#define DEBUG_ASSEMBLE 0
|
|
#define DEBUG_CONCIDENT 0
|
|
#define DEBUG_CROSS 0
|
|
#define DEBUG_FLOW 0
|
|
#define DEBUG_MARK_DONE 0
|
|
#define DEBUG_PATH_CONSTRUCTION 0
|
|
#define DEBUG_SHOW_WINDING 0
|
|
#define DEBUG_SORT 0
|
|
#define DEBUG_UNSORTABLE 0
|
|
#define DEBUG_WIND_BUMP 0
|
|
#define DEBUG_WINDING 0
|
|
#define DEBUG_WINDING_AT_T 0
|
|
|
|
#else
|
|
|
|
const bool gRunTestsInOneThread = true;
|
|
|
|
#define DEBUG_ACTIVE_SPANS 1
|
|
#define DEBUG_ACTIVE_SPANS_SHORT_FORM 1
|
|
#define DEBUG_ADD_INTERSECTING_TS 1
|
|
#define DEBUG_ADD_T_PAIR 1
|
|
#define DEBUG_ANGLE 1
|
|
#define DEBUG_ASSEMBLE 1
|
|
#define DEBUG_CONCIDENT 1
|
|
#define DEBUG_CROSS 0
|
|
#define DEBUG_FLOW 1
|
|
#define DEBUG_MARK_DONE 1
|
|
#define DEBUG_PATH_CONSTRUCTION 1
|
|
#define DEBUG_SHOW_WINDING 0
|
|
#define DEBUG_SORT 1
|
|
#define DEBUG_UNSORTABLE 1
|
|
#define DEBUG_WIND_BUMP 0
|
|
#define DEBUG_WINDING 1
|
|
#define DEBUG_WINDING_AT_T 1
|
|
|
|
#endif
|
|
|
|
#define DEBUG_DUMP (DEBUG_ACTIVE_SPANS | DEBUG_CONCIDENT | DEBUG_SORT | DEBUG_PATH_CONSTRUCTION)
|
|
|
|
#if DEBUG_DUMP
|
|
static const char* kLVerbStr[] = {"", "line", "quad", "cubic"};
|
|
// static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"};
|
|
static int gContourID;
|
|
static int gSegmentID;
|
|
#endif
|
|
|
|
#ifndef DEBUG_TEST
|
|
#define DEBUG_TEST 0
|
|
#endif
|
|
|
|
#define MAKE_CONST_LINE(line, pts) \
|
|
const _Line line = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}}
|
|
#define MAKE_CONST_QUAD(quad, pts) \
|
|
const Quadratic quad = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}, \
|
|
{pts[2].fX, pts[2].fY}}
|
|
#define MAKE_CONST_CUBIC(cubic, pts) \
|
|
const Cubic cubic = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}, \
|
|
{pts[2].fX, pts[2].fY}, {pts[3].fX, pts[3].fY}}
|
|
|
|
static int LineIntersect(const SkPoint a[2], const SkPoint b[2],
|
|
Intersections& intersections) {
|
|
MAKE_CONST_LINE(aLine, a);
|
|
MAKE_CONST_LINE(bLine, b);
|
|
return intersect(aLine, bLine, intersections.fT[0], intersections.fT[1]);
|
|
}
|
|
|
|
static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2],
|
|
Intersections& intersections) {
|
|
MAKE_CONST_QUAD(aQuad, a);
|
|
MAKE_CONST_LINE(bLine, b);
|
|
return intersect(aQuad, bLine, intersections);
|
|
}
|
|
|
|
static int CubicLineIntersect(const SkPoint a[4], const SkPoint b[2],
|
|
Intersections& intersections) {
|
|
MAKE_CONST_CUBIC(aCubic, a);
|
|
MAKE_CONST_LINE(bLine, b);
|
|
return intersect(aCubic, bLine, intersections);
|
|
}
|
|
|
|
static int QuadIntersect(const SkPoint a[3], const SkPoint b[3],
|
|
Intersections& intersections) {
|
|
MAKE_CONST_QUAD(aQuad, a);
|
|
MAKE_CONST_QUAD(bQuad, b);
|
|
#define TRY_QUARTIC_SOLUTION 1
|
|
#if TRY_QUARTIC_SOLUTION
|
|
intersect2(aQuad, bQuad, intersections);
|
|
#else
|
|
intersect(aQuad, bQuad, intersections);
|
|
#endif
|
|
return intersections.fUsed ? intersections.fUsed : intersections.fCoincidentUsed;
|
|
}
|
|
|
|
#if APPROXIMATE_CUBICS
|
|
static int CubicQuadIntersect(const SkPoint a[4], const SkPoint b[3],
|
|
Intersections& intersections) {
|
|
MAKE_CONST_CUBIC(aCubic, a);
|
|
MAKE_CONST_QUAD(bQuad, b);
|
|
return intersect(aCubic, bQuad, intersections);
|
|
}
|
|
#endif
|
|
|
|
static int CubicIntersect(const SkPoint a[4], const SkPoint b[4], Intersections& intersections) {
|
|
MAKE_CONST_CUBIC(aCubic, a);
|
|
MAKE_CONST_CUBIC(bCubic, b);
|
|
#if APPROXIMATE_CUBICS
|
|
intersect2(aCubic, bCubic, intersections);
|
|
#else
|
|
intersect(aCubic, bCubic, intersections);
|
|
#endif
|
|
return intersections.fUsed;
|
|
}
|
|
|
|
static int HLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right,
|
|
SkScalar y, bool flipped, Intersections& intersections) {
|
|
MAKE_CONST_LINE(aLine, a);
|
|
return horizontalIntersect(aLine, left, right, y, flipped, intersections);
|
|
}
|
|
|
|
static int HQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right,
|
|
SkScalar y, bool flipped, Intersections& intersections) {
|
|
MAKE_CONST_QUAD(aQuad, a);
|
|
return horizontalIntersect(aQuad, left, right, y, flipped, intersections);
|
|
}
|
|
|
|
static int HCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right,
|
|
SkScalar y, bool flipped, Intersections& intersections) {
|
|
MAKE_CONST_CUBIC(aCubic, a);
|
|
return horizontalIntersect(aCubic, left, right, y, flipped, intersections);
|
|
}
|
|
|
|
static int (* const HSegmentIntersect[])(const SkPoint [], SkScalar ,
|
|
SkScalar , SkScalar , bool , Intersections& ) = {
|
|
NULL,
|
|
HLineIntersect,
|
|
HQuadIntersect,
|
|
HCubicIntersect
|
|
};
|
|
|
|
static int VLineIntersect(const SkPoint a[2], SkScalar top, SkScalar bottom,
|
|
SkScalar x, bool flipped, Intersections& intersections) {
|
|
MAKE_CONST_LINE(aLine, a);
|
|
return verticalIntersect(aLine, top, bottom, x, flipped, intersections);
|
|
}
|
|
|
|
static int VQuadIntersect(const SkPoint a[3], SkScalar top, SkScalar bottom,
|
|
SkScalar x, bool flipped, Intersections& intersections) {
|
|
MAKE_CONST_QUAD(aQuad, a);
|
|
return verticalIntersect(aQuad, top, bottom, x, flipped, intersections);
|
|
}
|
|
|
|
static int VCubicIntersect(const SkPoint a[4], SkScalar top, SkScalar bottom,
|
|
SkScalar x, bool flipped, Intersections& intersections) {
|
|
MAKE_CONST_CUBIC(aCubic, a);
|
|
return verticalIntersect(aCubic, top, bottom, x, flipped, intersections);
|
|
}
|
|
|
|
static int (* const VSegmentIntersect[])(const SkPoint [], SkScalar ,
|
|
SkScalar , SkScalar , bool , Intersections& ) = {
|
|
NULL,
|
|
VLineIntersect,
|
|
VQuadIntersect,
|
|
VCubicIntersect
|
|
};
|
|
|
|
static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) {
|
|
MAKE_CONST_LINE(line, a);
|
|
double x, y;
|
|
xy_at_t(line, t, x, y);
|
|
out->fX = SkDoubleToScalar(x);
|
|
out->fY = SkDoubleToScalar(y);
|
|
}
|
|
|
|
static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) {
|
|
MAKE_CONST_QUAD(quad, a);
|
|
double x, y;
|
|
xy_at_t(quad, t, x, y);
|
|
out->fX = SkDoubleToScalar(x);
|
|
out->fY = SkDoubleToScalar(y);
|
|
}
|
|
|
|
static void QuadXYAtT(const SkPoint a[3], double t, _Point* out) {
|
|
MAKE_CONST_QUAD(quad, a);
|
|
xy_at_t(quad, t, out->x, out->y);
|
|
}
|
|
|
|
static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) {
|
|
MAKE_CONST_CUBIC(cubic, a);
|
|
double x, y;
|
|
xy_at_t(cubic, t, x, y);
|
|
out->fX = SkDoubleToScalar(x);
|
|
out->fY = SkDoubleToScalar(y);
|
|
}
|
|
|
|
static void (* const SegmentXYAtT[])(const SkPoint [], double , SkPoint* ) = {
|
|
NULL,
|
|
LineXYAtT,
|
|
QuadXYAtT,
|
|
CubicXYAtT
|
|
};
|
|
|
|
static SkScalar LineXAtT(const SkPoint a[2], double t) {
|
|
MAKE_CONST_LINE(aLine, a);
|
|
double x;
|
|
xy_at_t(aLine, t, x, *(double*) 0);
|
|
return SkDoubleToScalar(x);
|
|
}
|
|
|
|
static SkScalar QuadXAtT(const SkPoint a[3], double t) {
|
|
MAKE_CONST_QUAD(quad, a);
|
|
double x;
|
|
xy_at_t(quad, t, x, *(double*) 0);
|
|
return SkDoubleToScalar(x);
|
|
}
|
|
|
|
static SkScalar CubicXAtT(const SkPoint a[4], double t) {
|
|
MAKE_CONST_CUBIC(cubic, a);
|
|
double x;
|
|
xy_at_t(cubic, t, x, *(double*) 0);
|
|
return SkDoubleToScalar(x);
|
|
}
|
|
|
|
static SkScalar (* const SegmentXAtT[])(const SkPoint [], double ) = {
|
|
NULL,
|
|
LineXAtT,
|
|
QuadXAtT,
|
|
CubicXAtT
|
|
};
|
|
|
|
static SkScalar LineYAtT(const SkPoint a[2], double t) {
|
|
MAKE_CONST_LINE(aLine, a);
|
|
double y;
|
|
xy_at_t(aLine, t, *(double*) 0, y);
|
|
return SkDoubleToScalar(y);
|
|
}
|
|
|
|
static SkScalar QuadYAtT(const SkPoint a[3], double t) {
|
|
MAKE_CONST_QUAD(quad, a);
|
|
double y;
|
|
xy_at_t(quad, t, *(double*) 0, y);
|
|
return SkDoubleToScalar(y);
|
|
}
|
|
|
|
static SkScalar CubicYAtT(const SkPoint a[4], double t) {
|
|
MAKE_CONST_CUBIC(cubic, a);
|
|
double y;
|
|
xy_at_t(cubic, t, *(double*) 0, y);
|
|
return SkDoubleToScalar(y);
|
|
}
|
|
|
|
static SkScalar (* const SegmentYAtT[])(const SkPoint [], double ) = {
|
|
NULL,
|
|
LineYAtT,
|
|
QuadYAtT,
|
|
CubicYAtT
|
|
};
|
|
|
|
static SkScalar LineDXAtT(const SkPoint a[2], double ) {
|
|
return a[1].fX - a[0].fX;
|
|
}
|
|
|
|
static SkScalar QuadDXAtT(const SkPoint a[3], double t) {
|
|
MAKE_CONST_QUAD(quad, a);
|
|
double x = dx_at_t(quad, t);
|
|
return SkDoubleToScalar(x);
|
|
}
|
|
|
|
static SkScalar CubicDXAtT(const SkPoint a[4], double t) {
|
|
MAKE_CONST_CUBIC(cubic, a);
|
|
double x = dx_at_t(cubic, t);
|
|
return SkDoubleToScalar(x);
|
|
}
|
|
|
|
static SkScalar (* const SegmentDXAtT[])(const SkPoint [], double ) = {
|
|
NULL,
|
|
LineDXAtT,
|
|
QuadDXAtT,
|
|
CubicDXAtT
|
|
};
|
|
|
|
static SkScalar LineDYAtT(const SkPoint a[2], double ) {
|
|
return a[1].fY - a[0].fY;
|
|
}
|
|
|
|
static SkScalar QuadDYAtT(const SkPoint a[3], double t) {
|
|
MAKE_CONST_QUAD(quad, a);
|
|
double y = dy_at_t(quad, t);
|
|
return SkDoubleToScalar(y);
|
|
}
|
|
|
|
static SkScalar CubicDYAtT(const SkPoint a[4], double t) {
|
|
MAKE_CONST_CUBIC(cubic, a);
|
|
double y = dy_at_t(cubic, t);
|
|
return SkDoubleToScalar(y);
|
|
}
|
|
|
|
static SkScalar (* const SegmentDYAtT[])(const SkPoint [], double ) = {
|
|
NULL,
|
|
LineDYAtT,
|
|
QuadDYAtT,
|
|
CubicDYAtT
|
|
};
|
|
|
|
static void LineSubDivide(const SkPoint a[2], double startT, double endT,
|
|
SkPoint sub[2]) {
|
|
MAKE_CONST_LINE(aLine, a);
|
|
_Line dst;
|
|
sub_divide(aLine, startT, endT, dst);
|
|
sub[0].fX = SkDoubleToScalar(dst[0].x);
|
|
sub[0].fY = SkDoubleToScalar(dst[0].y);
|
|
sub[1].fX = SkDoubleToScalar(dst[1].x);
|
|
sub[1].fY = SkDoubleToScalar(dst[1].y);
|
|
}
|
|
|
|
static void QuadSubDivide(const SkPoint a[3], double startT, double endT,
|
|
SkPoint sub[3]) {
|
|
MAKE_CONST_QUAD(aQuad, a);
|
|
Quadratic dst;
|
|
sub_divide(aQuad, startT, endT, dst);
|
|
sub[0].fX = SkDoubleToScalar(dst[0].x);
|
|
sub[0].fY = SkDoubleToScalar(dst[0].y);
|
|
sub[1].fX = SkDoubleToScalar(dst[1].x);
|
|
sub[1].fY = SkDoubleToScalar(dst[1].y);
|
|
sub[2].fX = SkDoubleToScalar(dst[2].x);
|
|
sub[2].fY = SkDoubleToScalar(dst[2].y);
|
|
}
|
|
|
|
static void CubicSubDivide(const SkPoint a[4], double startT, double endT,
|
|
SkPoint sub[4]) {
|
|
MAKE_CONST_CUBIC(aCubic, a);
|
|
Cubic dst;
|
|
sub_divide(aCubic, startT, endT, dst);
|
|
sub[0].fX = SkDoubleToScalar(dst[0].x);
|
|
sub[0].fY = SkDoubleToScalar(dst[0].y);
|
|
sub[1].fX = SkDoubleToScalar(dst[1].x);
|
|
sub[1].fY = SkDoubleToScalar(dst[1].y);
|
|
sub[2].fX = SkDoubleToScalar(dst[2].x);
|
|
sub[2].fY = SkDoubleToScalar(dst[2].y);
|
|
sub[3].fX = SkDoubleToScalar(dst[3].x);
|
|
sub[3].fY = SkDoubleToScalar(dst[3].y);
|
|
}
|
|
|
|
static void (* const SegmentSubDivide[])(const SkPoint [], double , double ,
|
|
SkPoint []) = {
|
|
NULL,
|
|
LineSubDivide,
|
|
QuadSubDivide,
|
|
CubicSubDivide
|
|
};
|
|
|
|
static void LineSubDivideHD(const SkPoint a[2], double startT, double endT,
|
|
_Line sub) {
|
|
MAKE_CONST_LINE(aLine, a);
|
|
_Line dst;
|
|
sub_divide(aLine, startT, endT, dst);
|
|
sub[0] = dst[0];
|
|
sub[1] = dst[1];
|
|
}
|
|
|
|
static void QuadSubDivideHD(const SkPoint a[3], double startT, double endT,
|
|
Quadratic sub) {
|
|
MAKE_CONST_QUAD(aQuad, a);
|
|
Quadratic dst;
|
|
sub_divide(aQuad, startT, endT, dst);
|
|
sub[0] = dst[0];
|
|
sub[1] = dst[1];
|
|
sub[2] = dst[2];
|
|
}
|
|
|
|
static void CubicSubDivideHD(const SkPoint a[4], double startT, double endT,
|
|
Cubic sub) {
|
|
MAKE_CONST_CUBIC(aCubic, a);
|
|
Cubic dst;
|
|
sub_divide(aCubic, startT, endT, dst);
|
|
sub[0] = dst[0];
|
|
sub[1] = dst[1];
|
|
sub[2] = dst[2];
|
|
sub[3] = dst[3];
|
|
}
|
|
|
|
#if DEBUG_UNUSED
|
|
static void QuadSubBounds(const SkPoint a[3], double startT, double endT,
|
|
SkRect& bounds) {
|
|
SkPoint dst[3];
|
|
QuadSubDivide(a, startT, endT, dst);
|
|
bounds.fLeft = bounds.fRight = dst[0].fX;
|
|
bounds.fTop = bounds.fBottom = dst[0].fY;
|
|
for (int index = 1; index < 3; ++index) {
|
|
bounds.growToInclude(dst[index].fX, dst[index].fY);
|
|
}
|
|
}
|
|
|
|
static void CubicSubBounds(const SkPoint a[4], double startT, double endT,
|
|
SkRect& bounds) {
|
|
SkPoint dst[4];
|
|
CubicSubDivide(a, startT, endT, dst);
|
|
bounds.fLeft = bounds.fRight = dst[0].fX;
|
|
bounds.fTop = bounds.fBottom = dst[0].fY;
|
|
for (int index = 1; index < 4; ++index) {
|
|
bounds.growToInclude(dst[index].fX, dst[index].fY);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static SkPath::Verb QuadReduceOrder(const SkPoint a[3],
|
|
SkTDArray<SkPoint>& reducePts) {
|
|
MAKE_CONST_QUAD(aQuad, a);
|
|
Quadratic dst;
|
|
int order = reduceOrder(aQuad, dst);
|
|
if (order == 2) { // quad became line
|
|
for (int index = 0; index < order; ++index) {
|
|
SkPoint* pt = reducePts.append();
|
|
pt->fX = SkDoubleToScalar(dst[index].x);
|
|
pt->fY = SkDoubleToScalar(dst[index].y);
|
|
}
|
|
}
|
|
return (SkPath::Verb) (order - 1);
|
|
}
|
|
|
|
static SkPath::Verb CubicReduceOrder(const SkPoint a[4],
|
|
SkTDArray<SkPoint>& reducePts) {
|
|
MAKE_CONST_CUBIC(aCubic, a);
|
|
Cubic dst;
|
|
int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed);
|
|
if (order == 2 || order == 3) { // cubic became line or quad
|
|
for (int index = 0; index < order; ++index) {
|
|
SkPoint* pt = reducePts.append();
|
|
pt->fX = SkDoubleToScalar(dst[index].x);
|
|
pt->fY = SkDoubleToScalar(dst[index].y);
|
|
}
|
|
}
|
|
return (SkPath::Verb) (order - 1);
|
|
}
|
|
|
|
static bool QuadIsLinear(const SkPoint a[3]) {
|
|
MAKE_CONST_QUAD(aQuad, a);
|
|
return isLinear(aQuad, 0, 2);
|
|
}
|
|
|
|
static bool CubicIsLinear(const SkPoint a[4]) {
|
|
MAKE_CONST_CUBIC(aCubic, a);
|
|
return isLinear(aCubic, 0, 3);
|
|
}
|
|
|
|
static SkScalar LineLeftMost(const SkPoint a[2], double startT, double endT) {
|
|
MAKE_CONST_LINE(aLine, a);
|
|
double x[2];
|
|
xy_at_t(aLine, startT, x[0], *(double*) 0);
|
|
xy_at_t(aLine, endT, x[1], *(double*) 0);
|
|
return SkMinScalar((float) x[0], (float) x[1]);
|
|
}
|
|
|
|
static SkScalar QuadLeftMost(const SkPoint a[3], double startT, double endT) {
|
|
MAKE_CONST_QUAD(aQuad, a);
|
|
return (float) leftMostT(aQuad, startT, endT);
|
|
}
|
|
|
|
static SkScalar CubicLeftMost(const SkPoint a[4], double startT, double endT) {
|
|
MAKE_CONST_CUBIC(aCubic, a);
|
|
return (float) leftMostT(aCubic, startT, endT);
|
|
}
|
|
|
|
static SkScalar (* const SegmentLeftMost[])(const SkPoint [], double , double) = {
|
|
NULL,
|
|
LineLeftMost,
|
|
QuadLeftMost,
|
|
CubicLeftMost
|
|
};
|
|
|
|
#if 0 // currently unused
|
|
static int QuadRayIntersect(const SkPoint a[3], const SkPoint b[2],
|
|
Intersections& intersections) {
|
|
MAKE_CONST_QUAD(aQuad, a);
|
|
MAKE_CONST_LINE(bLine, b);
|
|
return intersectRay(aQuad, bLine, intersections);
|
|
}
|
|
#endif
|
|
|
|
static int QuadRayIntersect(const SkPoint a[3], const _Line& bLine,
|
|
Intersections& intersections) {
|
|
MAKE_CONST_QUAD(aQuad, a);
|
|
return intersectRay(aQuad, bLine, intersections);
|
|
}
|
|
|
|
static bool LineVertical(const SkPoint a[2], double startT, double endT) {
|
|
MAKE_CONST_LINE(aLine, a);
|
|
double x[2];
|
|
xy_at_t(aLine, startT, x[0], *(double*) 0);
|
|
xy_at_t(aLine, endT, x[1], *(double*) 0);
|
|
return AlmostEqualUlps((float) x[0], (float) x[1]);
|
|
}
|
|
|
|
static bool QuadVertical(const SkPoint a[3], double startT, double endT) {
|
|
SkPoint dst[3];
|
|
QuadSubDivide(a, startT, endT, dst);
|
|
return AlmostEqualUlps(dst[0].fX, dst[1].fX) && AlmostEqualUlps(dst[1].fX, dst[2].fX);
|
|
}
|
|
|
|
static bool CubicVertical(const SkPoint a[4], double startT, double endT) {
|
|
SkPoint dst[4];
|
|
CubicSubDivide(a, startT, endT, dst);
|
|
return AlmostEqualUlps(dst[0].fX, dst[1].fX) && AlmostEqualUlps(dst[1].fX, dst[2].fX)
|
|
&& AlmostEqualUlps(dst[2].fX, dst[3].fX);
|
|
}
|
|
|
|
static bool (* const SegmentVertical[])(const SkPoint [], double , double) = {
|
|
NULL,
|
|
LineVertical,
|
|
QuadVertical,
|
|
CubicVertical
|
|
};
|
|
|
|
class Segment;
|
|
|
|
struct Span {
|
|
Segment* fOther;
|
|
mutable SkPoint fPt; // lazily computed as needed
|
|
double fT;
|
|
double fOtherT; // value at fOther[fOtherIndex].fT
|
|
int fOtherIndex; // can't be used during intersection
|
|
int fWindSum; // accumulated from contours surrounding this one.
|
|
int fOppSum; // for binary operators: the opposite winding sum
|
|
int fWindValue; // 0 == canceled; 1 == normal; >1 == coincident
|
|
int fOppValue; // normally 0 -- when binary coincident edges combine, opp value goes here
|
|
bool fDone; // if set, this span to next higher T has been processed
|
|
bool fUnsortableStart; // set when start is part of an unsortable pair
|
|
bool fUnsortableEnd; // set when end is part of an unsortable pair
|
|
bool fTiny; // if set, span may still be considered once for edge following
|
|
};
|
|
|
|
// sorting angles
|
|
// given angles of {dx dy ddx ddy dddx dddy} sort them
|
|
class Angle {
|
|
public:
|
|
// FIXME: this is bogus for quads and cubics
|
|
// if the quads and cubics' line from end pt to ctrl pt are coincident,
|
|
// there's no obvious way to determine the curve ordering from the
|
|
// derivatives alone. In particular, if one quadratic's coincident tangent
|
|
// is longer than the other curve, the final control point can place the
|
|
// longer curve on either side of the shorter one.
|
|
// Using Bezier curve focus http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf
|
|
// may provide some help, but nothing has been figured out yet.
|
|
|
|
/*(
|
|
for quads and cubics, set up a parameterized line (e.g. LineParameters )
|
|
for points [0] to [1]. See if point [2] is on that line, or on one side
|
|
or the other. If it both quads' end points are on the same side, choose
|
|
the shorter tangent. If the tangents are equal, choose the better second
|
|
tangent angle
|
|
|
|
maybe I could set up LineParameters lazily
|
|
*/
|
|
bool operator<(const Angle& rh) const {
|
|
double y = dy();
|
|
double ry = rh.dy();
|
|
if ((y < 0) ^ (ry < 0)) { // OPTIMIZATION: better to use y * ry < 0 ?
|
|
return y < 0;
|
|
}
|
|
double x = dx();
|
|
double rx = rh.dx();
|
|
if (y == 0 && ry == 0 && x * rx < 0) {
|
|
return x < rx;
|
|
}
|
|
double x_ry = x * ry;
|
|
double rx_y = rx * y;
|
|
double cmp = x_ry - rx_y;
|
|
if (!approximately_zero(cmp)) {
|
|
return cmp < 0;
|
|
}
|
|
if (approximately_zero(x_ry) && approximately_zero(rx_y)
|
|
&& !approximately_zero_squared(cmp)) {
|
|
return cmp < 0;
|
|
}
|
|
// at this point, the initial tangent line is coincident
|
|
if (fSide * rh.fSide <= 0 && (!approximately_zero(fSide)
|
|
|| !approximately_zero(rh.fSide))) {
|
|
// FIXME: running demo will trigger this assertion
|
|
// (don't know if commenting out will trigger further assertion or not)
|
|
// commenting it out allows demo to run in release, though
|
|
// SkASSERT(fSide != rh.fSide);
|
|
return fSide < rh.fSide;
|
|
}
|
|
// see if either curve can be lengthened and try the tangent compare again
|
|
if (cmp && (*fSpans)[fEnd].fOther != rh.fSegment // tangents not absolutely identical
|
|
&& (*rh.fSpans)[rh.fEnd].fOther != fSegment) { // and not intersecting
|
|
Angle longer = *this;
|
|
Angle rhLonger = rh;
|
|
if (longer.lengthen() | rhLonger.lengthen()) {
|
|
return longer < rhLonger;
|
|
}
|
|
#if 0
|
|
// what if we extend in the other direction?
|
|
longer = *this;
|
|
rhLonger = rh;
|
|
if (longer.reverseLengthen() | rhLonger.reverseLengthen()) {
|
|
return longer < rhLonger;
|
|
}
|
|
#endif
|
|
}
|
|
if ((fVerb == SkPath::kLine_Verb && approximately_zero(x) && approximately_zero(y))
|
|
|| (rh.fVerb == SkPath::kLine_Verb
|
|
&& approximately_zero(rx) && approximately_zero(ry))) {
|
|
// See general unsortable comment below. This case can happen when
|
|
// one line has a non-zero change in t but no change in x and y.
|
|
fUnsortable = true;
|
|
rh.fUnsortable = true;
|
|
return this < &rh; // even with no solution, return a stable sort
|
|
}
|
|
if ((*rh.fSpans)[SkMin32(rh.fStart, rh.fEnd)].fTiny
|
|
|| (*fSpans)[SkMin32(fStart, fEnd)].fTiny) {
|
|
fUnsortable = true;
|
|
rh.fUnsortable = true;
|
|
return this < &rh; // even with no solution, return a stable sort
|
|
}
|
|
SkASSERT(fVerb == SkPath::kQuad_Verb); // worry about cubics later
|
|
SkASSERT(rh.fVerb == SkPath::kQuad_Verb);
|
|
// FIXME: until I can think of something better, project a ray from the
|
|
// end of the shorter tangent to midway between the end points
|
|
// through both curves and use the resulting angle to sort
|
|
// FIXME: some of this setup can be moved to set() if it works, or cached if it's expensive
|
|
double len = fTangent1.normalSquared();
|
|
double rlen = rh.fTangent1.normalSquared();
|
|
_Line ray;
|
|
Intersections i, ri;
|
|
int roots, rroots;
|
|
bool flip = false;
|
|
do {
|
|
const Quadratic& q = (len < rlen) ^ flip ? fQ : rh.fQ;
|
|
double midX = (q[0].x + q[2].x) / 2;
|
|
double midY = (q[0].y + q[2].y) / 2;
|
|
ray[0] = q[1];
|
|
ray[1].x = midX;
|
|
ray[1].y = midY;
|
|
SkASSERT(ray[0] != ray[1]);
|
|
roots = QuadRayIntersect(fPts, ray, i);
|
|
rroots = QuadRayIntersect(rh.fPts, ray, ri);
|
|
} while ((roots == 0 || rroots == 0) && (flip ^= true));
|
|
if (roots == 0 || rroots == 0) {
|
|
// FIXME: we don't have a solution in this case. The interim solution
|
|
// is to mark the edges as unsortable, exclude them from this and
|
|
// future computations, and allow the returned path to be fragmented
|
|
fUnsortable = true;
|
|
rh.fUnsortable = true;
|
|
return this < &rh; // even with no solution, return a stable sort
|
|
}
|
|
_Point loc;
|
|
double best = SK_ScalarInfinity;
|
|
double dx, dy, dist;
|
|
int index;
|
|
for (index = 0; index < roots; ++index) {
|
|
QuadXYAtT(fPts, i.fT[0][index], &loc);
|
|
dx = loc.x - ray[0].x;
|
|
dy = loc.y - ray[0].y;
|
|
dist = dx * dx + dy * dy;
|
|
if (best > dist) {
|
|
best = dist;
|
|
}
|
|
}
|
|
for (index = 0; index < rroots; ++index) {
|
|
QuadXYAtT(rh.fPts, ri.fT[0][index], &loc);
|
|
dx = loc.x - ray[0].x;
|
|
dy = loc.y - ray[0].y;
|
|
dist = dx * dx + dy * dy;
|
|
if (best > dist) {
|
|
return fSide < 0;
|
|
}
|
|
}
|
|
return fSide > 0;
|
|
}
|
|
|
|
double dx() const {
|
|
return fTangent1.dx();
|
|
}
|
|
|
|
double dy() const {
|
|
return fTangent1.dy();
|
|
}
|
|
|
|
int end() const {
|
|
return fEnd;
|
|
}
|
|
|
|
bool isHorizontal() const {
|
|
return dy() == 0 && fVerb == SkPath::kLine_Verb;
|
|
}
|
|
|
|
bool lengthen() {
|
|
int newEnd = fEnd;
|
|
if (fStart < fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) {
|
|
fEnd = newEnd;
|
|
setSpans();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool reverseLengthen() {
|
|
if (fReversed) {
|
|
return false;
|
|
}
|
|
int newEnd = fStart;
|
|
if (fStart > fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) {
|
|
fEnd = newEnd;
|
|
fReversed = true;
|
|
setSpans();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void set(const SkPoint* orig, SkPath::Verb verb, const Segment* segment,
|
|
int start, int end, const SkTDArray<Span>& spans) {
|
|
fSegment = segment;
|
|
fStart = start;
|
|
fEnd = end;
|
|
fPts = orig;
|
|
fVerb = verb;
|
|
fSpans = &spans;
|
|
fReversed = false;
|
|
fUnsortable = false;
|
|
setSpans();
|
|
}
|
|
|
|
|
|
void setSpans() {
|
|
double startT = (*fSpans)[fStart].fT;
|
|
double endT = (*fSpans)[fEnd].fT;
|
|
switch (fVerb) {
|
|
case SkPath::kLine_Verb:
|
|
_Line l;
|
|
LineSubDivideHD(fPts, startT, endT, l);
|
|
// OPTIMIZATION: for pure line compares, we never need fTangent1.c
|
|
fTangent1.lineEndPoints(l);
|
|
fSide = 0;
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
QuadSubDivideHD(fPts, startT, endT, fQ);
|
|
fTangent1.quadEndPoints(fQ, 0, 1);
|
|
fSide = -fTangent1.pointDistance(fQ[2]); // not normalized -- compare sign only
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
Cubic c;
|
|
CubicSubDivideHD(fPts, startT, endT, c);
|
|
fTangent1.cubicEndPoints(c, 0, 1);
|
|
fSide = -fTangent1.pointDistance(c[2]); // not normalized -- compare sign only
|
|
break;
|
|
default:
|
|
SkASSERT(0);
|
|
}
|
|
fUnsortable = dx() == 0 && dy() == 0;
|
|
if (fUnsortable) {
|
|
return;
|
|
}
|
|
SkASSERT(fStart != fEnd);
|
|
int step = fStart < fEnd ? 1 : -1; // OPTIMIZE: worth fStart - fEnd >> 31 type macro?
|
|
for (int index = fStart; index != fEnd; index += step) {
|
|
#if 1
|
|
const Span& thisSpan = (*fSpans)[index];
|
|
const Span& nextSpan = (*fSpans)[index + step];
|
|
if (thisSpan.fTiny || thisSpan.fT == nextSpan.fT) {
|
|
continue;
|
|
}
|
|
fUnsortable = step > 0 ? thisSpan.fUnsortableStart : nextSpan.fUnsortableEnd;
|
|
#if DEBUG_UNSORTABLE
|
|
if (fUnsortable) {
|
|
SkPoint iPt, ePt;
|
|
(*SegmentXYAtT[fVerb])(fPts, thisSpan.fT, &iPt);
|
|
(*SegmentXYAtT[fVerb])(fPts, nextSpan.fT, &ePt);
|
|
SkDebugf("%s unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__,
|
|
index, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY);
|
|
}
|
|
#endif
|
|
return;
|
|
#else
|
|
if ((*fSpans)[index].fUnsortableStart) {
|
|
fUnsortable = true;
|
|
return;
|
|
}
|
|
#endif
|
|
}
|
|
#if 1
|
|
#if DEBUG_UNSORTABLE
|
|
SkPoint iPt, ePt;
|
|
(*SegmentXYAtT[fVerb])(fPts, startT, &iPt);
|
|
(*SegmentXYAtT[fVerb])(fPts, endT, &ePt);
|
|
SkDebugf("%s all tiny unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__,
|
|
fStart, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY);
|
|
#endif
|
|
fUnsortable = true;
|
|
#endif
|
|
}
|
|
|
|
Segment* segment() const {
|
|
return const_cast<Segment*>(fSegment);
|
|
}
|
|
|
|
int sign() const {
|
|
return SkSign32(fStart - fEnd);
|
|
}
|
|
|
|
const SkTDArray<Span>* spans() const {
|
|
return fSpans;
|
|
}
|
|
|
|
int start() const {
|
|
return fStart;
|
|
}
|
|
|
|
bool unsortable() const {
|
|
return fUnsortable;
|
|
}
|
|
|
|
#if DEBUG_ANGLE
|
|
const SkPoint* pts() const {
|
|
return fPts;
|
|
}
|
|
|
|
SkPath::Verb verb() const {
|
|
return fVerb;
|
|
}
|
|
|
|
void debugShow(const SkPoint& a) const {
|
|
SkDebugf(" d=(%1.9g,%1.9g) side=%1.9g\n", dx(), dy(), fSide);
|
|
}
|
|
#endif
|
|
|
|
private:
|
|
const SkPoint* fPts;
|
|
Quadratic fQ;
|
|
SkPath::Verb fVerb;
|
|
double fSide;
|
|
LineParameters fTangent1;
|
|
const SkTDArray<Span>* fSpans;
|
|
const Segment* fSegment;
|
|
int fStart;
|
|
int fEnd;
|
|
bool fReversed;
|
|
mutable bool fUnsortable; // this alone is editable by the less than operator
|
|
};
|
|
|
|
// Bounds, unlike Rect, does not consider a line to be empty.
|
|
struct Bounds : public SkRect {
|
|
static bool Intersects(const Bounds& a, const Bounds& b) {
|
|
return a.fLeft <= b.fRight && b.fLeft <= a.fRight &&
|
|
a.fTop <= b.fBottom && b.fTop <= a.fBottom;
|
|
}
|
|
|
|
void add(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
|
|
if (left < fLeft) {
|
|
fLeft = left;
|
|
}
|
|
if (top < fTop) {
|
|
fTop = top;
|
|
}
|
|
if (right > fRight) {
|
|
fRight = right;
|
|
}
|
|
if (bottom > fBottom) {
|
|
fBottom = bottom;
|
|
}
|
|
}
|
|
|
|
void add(const Bounds& toAdd) {
|
|
add(toAdd.fLeft, toAdd.fTop, toAdd.fRight, toAdd.fBottom);
|
|
}
|
|
|
|
void add(const SkPoint& pt) {
|
|
if (pt.fX < fLeft) fLeft = pt.fX;
|
|
if (pt.fY < fTop) fTop = pt.fY;
|
|
if (pt.fX > fRight) fRight = pt.fX;
|
|
if (pt.fY > fBottom) fBottom = pt.fY;
|
|
}
|
|
|
|
bool isEmpty() {
|
|
return fLeft > fRight || fTop > fBottom
|
|
|| (fLeft == fRight && fTop == fBottom)
|
|
|| isnan(fLeft) || isnan(fRight)
|
|
|| isnan(fTop) || isnan(fBottom);
|
|
}
|
|
|
|
void setCubicBounds(const SkPoint a[4]) {
|
|
_Rect dRect;
|
|
MAKE_CONST_CUBIC(cubic, a);
|
|
dRect.setBounds(cubic);
|
|
set((float) dRect.left, (float) dRect.top, (float) dRect.right,
|
|
(float) dRect.bottom);
|
|
}
|
|
|
|
void setQuadBounds(const SkPoint a[3]) {
|
|
MAKE_CONST_QUAD(quad, a);
|
|
_Rect dRect;
|
|
dRect.setBounds(quad);
|
|
set((float) dRect.left, (float) dRect.top, (float) dRect.right,
|
|
(float) dRect.bottom);
|
|
}
|
|
|
|
void setPoint(const SkPoint& pt) {
|
|
fLeft = fRight = pt.fX;
|
|
fTop = fBottom = pt.fY;
|
|
}
|
|
};
|
|
|
|
// OPTIMIZATION: does the following also work, and is it any faster?
|
|
// return outerWinding * innerWinding > 0
|
|
// || ((outerWinding + innerWinding < 0) ^ ((outerWinding - innerWinding) < 0)))
|
|
static bool useInnerWinding(int outerWinding, int innerWinding) {
|
|
// SkASSERT(outerWinding != innerWinding);
|
|
int absOut = abs(outerWinding);
|
|
int absIn = abs(innerWinding);
|
|
bool result = absOut == absIn ? outerWinding < 0 : absOut < absIn;
|
|
if (outerWinding * innerWinding < 0) {
|
|
#if DEBUG_WINDING
|
|
SkDebugf("%s outer=%d inner=%d result=%s\n", __FUNCTION__,
|
|
outerWinding, innerWinding, result ? "true" : "false");
|
|
#endif
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#define F (false) // discard the edge
|
|
#define T (true) // keep the edge
|
|
|
|
static const bool gUnaryActiveEdge[2][2] = {
|
|
// from=0 from=1
|
|
// to=0,1 to=0,1
|
|
{F, T}, {T, F},
|
|
};
|
|
|
|
static const bool gActiveEdge[kShapeOp_Count][2][2][2][2] = {
|
|
// miFrom=0 miFrom=1
|
|
// miTo=0 miTo=1 miTo=0 miTo=1
|
|
// suFrom=0 1 suFrom=0 1 suFrom=0 1 suFrom=0 1
|
|
// suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1
|
|
{{{{F, F}, {F, F}}, {{T, F}, {T, F}}}, {{{T, T}, {F, F}}, {{F, T}, {T, F}}}}, // mi - su
|
|
{{{{F, F}, {F, F}}, {{F, T}, {F, T}}}, {{{F, F}, {T, T}}, {{F, T}, {T, F}}}}, // mi & su
|
|
{{{{F, T}, {T, F}}, {{T, T}, {F, F}}}, {{{T, F}, {T, F}}, {{F, F}, {F, F}}}}, // mi | su
|
|
{{{{F, T}, {T, F}}, {{T, F}, {F, T}}}, {{{T, F}, {F, T}}, {{F, T}, {T, F}}}}, // mi ^ su
|
|
};
|
|
|
|
#undef F
|
|
#undef T
|
|
|
|
// wrap path to keep track of whether the contour is initialized and non-empty
|
|
class PathWrapper {
|
|
public:
|
|
PathWrapper(SkPath& path)
|
|
: fPathPtr(&path)
|
|
, fCloses(0)
|
|
, fMoves(0)
|
|
{
|
|
init();
|
|
}
|
|
|
|
void close() {
|
|
if (!fHasMove) {
|
|
return;
|
|
}
|
|
bool callClose = isClosed();
|
|
lineTo();
|
|
if (fEmpty) {
|
|
return;
|
|
}
|
|
if (callClose) {
|
|
#if DEBUG_PATH_CONSTRUCTION
|
|
SkDebugf("path.close();\n");
|
|
#endif
|
|
fPathPtr->close();
|
|
fCloses++;
|
|
}
|
|
init();
|
|
}
|
|
|
|
void cubicTo(const SkPoint& pt1, const SkPoint& pt2, const SkPoint& pt3) {
|
|
lineTo();
|
|
moveTo();
|
|
#if DEBUG_PATH_CONSTRUCTION
|
|
SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n",
|
|
pt1.fX, pt1.fY, pt2.fX, pt2.fY, pt3.fX, pt3.fY);
|
|
#endif
|
|
fPathPtr->cubicTo(pt1.fX, pt1.fY, pt2.fX, pt2.fY, pt3.fX, pt3.fY);
|
|
fDefer[0] = fDefer[1] = pt3;
|
|
fEmpty = false;
|
|
}
|
|
|
|
void deferredLine(const SkPoint& pt) {
|
|
if (pt == fDefer[1]) {
|
|
return;
|
|
}
|
|
if (changedSlopes(pt)) {
|
|
lineTo();
|
|
fDefer[0] = fDefer[1];
|
|
}
|
|
fDefer[1] = pt;
|
|
}
|
|
|
|
void deferredMove(const SkPoint& pt) {
|
|
fMoved = true;
|
|
fHasMove = true;
|
|
fEmpty = true;
|
|
fDefer[0] = fDefer[1] = pt;
|
|
}
|
|
|
|
void deferredMoveLine(const SkPoint& pt) {
|
|
if (!fHasMove) {
|
|
deferredMove(pt);
|
|
}
|
|
deferredLine(pt);
|
|
}
|
|
|
|
bool hasMove() const {
|
|
return fHasMove;
|
|
}
|
|
|
|
void init() {
|
|
fEmpty = true;
|
|
fHasMove = false;
|
|
fMoved = false;
|
|
}
|
|
|
|
bool isClosed() const {
|
|
return !fEmpty && fFirstPt == fDefer[1];
|
|
}
|
|
|
|
void lineTo() {
|
|
if (fDefer[0] == fDefer[1]) {
|
|
return;
|
|
}
|
|
moveTo();
|
|
fEmpty = false;
|
|
#if DEBUG_PATH_CONSTRUCTION
|
|
SkDebugf("path.lineTo(%1.9g,%1.9g);\n", fDefer[1].fX, fDefer[1].fY);
|
|
#endif
|
|
fPathPtr->lineTo(fDefer[1].fX, fDefer[1].fY);
|
|
fDefer[0] = fDefer[1];
|
|
}
|
|
|
|
const SkPath* nativePath() const {
|
|
return fPathPtr;
|
|
}
|
|
|
|
void quadTo(const SkPoint& pt1, const SkPoint& pt2) {
|
|
lineTo();
|
|
moveTo();
|
|
#if DEBUG_PATH_CONSTRUCTION
|
|
SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n",
|
|
pt1.fX, pt1.fY, pt2.fX, pt2.fY);
|
|
#endif
|
|
fPathPtr->quadTo(pt1.fX, pt1.fY, pt2.fX, pt2.fY);
|
|
fDefer[0] = fDefer[1] = pt2;
|
|
fEmpty = false;
|
|
}
|
|
|
|
bool someAssemblyRequired() const {
|
|
return fCloses < fMoves;
|
|
}
|
|
|
|
protected:
|
|
bool changedSlopes(const SkPoint& pt) const {
|
|
if (fDefer[0] == fDefer[1]) {
|
|
return false;
|
|
}
|
|
SkScalar deferDx = fDefer[1].fX - fDefer[0].fX;
|
|
SkScalar deferDy = fDefer[1].fY - fDefer[0].fY;
|
|
SkScalar lineDx = pt.fX - fDefer[1].fX;
|
|
SkScalar lineDy = pt.fY - fDefer[1].fY;
|
|
return deferDx * lineDy != deferDy * lineDx;
|
|
}
|
|
|
|
void moveTo() {
|
|
if (!fMoved) {
|
|
return;
|
|
}
|
|
fFirstPt = fDefer[0];
|
|
#if DEBUG_PATH_CONSTRUCTION
|
|
SkDebugf("path.moveTo(%1.9g,%1.9g);\n", fDefer[0].fX, fDefer[0].fY);
|
|
#endif
|
|
fPathPtr->moveTo(fDefer[0].fX, fDefer[0].fY);
|
|
fMoved = false;
|
|
fMoves++;
|
|
}
|
|
|
|
private:
|
|
SkPath* fPathPtr;
|
|
SkPoint fDefer[2];
|
|
SkPoint fFirstPt;
|
|
int fCloses;
|
|
int fMoves;
|
|
bool fEmpty;
|
|
bool fHasMove;
|
|
bool fMoved;
|
|
};
|
|
|
|
class Segment {
|
|
public:
|
|
Segment() {
|
|
#if DEBUG_DUMP
|
|
fID = ++gSegmentID;
|
|
#endif
|
|
}
|
|
|
|
bool operator<(const Segment& rh) const {
|
|
return fBounds.fTop < rh.fBounds.fTop;
|
|
}
|
|
|
|
bool activeAngle(int index, int& done, SkTDArray<Angle>& angles) {
|
|
if (activeAngleInner(index, done, angles)) {
|
|
return true;
|
|
}
|
|
int lesser = index;
|
|
while (--lesser >= 0 && equalPoints(index, lesser)) {
|
|
if (activeAngleOther(lesser, done, angles)) {
|
|
return true;
|
|
}
|
|
}
|
|
lesser = index;
|
|
do {
|
|
if (activeAngleOther(index, done, angles)) {
|
|
return true;
|
|
}
|
|
} while (++index < fTs.count() && equalPoints(index, lesser));
|
|
return false;
|
|
}
|
|
|
|
bool activeAngleOther(int index, int& done, SkTDArray<Angle>& angles) {
|
|
Span* span = &fTs[index];
|
|
Segment* other = span->fOther;
|
|
int oIndex = span->fOtherIndex;
|
|
return other->activeAngleInner(oIndex, done, angles);
|
|
}
|
|
|
|
bool activeAngleInner(int index, int& done, SkTDArray<Angle>& angles) {
|
|
int next = nextExactSpan(index, 1);
|
|
if (next > 0) {
|
|
Span& upSpan = fTs[index];
|
|
if (upSpan.fWindValue || upSpan.fOppValue) {
|
|
addAngle(angles, index, next);
|
|
if (upSpan.fDone || upSpan.fUnsortableEnd) {
|
|
done++;
|
|
} else if (upSpan.fWindSum != SK_MinS32) {
|
|
return true;
|
|
}
|
|
} else if (!upSpan.fDone) {
|
|
upSpan.fDone = true;
|
|
fDoneSpans++;
|
|
}
|
|
}
|
|
int prev = nextExactSpan(index, -1);
|
|
// edge leading into junction
|
|
if (prev >= 0) {
|
|
Span& downSpan = fTs[prev];
|
|
if (downSpan.fWindValue || downSpan.fOppValue) {
|
|
addAngle(angles, index, prev);
|
|
if (downSpan.fDone) {
|
|
done++;
|
|
} else if (downSpan.fWindSum != SK_MinS32) {
|
|
return true;
|
|
}
|
|
} else if (!downSpan.fDone) {
|
|
downSpan.fDone = true;
|
|
fDoneSpans++;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void activeLeftTop(SkPoint& result) const {
|
|
SkASSERT(!done());
|
|
int count = fTs.count();
|
|
result.fX = result.fY = SK_ScalarMax;
|
|
bool lastDone = true;
|
|
bool lastUnsortable = false;
|
|
for (int index = 0; index < count; ++index) {
|
|
const Span& span = fTs[index];
|
|
if (span.fUnsortableStart | lastUnsortable) {
|
|
goto next;
|
|
}
|
|
if (!span.fDone | !lastDone) {
|
|
const SkPoint& xy = xyAtT(index);
|
|
if (result.fY < xy.fY) {
|
|
goto next;
|
|
}
|
|
if (result.fY == xy.fY && result.fX < xy.fX) {
|
|
goto next;
|
|
}
|
|
result = xy;
|
|
}
|
|
next:
|
|
lastDone = span.fDone;
|
|
lastUnsortable = span.fUnsortableEnd;
|
|
}
|
|
}
|
|
|
|
bool activeOp(int index, int endIndex, int xorMiMask, int xorSuMask, ShapeOp op) {
|
|
int sumMiWinding = updateWinding(endIndex, index);
|
|
int sumSuWinding = updateOppWinding(endIndex, index);
|
|
if (fOperand) {
|
|
SkTSwap<int>(sumMiWinding, sumSuWinding);
|
|
}
|
|
int maxWinding, sumWinding, oppMaxWinding, oppSumWinding;
|
|
return activeOp(xorMiMask, xorSuMask, index, endIndex, op, sumMiWinding, sumSuWinding,
|
|
maxWinding, sumWinding, oppMaxWinding, oppSumWinding);
|
|
}
|
|
|
|
bool activeOp(int xorMiMask, int xorSuMask, int index, int endIndex, ShapeOp op,
|
|
int& sumMiWinding, int& sumSuWinding,
|
|
int& maxWinding, int& sumWinding, int& oppMaxWinding, int& oppSumWinding) {
|
|
setUpWindings(index, endIndex, sumMiWinding, sumSuWinding,
|
|
maxWinding, sumWinding, oppMaxWinding, oppSumWinding);
|
|
bool miFrom;
|
|
bool miTo;
|
|
bool suFrom;
|
|
bool suTo;
|
|
if (operand()) {
|
|
miFrom = (oppMaxWinding & xorMiMask) != 0;
|
|
miTo = (oppSumWinding & xorMiMask) != 0;
|
|
suFrom = (maxWinding & xorSuMask) != 0;
|
|
suTo = (sumWinding & xorSuMask) != 0;
|
|
} else {
|
|
miFrom = (maxWinding & xorMiMask) != 0;
|
|
miTo = (sumWinding & xorMiMask) != 0;
|
|
suFrom = (oppMaxWinding & xorSuMask) != 0;
|
|
suTo = (oppSumWinding & xorSuMask) != 0;
|
|
}
|
|
bool result = gActiveEdge[op][miFrom][miTo][suFrom][suTo];
|
|
SkASSERT(result != -1);
|
|
return result;
|
|
}
|
|
|
|
bool activeWinding(int index, int endIndex) {
|
|
int sumWinding = updateWinding(endIndex, index);
|
|
int maxWinding;
|
|
return activeWinding(index, endIndex, maxWinding, sumWinding);
|
|
}
|
|
|
|
bool activeWinding(int index, int endIndex, int& maxWinding, int& sumWinding) {
|
|
setUpWinding(index, endIndex, maxWinding, sumWinding);
|
|
bool from = maxWinding != 0;
|
|
bool to = sumWinding != 0;
|
|
bool result = gUnaryActiveEdge[from][to];
|
|
SkASSERT(result != -1);
|
|
return result;
|
|
}
|
|
|
|
void addAngle(SkTDArray<Angle>& angles, int start, int end) const {
|
|
SkASSERT(start != end);
|
|
Angle* angle = angles.append();
|
|
#if DEBUG_ANGLE
|
|
if (angles.count() > 1 && !fTs[start].fTiny) {
|
|
SkPoint angle0Pt, newPt;
|
|
(*SegmentXYAtT[angles[0].verb()])(angles[0].pts(),
|
|
(*angles[0].spans())[angles[0].start()].fT, &angle0Pt);
|
|
(*SegmentXYAtT[fVerb])(fPts, fTs[start].fT, &newPt);
|
|
SkASSERT(AlmostEqualUlps(angle0Pt.fX, newPt.fX));
|
|
SkASSERT(AlmostEqualUlps(angle0Pt.fY, newPt.fY));
|
|
}
|
|
#endif
|
|
angle->set(fPts, fVerb, this, start, end, fTs);
|
|
}
|
|
|
|
void addCancelOutsides(double tStart, double oStart, Segment& other,
|
|
double oEnd) {
|
|
int tIndex = -1;
|
|
int tCount = fTs.count();
|
|
int oIndex = -1;
|
|
int oCount = other.fTs.count();
|
|
do {
|
|
++tIndex;
|
|
} while (!approximately_negative(tStart - fTs[tIndex].fT) && tIndex < tCount);
|
|
int tIndexStart = tIndex;
|
|
do {
|
|
++oIndex;
|
|
} while (!approximately_negative(oStart - other.fTs[oIndex].fT) && oIndex < oCount);
|
|
int oIndexStart = oIndex;
|
|
double nextT;
|
|
do {
|
|
nextT = fTs[++tIndex].fT;
|
|
} while (nextT < 1 && approximately_negative(nextT - tStart));
|
|
double oNextT;
|
|
do {
|
|
oNextT = other.fTs[++oIndex].fT;
|
|
} while (oNextT < 1 && approximately_negative(oNextT - oStart));
|
|
// at this point, spans before and after are at:
|
|
// fTs[tIndexStart - 1], fTs[tIndexStart], fTs[tIndex]
|
|
// if tIndexStart == 0, no prior span
|
|
// if nextT == 1, no following span
|
|
|
|
// advance the span with zero winding
|
|
// if the following span exists (not past the end, non-zero winding)
|
|
// connect the two edges
|
|
if (!fTs[tIndexStart].fWindValue) {
|
|
if (tIndexStart > 0 && fTs[tIndexStart - 1].fWindValue) {
|
|
#if DEBUG_CONCIDENT
|
|
SkDebugf("%s 1 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n",
|
|
__FUNCTION__, fID, other.fID, tIndexStart - 1,
|
|
fTs[tIndexStart].fT, xyAtT(tIndexStart).fX,
|
|
xyAtT(tIndexStart).fY);
|
|
#endif
|
|
addTPair(fTs[tIndexStart].fT, other, other.fTs[oIndex].fT, false);
|
|
}
|
|
if (nextT < 1 && fTs[tIndex].fWindValue) {
|
|
#if DEBUG_CONCIDENT
|
|
SkDebugf("%s 2 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n",
|
|
__FUNCTION__, fID, other.fID, tIndex,
|
|
fTs[tIndex].fT, xyAtT(tIndex).fX,
|
|
xyAtT(tIndex).fY);
|
|
#endif
|
|
addTPair(fTs[tIndex].fT, other, other.fTs[oIndexStart].fT, false);
|
|
}
|
|
} else {
|
|
SkASSERT(!other.fTs[oIndexStart].fWindValue);
|
|
if (oIndexStart > 0 && other.fTs[oIndexStart - 1].fWindValue) {
|
|
#if DEBUG_CONCIDENT
|
|
SkDebugf("%s 3 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n",
|
|
__FUNCTION__, fID, other.fID, oIndexStart - 1,
|
|
other.fTs[oIndexStart].fT, other.xyAtT(oIndexStart).fX,
|
|
other.xyAtT(oIndexStart).fY);
|
|
other.debugAddTPair(other.fTs[oIndexStart].fT, *this, fTs[tIndex].fT);
|
|
#endif
|
|
}
|
|
if (oNextT < 1 && other.fTs[oIndex].fWindValue) {
|
|
#if DEBUG_CONCIDENT
|
|
SkDebugf("%s 4 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n",
|
|
__FUNCTION__, fID, other.fID, oIndex,
|
|
other.fTs[oIndex].fT, other.xyAtT(oIndex).fX,
|
|
other.xyAtT(oIndex).fY);
|
|
other.debugAddTPair(other.fTs[oIndex].fT, *this, fTs[tIndexStart].fT);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
void addCoinOutsides(const SkTDArray<double>& outsideTs, Segment& other,
|
|
double oEnd) {
|
|
// walk this to outsideTs[0]
|
|
// walk other to outsideTs[1]
|
|
// if either is > 0, add a pointer to the other, copying adjacent winding
|
|
int tIndex = -1;
|
|
int oIndex = -1;
|
|
double tStart = outsideTs[0];
|
|
double oStart = outsideTs[1];
|
|
do {
|
|
++tIndex;
|
|
} while (!approximately_negative(tStart - fTs[tIndex].fT));
|
|
do {
|
|
++oIndex;
|
|
} while (!approximately_negative(oStart - other.fTs[oIndex].fT));
|
|
if (tIndex > 0 || oIndex > 0 || fOperand != other.fOperand) {
|
|
addTPair(tStart, other, oStart, false);
|
|
}
|
|
tStart = fTs[tIndex].fT;
|
|
oStart = other.fTs[oIndex].fT;
|
|
do {
|
|
double nextT;
|
|
do {
|
|
nextT = fTs[++tIndex].fT;
|
|
} while (approximately_negative(nextT - tStart));
|
|
tStart = nextT;
|
|
do {
|
|
nextT = other.fTs[++oIndex].fT;
|
|
} while (approximately_negative(nextT - oStart));
|
|
oStart = nextT;
|
|
if (tStart == 1 && oStart == 1 && fOperand == other.fOperand) {
|
|
break;
|
|
}
|
|
addTPair(tStart, other, oStart, false);
|
|
} while (tStart < 1 && oStart < 1 && !approximately_negative(oEnd - oStart));
|
|
}
|
|
|
|
void addCubic(const SkPoint pts[4], bool operand, bool evenOdd) {
|
|
init(pts, SkPath::kCubic_Verb, operand, evenOdd);
|
|
fBounds.setCubicBounds(pts);
|
|
}
|
|
|
|
/* SkPoint */ void addCurveTo(int start, int end, PathWrapper& path, bool active) const {
|
|
SkPoint edge[4];
|
|
const SkPoint* ePtr;
|
|
int lastT = fTs.count() - 1;
|
|
if (lastT < 0 || (start == 0 && end == lastT) || (start == lastT && end == 0)) {
|
|
ePtr = fPts;
|
|
} else {
|
|
// OPTIMIZE? if not active, skip remainder and return xy_at_t(end)
|
|
(*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge);
|
|
ePtr = edge;
|
|
}
|
|
if (active) {
|
|
bool reverse = ePtr == fPts && start != 0;
|
|
if (reverse) {
|
|
path.deferredMoveLine(ePtr[fVerb]);
|
|
switch (fVerb) {
|
|
case SkPath::kLine_Verb:
|
|
path.deferredLine(ePtr[0]);
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
path.quadTo(ePtr[1], ePtr[0]);
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
path.cubicTo(ePtr[2], ePtr[1], ePtr[0]);
|
|
break;
|
|
default:
|
|
SkASSERT(0);
|
|
}
|
|
// return ePtr[0];
|
|
} else {
|
|
path.deferredMoveLine(ePtr[0]);
|
|
switch (fVerb) {
|
|
case SkPath::kLine_Verb:
|
|
path.deferredLine(ePtr[1]);
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
path.quadTo(ePtr[1], ePtr[2]);
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
path.cubicTo(ePtr[1], ePtr[2], ePtr[3]);
|
|
break;
|
|
default:
|
|
SkASSERT(0);
|
|
}
|
|
}
|
|
}
|
|
// return ePtr[fVerb];
|
|
}
|
|
|
|
void addLine(const SkPoint pts[2], bool operand, bool evenOdd) {
|
|
init(pts, SkPath::kLine_Verb, operand, evenOdd);
|
|
fBounds.set(pts, 2);
|
|
}
|
|
|
|
#if 0
|
|
const SkPoint& addMoveTo(int tIndex, PathWrapper& path, bool active) const {
|
|
const SkPoint& pt = xyAtT(tIndex);
|
|
if (active) {
|
|
path.deferredMove(pt);
|
|
}
|
|
return pt;
|
|
}
|
|
#endif
|
|
|
|
// add 2 to edge or out of range values to get T extremes
|
|
void addOtherT(int index, double otherT, int otherIndex) {
|
|
Span& span = fTs[index];
|
|
#if PIN_ADD_T
|
|
if (precisely_less_than_zero(otherT)) {
|
|
otherT = 0;
|
|
} else if (precisely_greater_than_one(otherT)) {
|
|
otherT = 1;
|
|
}
|
|
#endif
|
|
span.fOtherT = otherT;
|
|
span.fOtherIndex = otherIndex;
|
|
}
|
|
|
|
void addQuad(const SkPoint pts[3], bool operand, bool evenOdd) {
|
|
init(pts, SkPath::kQuad_Verb, operand, evenOdd);
|
|
fBounds.setQuadBounds(pts);
|
|
}
|
|
|
|
// Defer all coincident edge processing until
|
|
// after normal intersections have been computed
|
|
|
|
// no need to be tricky; insert in normal T order
|
|
// resolve overlapping ts when considering coincidence later
|
|
|
|
// add non-coincident intersection. Resulting edges are sorted in T.
|
|
int addT(double newT, Segment* other) {
|
|
// FIXME: in the pathological case where there is a ton of intercepts,
|
|
// binary search?
|
|
int insertedAt = -1;
|
|
size_t tCount = fTs.count();
|
|
#if PIN_ADD_T
|
|
// FIXME: only do this pinning here (e.g. this is done also in quad/line intersect)
|
|
if (precisely_less_than_zero(newT)) {
|
|
newT = 0;
|
|
} else if (precisely_greater_than_one(newT)) {
|
|
newT = 1;
|
|
}
|
|
#endif
|
|
for (size_t index = 0; index < tCount; ++index) {
|
|
// OPTIMIZATION: if there are three or more identical Ts, then
|
|
// the fourth and following could be further insertion-sorted so
|
|
// that all the edges are clockwise or counterclockwise.
|
|
// This could later limit segment tests to the two adjacent
|
|
// neighbors, although it doesn't help with determining which
|
|
// circular direction to go in.
|
|
if (newT < fTs[index].fT) {
|
|
insertedAt = index;
|
|
break;
|
|
}
|
|
}
|
|
Span* span;
|
|
if (insertedAt >= 0) {
|
|
span = fTs.insert(insertedAt);
|
|
} else {
|
|
insertedAt = tCount;
|
|
span = fTs.append();
|
|
}
|
|
span->fT = newT;
|
|
span->fOther = other;
|
|
span->fPt.fX = SK_ScalarNaN;
|
|
span->fWindSum = SK_MinS32;
|
|
span->fOppSum = SK_MinS32;
|
|
span->fWindValue = 1;
|
|
span->fOppValue = 0;
|
|
span->fTiny = false;
|
|
if ((span->fDone = newT == 1)) {
|
|
++fDoneSpans;
|
|
}
|
|
span->fUnsortableStart = false;
|
|
span->fUnsortableEnd = false;
|
|
int less = -1;
|
|
while (&span[less + 1] - fTs.begin() > 0 && !span[less].fDone
|
|
&& !precisely_negative(newT - span[less].fT)
|
|
// && approximately_negative(newT - span[less].fT)
|
|
&& xyAtT(&span[less]) == xyAtT(span)) {
|
|
span[less].fTiny = true;
|
|
span[less].fDone = true;
|
|
if (approximately_negative(newT - span[less].fT)) {
|
|
if (approximately_greater_than_one(newT)) {
|
|
span[less].fUnsortableStart = true;
|
|
span[less - 1].fUnsortableEnd = true;
|
|
}
|
|
if (approximately_less_than_zero(span[less].fT)) {
|
|
span[less + 1].fUnsortableStart = true;
|
|
span[less].fUnsortableEnd = true;
|
|
}
|
|
}
|
|
++fDoneSpans;
|
|
--less;
|
|
}
|
|
int more = 1;
|
|
while (fTs.end() - &span[more - 1] > 1 && !span[more - 1].fDone
|
|
&& !precisely_negative(span[more].fT - newT)
|
|
// && approximately_negative(span[more].fT - newT)
|
|
&& xyAtT(&span[more]) == xyAtT(span)) {
|
|
span[more - 1].fTiny = true;
|
|
span[more - 1].fDone = true;
|
|
if (approximately_negative(span[more].fT - newT)) {
|
|
if (approximately_greater_than_one(span[more].fT)) {
|
|
span[more + 1].fUnsortableStart = true;
|
|
span[more].fUnsortableEnd = true;
|
|
}
|
|
if (approximately_less_than_zero(newT)) {
|
|
span[more].fUnsortableStart = true;
|
|
span[more - 1].fUnsortableEnd = true;
|
|
}
|
|
}
|
|
++fDoneSpans;
|
|
++more;
|
|
}
|
|
return insertedAt;
|
|
}
|
|
|
|
// set spans from start to end to decrement by one
|
|
// note this walks other backwards
|
|
// FIMXE: there's probably an edge case that can be constructed where
|
|
// two span in one segment are separated by float epsilon on one span but
|
|
// not the other, if one segment is very small. For this
|
|
// case the counts asserted below may or may not be enough to separate the
|
|
// spans. Even if the counts work out, what if the spans aren't correctly
|
|
// sorted? It feels better in such a case to match the span's other span
|
|
// pointer since both coincident segments must contain the same spans.
|
|
void addTCancel(double startT, double endT, Segment& other,
|
|
double oStartT, double oEndT) {
|
|
SkASSERT(!approximately_negative(endT - startT));
|
|
SkASSERT(!approximately_negative(oEndT - oStartT));
|
|
bool binary = fOperand != other.fOperand;
|
|
int index = 0;
|
|
while (!approximately_negative(startT - fTs[index].fT)) {
|
|
++index;
|
|
}
|
|
int oIndex = other.fTs.count();
|
|
while (approximately_positive(other.fTs[--oIndex].fT - oEndT))
|
|
;
|
|
double tRatio = (oEndT - oStartT) / (endT - startT);
|
|
Span* test = &fTs[index];
|
|
Span* oTest = &other.fTs[oIndex];
|
|
SkTDArray<double> outsideTs;
|
|
SkTDArray<double> oOutsideTs;
|
|
do {
|
|
bool decrement = test->fWindValue && oTest->fWindValue && !binary;
|
|
bool track = test->fWindValue || oTest->fWindValue;
|
|
double testT = test->fT;
|
|
double oTestT = oTest->fT;
|
|
Span* span = test;
|
|
do {
|
|
if (decrement) {
|
|
decrementSpan(span);
|
|
} else if (track && span->fT < 1 && oTestT < 1) {
|
|
TrackOutside(outsideTs, span->fT, oTestT);
|
|
}
|
|
span = &fTs[++index];
|
|
} while (approximately_negative(span->fT - testT));
|
|
Span* oSpan = oTest;
|
|
double otherTMatchStart = oEndT - (span->fT - startT) * tRatio;
|
|
double otherTMatchEnd = oEndT - (test->fT - startT) * tRatio;
|
|
SkDEBUGCODE(int originalWindValue = oSpan->fWindValue);
|
|
while (approximately_negative(otherTMatchStart - oSpan->fT)
|
|
&& !approximately_negative(otherTMatchEnd - oSpan->fT)) {
|
|
#ifdef SK_DEBUG
|
|
SkASSERT(originalWindValue == oSpan->fWindValue);
|
|
#endif
|
|
if (decrement) {
|
|
other.decrementSpan(oSpan);
|
|
} else if (track && oSpan->fT < 1 && testT < 1) {
|
|
TrackOutside(oOutsideTs, oSpan->fT, testT);
|
|
}
|
|
if (!oIndex) {
|
|
break;
|
|
}
|
|
oSpan = &other.fTs[--oIndex];
|
|
}
|
|
test = span;
|
|
oTest = oSpan;
|
|
} while (!approximately_negative(endT - test->fT));
|
|
SkASSERT(!oIndex || approximately_negative(oTest->fT - oStartT));
|
|
// FIXME: determine if canceled edges need outside ts added
|
|
if (!done() && outsideTs.count()) {
|
|
double tStart = outsideTs[0];
|
|
double oStart = outsideTs[1];
|
|
addCancelOutsides(tStart, oStart, other, oEndT);
|
|
int count = outsideTs.count();
|
|
if (count > 2) {
|
|
double tStart = outsideTs[count - 2];
|
|
double oStart = outsideTs[count - 1];
|
|
addCancelOutsides(tStart, oStart, other, oEndT);
|
|
}
|
|
}
|
|
if (!other.done() && oOutsideTs.count()) {
|
|
double tStart = oOutsideTs[0];
|
|
double oStart = oOutsideTs[1];
|
|
other.addCancelOutsides(tStart, oStart, *this, endT);
|
|
}
|
|
}
|
|
|
|
int addUnsortableT(double newT, Segment* other, bool start) {
|
|
int result = addT(newT, other);
|
|
Span* span = &fTs[result];
|
|
if (start) {
|
|
if (result > 0) {
|
|
span[result - 1].fUnsortableEnd = true;
|
|
}
|
|
span[result].fUnsortableStart = true;
|
|
} else {
|
|
span[result].fUnsortableEnd = true;
|
|
if (result + 1 < fTs.count()) {
|
|
span[result + 1].fUnsortableStart = true;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int bumpCoincidentThis(const Span* oTest, bool opp, int index,
|
|
SkTDArray<double>& outsideTs) {
|
|
int oWindValue = oTest->fWindValue;
|
|
int oOppValue = oTest->fOppValue;
|
|
if (opp) {
|
|
SkTSwap<int>(oWindValue, oOppValue);
|
|
}
|
|
Span* const test = &fTs[index];
|
|
Span* end = test;
|
|
const double oStartT = oTest->fT;
|
|
do {
|
|
if (bumpSpan(end, oWindValue, oOppValue)) {
|
|
TrackOutside(outsideTs, end->fT, oStartT);
|
|
}
|
|
end = &fTs[++index];
|
|
} while (approximately_negative(end->fT - test->fT));
|
|
return index;
|
|
}
|
|
|
|
// because of the order in which coincidences are resolved, this and other
|
|
// may not have the same intermediate points. Compute the corresponding
|
|
// intermediate T values (using this as the master, other as the follower)
|
|
// and walk other conditionally -- hoping that it catches up in the end
|
|
int bumpCoincidentOther(const Span* test, double oEndT, int& oIndex,
|
|
SkTDArray<double>& oOutsideTs) {
|
|
Span* const oTest = &fTs[oIndex];
|
|
Span* oEnd = oTest;
|
|
const double startT = test->fT;
|
|
const double oStartT = oTest->fT;
|
|
while (!approximately_negative(oEndT - oEnd->fT)
|
|
&& approximately_negative(oEnd->fT - oStartT)) {
|
|
zeroSpan(oEnd);
|
|
TrackOutside(oOutsideTs, oEnd->fT, startT);
|
|
oEnd = &fTs[++oIndex];
|
|
}
|
|
return oIndex;
|
|
}
|
|
|
|
// FIXME: need to test this case:
|
|
// contourA has two segments that are coincident
|
|
// contourB has two segments that are coincident in the same place
|
|
// each ends up with +2/0 pairs for winding count
|
|
// since logic below doesn't transfer count (only increments/decrements) can this be
|
|
// resolved to +4/0 ?
|
|
|
|
// set spans from start to end to increment the greater by one and decrement
|
|
// the lesser
|
|
void addTCoincident(double startT, double endT, Segment& other, double oStartT, double oEndT) {
|
|
SkASSERT(!approximately_negative(endT - startT));
|
|
SkASSERT(!approximately_negative(oEndT - oStartT));
|
|
bool opp = fOperand ^ other.fOperand;
|
|
int index = 0;
|
|
while (!approximately_negative(startT - fTs[index].fT)) {
|
|
++index;
|
|
}
|
|
int oIndex = 0;
|
|
while (!approximately_negative(oStartT - other.fTs[oIndex].fT)) {
|
|
++oIndex;
|
|
}
|
|
Span* test = &fTs[index];
|
|
Span* oTest = &other.fTs[oIndex];
|
|
SkTDArray<double> outsideTs;
|
|
SkTDArray<double> oOutsideTs;
|
|
do {
|
|
// if either span has an opposite value and the operands don't match, resolve first
|
|
// SkASSERT(!test->fDone || !oTest->fDone);
|
|
if (test->fDone || oTest->fDone) {
|
|
index = advanceCoincidentThis(oTest, opp, index);
|
|
oIndex = other.advanceCoincidentOther(test, oEndT, oIndex);
|
|
} else {
|
|
index = bumpCoincidentThis(oTest, opp, index, outsideTs);
|
|
oIndex = other.bumpCoincidentOther(test, oEndT, oIndex, oOutsideTs);
|
|
}
|
|
test = &fTs[index];
|
|
oTest = &other.fTs[oIndex];
|
|
} while (!approximately_negative(endT - test->fT));
|
|
SkASSERT(approximately_negative(oTest->fT - oEndT));
|
|
SkASSERT(approximately_negative(oEndT - oTest->fT));
|
|
if (!done() && outsideTs.count()) {
|
|
addCoinOutsides(outsideTs, other, oEndT);
|
|
}
|
|
if (!other.done() && oOutsideTs.count()) {
|
|
other.addCoinOutsides(oOutsideTs, *this, endT);
|
|
}
|
|
}
|
|
|
|
// FIXME: this doesn't prevent the same span from being added twice
|
|
// fix in caller, assert here?
|
|
void addTPair(double t, Segment& other, double otherT, bool borrowWind) {
|
|
int tCount = fTs.count();
|
|
for (int tIndex = 0; tIndex < tCount; ++tIndex) {
|
|
const Span& span = fTs[tIndex];
|
|
if (!approximately_negative(span.fT - t)) {
|
|
break;
|
|
}
|
|
if (approximately_negative(span.fT - t) && span.fOther == &other
|
|
&& approximately_equal(span.fOtherT, otherT)) {
|
|
#if DEBUG_ADD_T_PAIR
|
|
SkDebugf("%s addTPair duplicate this=%d %1.9g other=%d %1.9g\n",
|
|
__FUNCTION__, fID, t, other.fID, otherT);
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
#if DEBUG_ADD_T_PAIR
|
|
SkDebugf("%s addTPair this=%d %1.9g other=%d %1.9g\n",
|
|
__FUNCTION__, fID, t, other.fID, otherT);
|
|
#endif
|
|
int insertedAt = addT(t, &other);
|
|
int otherInsertedAt = other.addT(otherT, this);
|
|
addOtherT(insertedAt, otherT, otherInsertedAt);
|
|
other.addOtherT(otherInsertedAt, t, insertedAt);
|
|
matchWindingValue(insertedAt, t, borrowWind);
|
|
other.matchWindingValue(otherInsertedAt, otherT, borrowWind);
|
|
}
|
|
|
|
void addTwoAngles(int start, int end, SkTDArray<Angle>& angles) const {
|
|
// add edge leading into junction
|
|
int min = SkMin32(end, start);
|
|
if (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0) {
|
|
addAngle(angles, end, start);
|
|
}
|
|
// add edge leading away from junction
|
|
int step = SkSign32(end - start);
|
|
int tIndex = nextExactSpan(end, step);
|
|
min = SkMin32(end, tIndex);
|
|
if (tIndex >= 0 && (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0)) {
|
|
addAngle(angles, end, tIndex);
|
|
}
|
|
}
|
|
|
|
int advanceCoincidentThis(const Span* oTest, bool opp, int index) {
|
|
Span* const test = &fTs[index];
|
|
Span* end = test;
|
|
do {
|
|
end = &fTs[++index];
|
|
} while (approximately_negative(end->fT - test->fT));
|
|
return index;
|
|
}
|
|
|
|
int advanceCoincidentOther(const Span* test, double oEndT, int& oIndex) {
|
|
Span* const oTest = &fTs[oIndex];
|
|
Span* oEnd = oTest;
|
|
const double oStartT = oTest->fT;
|
|
while (!approximately_negative(oEndT - oEnd->fT)
|
|
&& approximately_negative(oEnd->fT - oStartT)) {
|
|
oEnd = &fTs[++oIndex];
|
|
}
|
|
return oIndex;
|
|
}
|
|
|
|
bool betweenTs(int lesser, double testT, int greater) {
|
|
if (lesser > greater) {
|
|
SkTSwap<int>(lesser, greater);
|
|
}
|
|
return approximately_between(fTs[lesser].fT, testT, fTs[greater].fT);
|
|
}
|
|
|
|
const Bounds& bounds() const {
|
|
return fBounds;
|
|
}
|
|
|
|
void buildAngles(int index, SkTDArray<Angle>& angles, bool includeOpp) const {
|
|
double referenceT = fTs[index].fT;
|
|
int lesser = index;
|
|
while (--lesser >= 0 && (includeOpp || fTs[lesser].fOther->fOperand == fOperand)
|
|
&& precisely_negative(referenceT - fTs[lesser].fT)) {
|
|
buildAnglesInner(lesser, angles);
|
|
}
|
|
do {
|
|
buildAnglesInner(index, angles);
|
|
} while (++index < fTs.count() && (includeOpp || fTs[index].fOther->fOperand == fOperand)
|
|
&& precisely_negative(fTs[index].fT - referenceT));
|
|
}
|
|
|
|
void buildAnglesInner(int index, SkTDArray<Angle>& angles) const {
|
|
Span* span = &fTs[index];
|
|
Segment* other = span->fOther;
|
|
// if there is only one live crossing, and no coincidence, continue
|
|
// in the same direction
|
|
// if there is coincidence, the only choice may be to reverse direction
|
|
// find edge on either side of intersection
|
|
int oIndex = span->fOtherIndex;
|
|
// if done == -1, prior span has already been processed
|
|
int step = 1;
|
|
int next = other->nextExactSpan(oIndex, step);
|
|
if (next < 0) {
|
|
step = -step;
|
|
next = other->nextExactSpan(oIndex, step);
|
|
}
|
|
// add candidate into and away from junction
|
|
other->addTwoAngles(next, oIndex, angles);
|
|
}
|
|
|
|
int computeSum(int startIndex, int endIndex, bool binary) {
|
|
SkTDArray<Angle> angles;
|
|
addTwoAngles(startIndex, endIndex, angles);
|
|
buildAngles(endIndex, angles, false);
|
|
// OPTIMIZATION: check all angles to see if any have computed wind sum
|
|
// before sorting (early exit if none)
|
|
SkTDArray<Angle*> sorted;
|
|
bool sortable = SortAngles(angles, sorted);
|
|
#if DEBUG_SORT
|
|
sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0);
|
|
#endif
|
|
if (!sortable) {
|
|
return SK_MinS32;
|
|
}
|
|
int angleCount = angles.count();
|
|
const Angle* angle;
|
|
const Segment* base;
|
|
int winding;
|
|
int oWinding;
|
|
int firstIndex = 0;
|
|
do {
|
|
angle = sorted[firstIndex];
|
|
base = angle->segment();
|
|
winding = base->windSum(angle);
|
|
if (winding != SK_MinS32) {
|
|
oWinding = base->oppSum(angle);
|
|
break;
|
|
}
|
|
if (++firstIndex == angleCount) {
|
|
return SK_MinS32;
|
|
}
|
|
} while (true);
|
|
// turn winding into contourWinding
|
|
int spanWinding = base->spanSign(angle);
|
|
bool inner = useInnerWinding(winding + spanWinding, winding);
|
|
#if DEBUG_WINDING
|
|
SkDebugf("%s spanWinding=%d winding=%d sign=%d inner=%d result=%d\n", __FUNCTION__,
|
|
spanWinding, winding, angle->sign(), inner,
|
|
inner ? winding + spanWinding : winding);
|
|
#endif
|
|
if (inner) {
|
|
winding += spanWinding;
|
|
}
|
|
#if DEBUG_SORT
|
|
base->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, oWinding);
|
|
#endif
|
|
int nextIndex = firstIndex + 1;
|
|
int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
|
|
winding -= base->spanSign(angle);
|
|
oWinding -= base->oppSign(angle);
|
|
do {
|
|
if (nextIndex == angleCount) {
|
|
nextIndex = 0;
|
|
}
|
|
angle = sorted[nextIndex];
|
|
Segment* segment = angle->segment();
|
|
bool opp = base->fOperand ^ segment->fOperand;
|
|
int maxWinding, oMaxWinding;
|
|
int spanSign = segment->spanSign(angle);
|
|
int oppoSign = segment->oppSign(angle);
|
|
if (opp) {
|
|
oMaxWinding = oWinding;
|
|
oWinding -= spanSign;
|
|
maxWinding = winding;
|
|
if (oppoSign) {
|
|
winding -= oppoSign;
|
|
}
|
|
} else {
|
|
maxWinding = winding;
|
|
winding -= spanSign;
|
|
oMaxWinding = oWinding;
|
|
if (oppoSign) {
|
|
oWinding -= oppoSign;
|
|
}
|
|
}
|
|
if (segment->windSum(angle) == SK_MinS32) {
|
|
if (opp) {
|
|
if (useInnerWinding(oMaxWinding, oWinding)) {
|
|
oMaxWinding = oWinding;
|
|
}
|
|
if (oppoSign && useInnerWinding(maxWinding, winding)) {
|
|
maxWinding = winding;
|
|
}
|
|
(void) segment->markAndChaseWinding(angle, oMaxWinding, maxWinding);
|
|
} else {
|
|
if (useInnerWinding(maxWinding, winding)) {
|
|
maxWinding = winding;
|
|
}
|
|
if (oppoSign && useInnerWinding(oMaxWinding, oWinding)) {
|
|
oMaxWinding = oWinding;
|
|
}
|
|
(void) segment->markAndChaseWinding(angle, maxWinding,
|
|
binary ? oMaxWinding : 0);
|
|
}
|
|
}
|
|
} while (++nextIndex != lastIndex);
|
|
int minIndex = SkMin32(startIndex, endIndex);
|
|
return windSum(minIndex);
|
|
}
|
|
|
|
int crossedSpanY(const SkPoint& basePt, SkScalar& bestY, double& hitT, bool& hitSomething,
|
|
double mid, bool opp, bool current) const {
|
|
SkScalar bottom = fBounds.fBottom;
|
|
int bestTIndex = -1;
|
|
if (bottom <= bestY) {
|
|
return bestTIndex;
|
|
}
|
|
SkScalar top = fBounds.fTop;
|
|
if (top >= basePt.fY) {
|
|
return bestTIndex;
|
|
}
|
|
if (fBounds.fLeft > basePt.fX) {
|
|
return bestTIndex;
|
|
}
|
|
if (fBounds.fRight < basePt.fX) {
|
|
return bestTIndex;
|
|
}
|
|
if (fBounds.fLeft == fBounds.fRight) {
|
|
// if vertical, and directly above test point, wait for another one
|
|
return AlmostEqualUlps(basePt.fX, fBounds.fLeft) ? SK_MinS32 : bestTIndex;
|
|
}
|
|
// intersect ray starting at basePt with edge
|
|
Intersections intersections;
|
|
// OPTIMIZE: use specialty function that intersects ray with curve,
|
|
// returning t values only for curve (we don't care about t on ray)
|
|
int pts = (*VSegmentIntersect[fVerb])(fPts, top, bottom, basePt.fX, false, intersections);
|
|
if (pts == 0 || (current && pts == 1)) {
|
|
return bestTIndex;
|
|
}
|
|
if (current) {
|
|
SkASSERT(pts > 1);
|
|
int closestIdx = 0;
|
|
double closest = fabs(intersections.fT[0][0] - mid);
|
|
for (int idx = 1; idx < pts; ++idx) {
|
|
double test = fabs(intersections.fT[0][idx] - mid);
|
|
if (closest > test) {
|
|
closestIdx = idx;
|
|
closest = test;
|
|
}
|
|
}
|
|
if (closestIdx < pts - 1) {
|
|
intersections.fT[0][closestIdx] = intersections.fT[0][pts - 1];
|
|
}
|
|
--pts;
|
|
}
|
|
double bestT = -1;
|
|
for (int index = 0; index < pts; ++index) {
|
|
double foundT = intersections.fT[0][index];
|
|
if (approximately_less_than_zero(foundT)
|
|
|| approximately_greater_than_one(foundT)) {
|
|
continue;
|
|
}
|
|
SkScalar testY = (*SegmentYAtT[fVerb])(fPts, foundT);
|
|
if (approximately_negative(testY - bestY)
|
|
|| approximately_negative(basePt.fY - testY)) {
|
|
continue;
|
|
}
|
|
if (pts > 1 && fVerb == SkPath::kLine_Verb) {
|
|
return SK_MinS32; // if the intersection is edge on, wait for another one
|
|
}
|
|
if (fVerb > SkPath::kLine_Verb) {
|
|
SkScalar dx = (*SegmentDXAtT[fVerb])(fPts, foundT);
|
|
if (approximately_zero(dx)) {
|
|
return SK_MinS32; // hit vertical, wait for another one
|
|
}
|
|
}
|
|
bestY = testY;
|
|
bestT = foundT;
|
|
}
|
|
if (bestT < 0) {
|
|
return bestTIndex;
|
|
}
|
|
SkASSERT(bestT >= 0);
|
|
SkASSERT(bestT <= 1);
|
|
int start;
|
|
int end = 0;
|
|
do {
|
|
start = end;
|
|
end = nextSpan(start, 1);
|
|
} while (fTs[end].fT < bestT);
|
|
// FIXME: see next candidate for a better pattern to find the next start/end pair
|
|
while (start + 1 < end && fTs[start].fDone) {
|
|
++start;
|
|
}
|
|
if (!isCanceled(start)) {
|
|
hitT = bestT;
|
|
bestTIndex = start;
|
|
hitSomething = true;
|
|
}
|
|
return bestTIndex;
|
|
}
|
|
|
|
void decrementSpan(Span* span) {
|
|
SkASSERT(span->fWindValue > 0);
|
|
if (--(span->fWindValue) == 0) {
|
|
if (!span->fOppValue && !span->fDone) {
|
|
span->fDone = true;
|
|
++fDoneSpans;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool bumpSpan(Span* span, int windDelta, int oppDelta) {
|
|
SkASSERT(!span->fDone);
|
|
span->fWindValue += windDelta;
|
|
SkASSERT(span->fWindValue >= 0);
|
|
span->fOppValue += oppDelta;
|
|
SkASSERT(span->fOppValue >= 0);
|
|
if (fXor) {
|
|
span->fWindValue &= 1;
|
|
}
|
|
if (fOppXor) {
|
|
span->fOppValue &= 1;
|
|
}
|
|
if (!span->fWindValue && !span->fOppValue) {
|
|
span->fDone = true;
|
|
++fDoneSpans;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// OPTIMIZE
|
|
// when the edges are initially walked, they don't automatically get the prior and next
|
|
// edges assigned to positions t=0 and t=1. Doing that would remove the need for this check,
|
|
// and would additionally remove the need for similar checks in condition edges. It would
|
|
// also allow intersection code to assume end of segment intersections (maybe?)
|
|
bool complete() const {
|
|
int count = fTs.count();
|
|
return count > 1 && fTs[0].fT == 0 && fTs[--count].fT == 1;
|
|
}
|
|
|
|
bool done() const {
|
|
SkASSERT(fDoneSpans <= fTs.count());
|
|
return fDoneSpans == fTs.count();
|
|
}
|
|
|
|
bool done(int min) const {
|
|
return fTs[min].fDone;
|
|
}
|
|
|
|
bool done(const Angle* angle) const {
|
|
return done(SkMin32(angle->start(), angle->end()));
|
|
}
|
|
|
|
bool equalPoints(int greaterTIndex, int lesserTIndex) {
|
|
SkASSERT(greaterTIndex >= lesserTIndex);
|
|
double greaterT = fTs[greaterTIndex].fT;
|
|
double lesserT = fTs[lesserTIndex].fT;
|
|
if (greaterT == lesserT) {
|
|
return true;
|
|
}
|
|
if (!approximately_negative(greaterT - lesserT)) {
|
|
return false;
|
|
}
|
|
return xyAtT(greaterTIndex) == xyAtT(lesserTIndex);
|
|
}
|
|
|
|
/*
|
|
The M and S variable name parts stand for the operators.
|
|
Mi stands for Minuend (see wiki subtraction, analogous to difference)
|
|
Su stands for Subtrahend
|
|
The Opp variable name part designates that the value is for the Opposite operator.
|
|
Opposite values result from combining coincident spans.
|
|
*/
|
|
|
|
Segment* findNextOp(SkTDArray<Span*>& chase, int& nextStart, int& nextEnd,
|
|
bool& unsortable, ShapeOp op, const int xorMiMask, const int xorSuMask) {
|
|
const int startIndex = nextStart;
|
|
const int endIndex = nextEnd;
|
|
SkASSERT(startIndex != endIndex);
|
|
const int count = fTs.count();
|
|
SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0);
|
|
const int step = SkSign32(endIndex - startIndex);
|
|
const int end = nextExactSpan(startIndex, step);
|
|
SkASSERT(end >= 0);
|
|
Span* endSpan = &fTs[end];
|
|
Segment* other;
|
|
if (isSimple(end)) {
|
|
// mark the smaller of startIndex, endIndex done, and all adjacent
|
|
// spans with the same T value (but not 'other' spans)
|
|
#if DEBUG_WINDING
|
|
SkDebugf("%s simple\n", __FUNCTION__);
|
|
#endif
|
|
int min = SkMin32(startIndex, endIndex);
|
|
if (fTs[min].fDone) {
|
|
return NULL;
|
|
}
|
|
markDoneBinary(min);
|
|
other = endSpan->fOther;
|
|
nextStart = endSpan->fOtherIndex;
|
|
double startT = other->fTs[nextStart].fT;
|
|
nextEnd = nextStart;
|
|
do {
|
|
nextEnd += step;
|
|
}
|
|
while (precisely_zero(startT - other->fTs[nextEnd].fT));
|
|
SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count());
|
|
return other;
|
|
}
|
|
// more than one viable candidate -- measure angles to find best
|
|
SkTDArray<Angle> angles;
|
|
SkASSERT(startIndex - endIndex != 0);
|
|
SkASSERT((startIndex - endIndex < 0) ^ (step < 0));
|
|
addTwoAngles(startIndex, end, angles);
|
|
buildAngles(end, angles, true);
|
|
SkTDArray<Angle*> sorted;
|
|
bool sortable = SortAngles(angles, sorted);
|
|
int angleCount = angles.count();
|
|
int firstIndex = findStartingEdge(sorted, startIndex, end);
|
|
SkASSERT(firstIndex >= 0);
|
|
#if DEBUG_SORT
|
|
debugShowSort(__FUNCTION__, sorted, firstIndex);
|
|
#endif
|
|
if (!sortable) {
|
|
unsortable = true;
|
|
return NULL;
|
|
}
|
|
SkASSERT(sorted[firstIndex]->segment() == this);
|
|
#if DEBUG_WINDING
|
|
SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex,
|
|
sorted[firstIndex]->sign());
|
|
#endif
|
|
int sumMiWinding = updateWinding(endIndex, startIndex);
|
|
int sumSuWinding = updateOppWinding(endIndex, startIndex);
|
|
if (operand()) {
|
|
SkTSwap<int>(sumMiWinding, sumSuWinding);
|
|
}
|
|
int nextIndex = firstIndex + 1;
|
|
int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
|
|
const Angle* foundAngle = NULL;
|
|
bool foundDone = false;
|
|
// iterate through the angle, and compute everyone's winding
|
|
Segment* nextSegment;
|
|
do {
|
|
SkASSERT(nextIndex != firstIndex);
|
|
if (nextIndex == angleCount) {
|
|
nextIndex = 0;
|
|
}
|
|
const Angle* nextAngle = sorted[nextIndex];
|
|
nextSegment = nextAngle->segment();
|
|
int maxWinding, sumWinding, oppMaxWinding, oppSumWinding;
|
|
bool activeAngle = nextSegment->activeOp(xorMiMask, xorSuMask, nextAngle->start(),
|
|
nextAngle->end(), op, sumMiWinding, sumSuWinding,
|
|
maxWinding, sumWinding, oppMaxWinding, oppSumWinding);
|
|
if (activeAngle && (!foundAngle || foundDone)) {
|
|
foundAngle = nextAngle;
|
|
foundDone = nextSegment->done(nextAngle) && !nextSegment->tiny(nextAngle);
|
|
}
|
|
if (nextSegment->done()) {
|
|
continue;
|
|
}
|
|
if (nextSegment->windSum(nextAngle) != SK_MinS32) {
|
|
continue;
|
|
}
|
|
Span* last = nextSegment->markAngle(maxWinding, sumWinding, oppMaxWinding,
|
|
oppSumWinding, activeAngle, nextAngle);
|
|
if (last) {
|
|
*chase.append() = last;
|
|
#if DEBUG_WINDING
|
|
SkDebugf("%s chase.append id=%d\n", __FUNCTION__,
|
|
last->fOther->fTs[last->fOtherIndex].fOther->debugID());
|
|
#endif
|
|
}
|
|
} while (++nextIndex != lastIndex);
|
|
markDoneBinary(SkMin32(startIndex, endIndex));
|
|
if (!foundAngle) {
|
|
return NULL;
|
|
}
|
|
nextStart = foundAngle->start();
|
|
nextEnd = foundAngle->end();
|
|
nextSegment = foundAngle->segment();
|
|
|
|
#if DEBUG_WINDING
|
|
SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n",
|
|
__FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd);
|
|
#endif
|
|
return nextSegment;
|
|
}
|
|
|
|
Segment* findNextWinding(SkTDArray<Span*>& chase, int& nextStart, int& nextEnd,
|
|
bool& unsortable) {
|
|
const int startIndex = nextStart;
|
|
const int endIndex = nextEnd;
|
|
SkASSERT(startIndex != endIndex);
|
|
const int count = fTs.count();
|
|
SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0);
|
|
const int step = SkSign32(endIndex - startIndex);
|
|
const int end = nextExactSpan(startIndex, step);
|
|
SkASSERT(end >= 0);
|
|
Span* endSpan = &fTs[end];
|
|
Segment* other;
|
|
if (isSimple(end)) {
|
|
// mark the smaller of startIndex, endIndex done, and all adjacent
|
|
// spans with the same T value (but not 'other' spans)
|
|
#if DEBUG_WINDING
|
|
SkDebugf("%s simple\n", __FUNCTION__);
|
|
#endif
|
|
int min = SkMin32(startIndex, endIndex);
|
|
if (fTs[min].fDone) {
|
|
return NULL;
|
|
}
|
|
markDoneUnary(min);
|
|
other = endSpan->fOther;
|
|
nextStart = endSpan->fOtherIndex;
|
|
double startT = other->fTs[nextStart].fT;
|
|
nextEnd = nextStart;
|
|
do {
|
|
nextEnd += step;
|
|
}
|
|
while (precisely_zero(startT - other->fTs[nextEnd].fT));
|
|
SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count());
|
|
return other;
|
|
}
|
|
// more than one viable candidate -- measure angles to find best
|
|
SkTDArray<Angle> angles;
|
|
SkASSERT(startIndex - endIndex != 0);
|
|
SkASSERT((startIndex - endIndex < 0) ^ (step < 0));
|
|
addTwoAngles(startIndex, end, angles);
|
|
buildAngles(end, angles, true);
|
|
SkTDArray<Angle*> sorted;
|
|
bool sortable = SortAngles(angles, sorted);
|
|
int angleCount = angles.count();
|
|
int firstIndex = findStartingEdge(sorted, startIndex, end);
|
|
SkASSERT(firstIndex >= 0);
|
|
#if DEBUG_SORT
|
|
debugShowSort(__FUNCTION__, sorted, firstIndex);
|
|
#endif
|
|
if (!sortable) {
|
|
unsortable = true;
|
|
return NULL;
|
|
}
|
|
SkASSERT(sorted[firstIndex]->segment() == this);
|
|
#if DEBUG_WINDING
|
|
SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex,
|
|
sorted[firstIndex]->sign());
|
|
#endif
|
|
int sumWinding = updateWinding(endIndex, startIndex);
|
|
int nextIndex = firstIndex + 1;
|
|
int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
|
|
const Angle* foundAngle = NULL;
|
|
bool foundDone = false;
|
|
// iterate through the angle, and compute everyone's winding
|
|
Segment* nextSegment;
|
|
int activeCount = 0;
|
|
do {
|
|
SkASSERT(nextIndex != firstIndex);
|
|
if (nextIndex == angleCount) {
|
|
nextIndex = 0;
|
|
}
|
|
const Angle* nextAngle = sorted[nextIndex];
|
|
nextSegment = nextAngle->segment();
|
|
int maxWinding;
|
|
bool activeAngle = nextSegment->activeWinding(nextAngle->start(), nextAngle->end(),
|
|
maxWinding, sumWinding);
|
|
if (activeAngle) {
|
|
++activeCount;
|
|
if (!foundAngle || (foundDone && activeCount & 1)) {
|
|
if (nextSegment->tiny(nextAngle)) {
|
|
unsortable = true;
|
|
return NULL;
|
|
}
|
|
foundAngle = nextAngle;
|
|
foundDone = nextSegment->done(nextAngle);
|
|
}
|
|
}
|
|
if (nextSegment->done()) {
|
|
continue;
|
|
}
|
|
if (nextSegment->windSum(nextAngle) != SK_MinS32) {
|
|
continue;
|
|
}
|
|
Span* last = nextSegment->markAngle(maxWinding, sumWinding, activeAngle, nextAngle);
|
|
if (last) {
|
|
*chase.append() = last;
|
|
#if DEBUG_WINDING
|
|
SkDebugf("%s chase.append id=%d\n", __FUNCTION__,
|
|
last->fOther->fTs[last->fOtherIndex].fOther->debugID());
|
|
#endif
|
|
}
|
|
} while (++nextIndex != lastIndex);
|
|
markDoneUnary(SkMin32(startIndex, endIndex));
|
|
if (!foundAngle) {
|
|
return NULL;
|
|
}
|
|
nextStart = foundAngle->start();
|
|
nextEnd = foundAngle->end();
|
|
nextSegment = foundAngle->segment();
|
|
#if DEBUG_WINDING
|
|
SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n",
|
|
__FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd);
|
|
#endif
|
|
return nextSegment;
|
|
}
|
|
|
|
Segment* findNextXor(int& nextStart, int& nextEnd, bool& unsortable) {
|
|
const int startIndex = nextStart;
|
|
const int endIndex = nextEnd;
|
|
SkASSERT(startIndex != endIndex);
|
|
int count = fTs.count();
|
|
SkASSERT(startIndex < endIndex ? startIndex < count - 1
|
|
: startIndex > 0);
|
|
int step = SkSign32(endIndex - startIndex);
|
|
int end = nextExactSpan(startIndex, step);
|
|
SkASSERT(end >= 0);
|
|
Span* endSpan = &fTs[end];
|
|
Segment* other;
|
|
if (isSimple(end)) {
|
|
#if DEBUG_WINDING
|
|
SkDebugf("%s simple\n", __FUNCTION__);
|
|
#endif
|
|
int min = SkMin32(startIndex, endIndex);
|
|
if (fTs[min].fDone) {
|
|
return NULL;
|
|
}
|
|
markDone(min, 1);
|
|
other = endSpan->fOther;
|
|
nextStart = endSpan->fOtherIndex;
|
|
double startT = other->fTs[nextStart].fT;
|
|
#if 01 // FIXME: I don't know why the logic here is difference from the winding case
|
|
SkDEBUGCODE(bool firstLoop = true;)
|
|
if ((approximately_less_than_zero(startT) && step < 0)
|
|
|| (approximately_greater_than_one(startT) && step > 0)) {
|
|
step = -step;
|
|
SkDEBUGCODE(firstLoop = false;)
|
|
}
|
|
do {
|
|
#endif
|
|
nextEnd = nextStart;
|
|
do {
|
|
nextEnd += step;
|
|
}
|
|
while (precisely_zero(startT - other->fTs[nextEnd].fT));
|
|
#if 01
|
|
if (other->fTs[SkMin32(nextStart, nextEnd)].fWindValue) {
|
|
break;
|
|
}
|
|
#ifdef SK_DEBUG
|
|
SkASSERT(firstLoop);
|
|
#endif
|
|
SkDEBUGCODE(firstLoop = false;)
|
|
step = -step;
|
|
} while (true);
|
|
#endif
|
|
SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count());
|
|
return other;
|
|
}
|
|
SkTDArray<Angle> angles;
|
|
SkASSERT(startIndex - endIndex != 0);
|
|
SkASSERT((startIndex - endIndex < 0) ^ (step < 0));
|
|
addTwoAngles(startIndex, end, angles);
|
|
buildAngles(end, angles, false);
|
|
SkTDArray<Angle*> sorted;
|
|
bool sortable = SortAngles(angles, sorted);
|
|
if (!sortable) {
|
|
unsortable = true;
|
|
#if DEBUG_SORT
|
|
debugShowSort(__FUNCTION__, sorted, findStartingEdge(sorted, startIndex, end), 0, 0);
|
|
#endif
|
|
return NULL;
|
|
}
|
|
int angleCount = angles.count();
|
|
int firstIndex = findStartingEdge(sorted, startIndex, end);
|
|
SkASSERT(firstIndex >= 0);
|
|
#if DEBUG_SORT
|
|
debugShowSort(__FUNCTION__, sorted, firstIndex, 0, 0);
|
|
#endif
|
|
SkASSERT(sorted[firstIndex]->segment() == this);
|
|
int nextIndex = firstIndex + 1;
|
|
int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
|
|
const Angle* foundAngle = NULL;
|
|
bool foundDone = false;
|
|
Segment* nextSegment;
|
|
int activeCount = 0;
|
|
do {
|
|
SkASSERT(nextIndex != firstIndex);
|
|
if (nextIndex == angleCount) {
|
|
nextIndex = 0;
|
|
}
|
|
const Angle* nextAngle = sorted[nextIndex];
|
|
nextSegment = nextAngle->segment();
|
|
++activeCount;
|
|
if (!foundAngle || (foundDone && activeCount & 1)) {
|
|
if (nextSegment->tiny(nextAngle)) {
|
|
unsortable = true;
|
|
return NULL;
|
|
}
|
|
foundAngle = nextAngle;
|
|
foundDone = nextSegment->done(nextAngle);
|
|
}
|
|
if (nextSegment->done()) {
|
|
continue;
|
|
}
|
|
} while (++nextIndex != lastIndex);
|
|
markDone(SkMin32(startIndex, endIndex), 1);
|
|
if (!foundAngle) {
|
|
return NULL;
|
|
}
|
|
nextStart = foundAngle->start();
|
|
nextEnd = foundAngle->end();
|
|
nextSegment = foundAngle->segment();
|
|
#if DEBUG_WINDING
|
|
SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n",
|
|
__FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd);
|
|
#endif
|
|
return nextSegment;
|
|
}
|
|
|
|
int findStartingEdge(SkTDArray<Angle*>& sorted, int start, int end) {
|
|
int angleCount = sorted.count();
|
|
int firstIndex = -1;
|
|
for (int angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
|
|
const Angle* angle = sorted[angleIndex];
|
|
if (angle->segment() == this && angle->start() == end &&
|
|
angle->end() == start) {
|
|
firstIndex = angleIndex;
|
|
break;
|
|
}
|
|
}
|
|
return firstIndex;
|
|
}
|
|
|
|
// FIXME: this is tricky code; needs its own unit test
|
|
// note that fOtherIndex isn't computed yet, so it can't be used here
|
|
void findTooCloseToCall() {
|
|
int count = fTs.count();
|
|
if (count < 3) { // require t=0, x, 1 at minimum
|
|
return;
|
|
}
|
|
int matchIndex = 0;
|
|
int moCount;
|
|
Span* match;
|
|
Segment* mOther;
|
|
do {
|
|
match = &fTs[matchIndex];
|
|
mOther = match->fOther;
|
|
// FIXME: allow quads, cubics to be near coincident?
|
|
if (mOther->fVerb == SkPath::kLine_Verb) {
|
|
moCount = mOther->fTs.count();
|
|
if (moCount >= 3) {
|
|
break;
|
|
}
|
|
}
|
|
if (++matchIndex >= count) {
|
|
return;
|
|
}
|
|
} while (true); // require t=0, x, 1 at minimum
|
|
// OPTIMIZATION: defer matchPt until qualifying toCount is found?
|
|
const SkPoint* matchPt = &xyAtT(match);
|
|
// look for a pair of nearby T values that map to the same (x,y) value
|
|
// if found, see if the pair of other segments share a common point. If
|
|
// so, the span from here to there is coincident.
|
|
for (int index = matchIndex + 1; index < count; ++index) {
|
|
Span* test = &fTs[index];
|
|
if (test->fDone) {
|
|
continue;
|
|
}
|
|
Segment* tOther = test->fOther;
|
|
if (tOther->fVerb != SkPath::kLine_Verb) {
|
|
continue; // FIXME: allow quads, cubics to be near coincident?
|
|
}
|
|
int toCount = tOther->fTs.count();
|
|
if (toCount < 3) { // require t=0, x, 1 at minimum
|
|
continue;
|
|
}
|
|
const SkPoint* testPt = &xyAtT(test);
|
|
if (*matchPt != *testPt) {
|
|
matchIndex = index;
|
|
moCount = toCount;
|
|
match = test;
|
|
mOther = tOther;
|
|
matchPt = testPt;
|
|
continue;
|
|
}
|
|
int moStart = -1;
|
|
int moEnd = -1;
|
|
double moStartT, moEndT;
|
|
for (int moIndex = 0; moIndex < moCount; ++moIndex) {
|
|
Span& moSpan = mOther->fTs[moIndex];
|
|
if (moSpan.fDone) {
|
|
continue;
|
|
}
|
|
if (moSpan.fOther == this) {
|
|
if (moSpan.fOtherT == match->fT) {
|
|
moStart = moIndex;
|
|
moStartT = moSpan.fT;
|
|
}
|
|
continue;
|
|
}
|
|
if (moSpan.fOther == tOther) {
|
|
if (tOther->windValueAt(moSpan.fOtherT) == 0) {
|
|
moStart = -1;
|
|
break;
|
|
}
|
|
SkASSERT(moEnd == -1);
|
|
moEnd = moIndex;
|
|
moEndT = moSpan.fT;
|
|
}
|
|
}
|
|
if (moStart < 0 || moEnd < 0) {
|
|
continue;
|
|
}
|
|
// FIXME: if moStartT, moEndT are initialized to NaN, can skip this test
|
|
if (approximately_equal(moStartT, moEndT)) {
|
|
continue;
|
|
}
|
|
int toStart = -1;
|
|
int toEnd = -1;
|
|
double toStartT, toEndT;
|
|
for (int toIndex = 0; toIndex < toCount; ++toIndex) {
|
|
Span& toSpan = tOther->fTs[toIndex];
|
|
if (toSpan.fDone) {
|
|
continue;
|
|
}
|
|
if (toSpan.fOther == this) {
|
|
if (toSpan.fOtherT == test->fT) {
|
|
toStart = toIndex;
|
|
toStartT = toSpan.fT;
|
|
}
|
|
continue;
|
|
}
|
|
if (toSpan.fOther == mOther && toSpan.fOtherT == moEndT) {
|
|
if (mOther->windValueAt(toSpan.fOtherT) == 0) {
|
|
moStart = -1;
|
|
break;
|
|
}
|
|
SkASSERT(toEnd == -1);
|
|
toEnd = toIndex;
|
|
toEndT = toSpan.fT;
|
|
}
|
|
}
|
|
// FIXME: if toStartT, toEndT are initialized to NaN, can skip this test
|
|
if (toStart <= 0 || toEnd <= 0) {
|
|
continue;
|
|
}
|
|
if (approximately_equal(toStartT, toEndT)) {
|
|
continue;
|
|
}
|
|
// test to see if the segment between there and here is linear
|
|
if (!mOther->isLinear(moStart, moEnd)
|
|
|| !tOther->isLinear(toStart, toEnd)) {
|
|
continue;
|
|
}
|
|
bool flipped = (moStart - moEnd) * (toStart - toEnd) < 1;
|
|
if (flipped) {
|
|
mOther->addTCancel(moStartT, moEndT, *tOther, toEndT, toStartT);
|
|
} else {
|
|
mOther->addTCoincident(moStartT, moEndT, *tOther, toStartT, toEndT);
|
|
}
|
|
}
|
|
}
|
|
|
|
// start here;
|
|
// either:
|
|
// a) mark spans with either end unsortable as done, or
|
|
// b) rewrite findTop / findTopSegment / findTopContour to iterate further
|
|
// when encountering an unsortable span
|
|
|
|
// OPTIMIZATION : for a pair of lines, can we compute points at T (cached)
|
|
// and use more concise logic like the old edge walker code?
|
|
// FIXME: this needs to deal with coincident edges
|
|
Segment* findTop(int& tIndex, int& endIndex, bool& unsortable, bool onlySortable) {
|
|
// iterate through T intersections and return topmost
|
|
// topmost tangent from y-min to first pt is closer to horizontal
|
|
SkASSERT(!done());
|
|
int firstT = -1;
|
|
SkPoint topPt;
|
|
topPt.fY = SK_ScalarMax;
|
|
int count = fTs.count();
|
|
// see if either end is not done since we want smaller Y of the pair
|
|
bool lastDone = true;
|
|
bool lastUnsortable = false;
|
|
for (int index = 0; index < count; ++index) {
|
|
const Span& span = fTs[index];
|
|
if (onlySortable && (span.fUnsortableStart || lastUnsortable)) {
|
|
goto next;
|
|
}
|
|
if (!span.fDone | !lastDone) {
|
|
const SkPoint& intercept = xyAtT(&span);
|
|
if (topPt.fY > intercept.fY || (topPt.fY == intercept.fY
|
|
&& topPt.fX > intercept.fX)) {
|
|
topPt = intercept;
|
|
firstT = index;
|
|
}
|
|
}
|
|
next:
|
|
lastDone = span.fDone;
|
|
lastUnsortable = span.fUnsortableEnd;
|
|
}
|
|
SkASSERT(firstT >= 0);
|
|
// sort the edges to find the leftmost
|
|
int step = 1;
|
|
int end = nextSpan(firstT, step);
|
|
if (end == -1) {
|
|
step = -1;
|
|
end = nextSpan(firstT, step);
|
|
SkASSERT(end != -1);
|
|
}
|
|
// if the topmost T is not on end, or is three-way or more, find left
|
|
// look for left-ness from tLeft to firstT (matching y of other)
|
|
SkTDArray<Angle> angles;
|
|
SkASSERT(firstT - end != 0);
|
|
addTwoAngles(end, firstT, angles);
|
|
buildAngles(firstT, angles, true);
|
|
SkTDArray<Angle*> sorted;
|
|
bool sortable = SortAngles(angles, sorted);
|
|
#if DEBUG_SORT
|
|
sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0);
|
|
#endif
|
|
if (onlySortable && !sortable) {
|
|
unsortable = true;
|
|
return NULL;
|
|
}
|
|
// skip edges that have already been processed
|
|
firstT = -1;
|
|
Segment* leftSegment;
|
|
do {
|
|
const Angle* angle = sorted[++firstT];
|
|
SkASSERT(!onlySortable || !angle->unsortable());
|
|
leftSegment = angle->segment();
|
|
tIndex = angle->end();
|
|
endIndex = angle->start();
|
|
} while (leftSegment->fTs[SkMin32(tIndex, endIndex)].fDone);
|
|
SkASSERT(!leftSegment->fTs[SkMin32(tIndex, endIndex)].fTiny);
|
|
return leftSegment;
|
|
}
|
|
|
|
// FIXME: not crazy about this
|
|
// when the intersections are performed, the other index is into an
|
|
// incomplete array. as the array grows, the indices become incorrect
|
|
// while the following fixes the indices up again, it isn't smart about
|
|
// skipping segments whose indices are already correct
|
|
// assuming we leave the code that wrote the index in the first place
|
|
void fixOtherTIndex() {
|
|
int iCount = fTs.count();
|
|
for (int i = 0; i < iCount; ++i) {
|
|
Span& iSpan = fTs[i];
|
|
double oT = iSpan.fOtherT;
|
|
Segment* other = iSpan.fOther;
|
|
int oCount = other->fTs.count();
|
|
for (int o = 0; o < oCount; ++o) {
|
|
Span& oSpan = other->fTs[o];
|
|
if (oT == oSpan.fT && this == oSpan.fOther) {
|
|
iSpan.fOtherIndex = o;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void init(const SkPoint pts[], SkPath::Verb verb, bool operand, bool evenOdd) {
|
|
fDoneSpans = 0;
|
|
fOperand = operand;
|
|
fXor = evenOdd;
|
|
fPts = pts;
|
|
fVerb = verb;
|
|
}
|
|
|
|
void initWinding(int start, int end) {
|
|
int local = spanSign(start, end);
|
|
int oppLocal = oppSign(start, end);
|
|
(void) markAndChaseWinding(start, end, local, oppLocal);
|
|
// OPTIMIZATION: the reverse mark and chase could skip the first marking
|
|
(void) markAndChaseWinding(end, start, local, oppLocal);
|
|
}
|
|
|
|
void initWinding(int start, int end, int winding, int oppWinding) {
|
|
int local = spanSign(start, end);
|
|
if (local * winding >= 0) {
|
|
winding += local;
|
|
}
|
|
int oppLocal = oppSign(start, end);
|
|
if (oppLocal * oppWinding >= 0) {
|
|
oppWinding += oppLocal;
|
|
}
|
|
(void) markAndChaseWinding(start, end, winding, oppWinding);
|
|
}
|
|
|
|
/*
|
|
when we start with a vertical intersect, we try to use the dx to determine if the edge is to
|
|
the left or the right of vertical. This determines if we need to add the span's
|
|
sign or not. However, this isn't enough.
|
|
If the supplied sign (winding) is zero, then we didn't hit another vertical span, so dx is needed.
|
|
If there was a winding, then it may or may not need adjusting. If the span the winding was borrowed
|
|
from has the same x direction as this span, the winding should change. If the dx is opposite, then
|
|
the same winding is shared by both.
|
|
*/
|
|
void initWinding(int start, int end, double tHit, int winding, SkScalar hitDx, int oppWind,
|
|
SkScalar hitOppDx) {
|
|
SkASSERT(hitDx || !winding);
|
|
SkScalar dx = (*SegmentDXAtT[fVerb])(fPts, tHit);
|
|
SkASSERT(dx);
|
|
int windVal = windValue(SkMin32(start, end));
|
|
#if DEBUG_WINDING_AT_T
|
|
SkDebugf("%s oldWinding=%d hitDx=%c dx=%c windVal=%d", __FUNCTION__, winding,
|
|
hitDx ? hitDx > 0 ? '+' : '-' : '0', dx > 0 ? '+' : '-', windVal);
|
|
#endif
|
|
if (!winding) {
|
|
winding = dx < 0 ? windVal : -windVal;
|
|
} else if (winding * dx < 0) {
|
|
int sideWind = winding + (dx < 0 ? windVal : -windVal);
|
|
if (abs(winding) < abs(sideWind)) {
|
|
winding = sideWind;
|
|
}
|
|
}
|
|
#if DEBUG_WINDING_AT_T
|
|
SkDebugf(" winding=%d\n", winding);
|
|
#endif
|
|
int oppLocal = oppSign(start, end);
|
|
SkASSERT(hitOppDx || !oppWind || !oppLocal);
|
|
int oppWindVal = oppValue(SkMin32(start, end));
|
|
if (!oppWind) {
|
|
oppWind = dx < 0 ? oppWindVal : -oppWindVal;
|
|
} else if (hitOppDx * dx >= 0) {
|
|
int oppSideWind = oppWind + (dx < 0 ? oppWindVal : -oppWindVal);
|
|
if (abs(oppWind) < abs(oppSideWind)) {
|
|
oppWind = oppSideWind;
|
|
}
|
|
}
|
|
(void) markAndChaseWinding(start, end, winding, oppWind);
|
|
}
|
|
|
|
bool intersected() const {
|
|
return fTs.count() > 0;
|
|
}
|
|
|
|
bool isCanceled(int tIndex) const {
|
|
return fTs[tIndex].fWindValue == 0 && fTs[tIndex].fOppValue == 0;
|
|
}
|
|
|
|
bool isConnected(int startIndex, int endIndex) const {
|
|
return fTs[startIndex].fWindSum != SK_MinS32
|
|
|| fTs[endIndex].fWindSum != SK_MinS32;
|
|
}
|
|
|
|
bool isHorizontal() const {
|
|
return fBounds.fTop == fBounds.fBottom;
|
|
}
|
|
|
|
bool isLinear(int start, int end) const {
|
|
if (fVerb == SkPath::kLine_Verb) {
|
|
return true;
|
|
}
|
|
if (fVerb == SkPath::kQuad_Verb) {
|
|
SkPoint qPart[3];
|
|
QuadSubDivide(fPts, fTs[start].fT, fTs[end].fT, qPart);
|
|
return QuadIsLinear(qPart);
|
|
} else {
|
|
SkASSERT(fVerb == SkPath::kCubic_Verb);
|
|
SkPoint cPart[4];
|
|
CubicSubDivide(fPts, fTs[start].fT, fTs[end].fT, cPart);
|
|
return CubicIsLinear(cPart);
|
|
}
|
|
}
|
|
|
|
// OPTIMIZE: successive calls could start were the last leaves off
|
|
// or calls could specialize to walk forwards or backwards
|
|
bool isMissing(double startT) const {
|
|
size_t tCount = fTs.count();
|
|
for (size_t index = 0; index < tCount; ++index) {
|
|
if (approximately_zero(startT - fTs[index].fT)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool isSimple(int end) const {
|
|
int count = fTs.count();
|
|
if (count == 2) {
|
|
return true;
|
|
}
|
|
double t = fTs[end].fT;
|
|
if (approximately_less_than_zero(t)) {
|
|
return !approximately_less_than_zero(fTs[1].fT);
|
|
}
|
|
if (approximately_greater_than_one(t)) {
|
|
return !approximately_greater_than_one(fTs[count - 2].fT);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool isVertical() const {
|
|
return fBounds.fLeft == fBounds.fRight;
|
|
}
|
|
|
|
bool isVertical(int start, int end) const {
|
|
return (*SegmentVertical[fVerb])(fPts, start, end);
|
|
}
|
|
|
|
SkScalar leftMost(int start, int end) const {
|
|
return (*SegmentLeftMost[fVerb])(fPts, fTs[start].fT, fTs[end].fT);
|
|
}
|
|
|
|
// this span is excluded by the winding rule -- chase the ends
|
|
// as long as they are unambiguous to mark connections as done
|
|
// and give them the same winding value
|
|
Span* markAndChaseDone(const Angle* angle, int winding) {
|
|
int index = angle->start();
|
|
int endIndex = angle->end();
|
|
return markAndChaseDone(index, endIndex, winding);
|
|
}
|
|
|
|
Span* markAndChaseDone(int index, int endIndex, int winding) {
|
|
int step = SkSign32(endIndex - index);
|
|
int min = SkMin32(index, endIndex);
|
|
markDone(min, winding);
|
|
Span* last;
|
|
Segment* other = this;
|
|
while ((other = other->nextChase(index, step, min, last))) {
|
|
other->markDone(min, winding);
|
|
}
|
|
return last;
|
|
}
|
|
|
|
Span* markAndChaseDoneBinary(const Angle* angle, int winding, int oppWinding) {
|
|
int index = angle->start();
|
|
int endIndex = angle->end();
|
|
int step = SkSign32(endIndex - index);
|
|
int min = SkMin32(index, endIndex);
|
|
markDoneBinary(min, winding, oppWinding);
|
|
Span* last;
|
|
Segment* other = this;
|
|
while ((other = other->nextChase(index, step, min, last))) {
|
|
other->markDoneBinary(min, winding, oppWinding);
|
|
}
|
|
return last;
|
|
}
|
|
|
|
Span* markAndChaseDoneBinary(int index, int endIndex) {
|
|
int step = SkSign32(endIndex - index);
|
|
int min = SkMin32(index, endIndex);
|
|
markDoneBinary(min);
|
|
Span* last;
|
|
Segment* other = this;
|
|
while ((other = other->nextChase(index, step, min, last))) {
|
|
if (other->done()) {
|
|
return NULL;
|
|
}
|
|
other->markDoneBinary(min);
|
|
}
|
|
return last;
|
|
}
|
|
|
|
Span* markAndChaseDoneUnary(int index, int endIndex) {
|
|
int step = SkSign32(endIndex - index);
|
|
int min = SkMin32(index, endIndex);
|
|
markDoneUnary(min);
|
|
Span* last;
|
|
Segment* other = this;
|
|
while ((other = other->nextChase(index, step, min, last))) {
|
|
if (other->done()) {
|
|
return NULL;
|
|
}
|
|
other->markDoneUnary(min);
|
|
}
|
|
return last;
|
|
}
|
|
|
|
Span* markAndChaseDoneUnary(const Angle* angle, int winding) {
|
|
int index = angle->start();
|
|
int endIndex = angle->end();
|
|
return markAndChaseDone(index, endIndex, winding);
|
|
}
|
|
|
|
Span* markAndChaseWinding(const Angle* angle, const int winding) {
|
|
int index = angle->start();
|
|
int endIndex = angle->end();
|
|
int step = SkSign32(endIndex - index);
|
|
int min = SkMin32(index, endIndex);
|
|
markWinding(min, winding);
|
|
Span* last;
|
|
Segment* other = this;
|
|
while ((other = other->nextChase(index, step, min, last))) {
|
|
if (other->fTs[min].fWindSum != SK_MinS32) {
|
|
SkASSERT(other->fTs[min].fWindSum == winding);
|
|
return NULL;
|
|
}
|
|
other->markWinding(min, winding);
|
|
}
|
|
return last;
|
|
}
|
|
|
|
Span* markAndChaseWinding(int index, int endIndex, int winding, int oppWinding) {
|
|
int min = SkMin32(index, endIndex);
|
|
int step = SkSign32(endIndex - index);
|
|
markWinding(min, winding, oppWinding);
|
|
Span* last;
|
|
Segment* other = this;
|
|
while ((other = other->nextChase(index, step, min, last))) {
|
|
if (other->fTs[min].fWindSum != SK_MinS32) {
|
|
SkASSERT(other->fTs[min].fWindSum == winding);
|
|
return NULL;
|
|
}
|
|
other->markWinding(min, winding, oppWinding);
|
|
}
|
|
return last;
|
|
}
|
|
|
|
Span* markAndChaseWinding(const Angle* angle, int winding, int oppWinding) {
|
|
int start = angle->start();
|
|
int end = angle->end();
|
|
return markAndChaseWinding(start, end, winding, oppWinding);
|
|
}
|
|
|
|
Span* markAngle(int maxWinding, int sumWinding, bool activeAngle, const Angle* angle) {
|
|
SkASSERT(angle->segment() == this);
|
|
if (useInnerWinding(maxWinding, sumWinding)) {
|
|
maxWinding = sumWinding;
|
|
}
|
|
Span* last;
|
|
if (activeAngle) {
|
|
last = markAndChaseWinding(angle, maxWinding);
|
|
} else {
|
|
last = markAndChaseDoneUnary(angle, maxWinding);
|
|
}
|
|
return last;
|
|
}
|
|
|
|
Span* markAngle(int maxWinding, int sumWinding, int oppMaxWinding, int oppSumWinding,
|
|
bool activeAngle, const Angle* angle) {
|
|
SkASSERT(angle->segment() == this);
|
|
if (useInnerWinding(maxWinding, sumWinding)) {
|
|
maxWinding = sumWinding;
|
|
}
|
|
if (oppMaxWinding != oppSumWinding && useInnerWinding(oppMaxWinding, oppSumWinding)) {
|
|
oppMaxWinding = oppSumWinding;
|
|
}
|
|
Span* last;
|
|
if (activeAngle) {
|
|
last = markAndChaseWinding(angle, maxWinding, oppMaxWinding);
|
|
} else {
|
|
last = markAndChaseDoneBinary(angle, maxWinding, oppMaxWinding);
|
|
}
|
|
return last;
|
|
}
|
|
|
|
// FIXME: this should also mark spans with equal (x,y)
|
|
// This may be called when the segment is already marked done. While this
|
|
// wastes time, it shouldn't do any more than spin through the T spans.
|
|
// OPTIMIZATION: abort on first done found (assuming that this code is
|
|
// always called to mark segments done).
|
|
void markDone(int index, int winding) {
|
|
// SkASSERT(!done());
|
|
SkASSERT(winding);
|
|
double referenceT = fTs[index].fT;
|
|
int lesser = index;
|
|
while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
|
|
markOneDone(__FUNCTION__, lesser, winding);
|
|
}
|
|
do {
|
|
markOneDone(__FUNCTION__, index, winding);
|
|
} while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
|
|
}
|
|
|
|
void markDoneBinary(int index, int winding, int oppWinding) {
|
|
// SkASSERT(!done());
|
|
SkASSERT(winding || oppWinding);
|
|
double referenceT = fTs[index].fT;
|
|
int lesser = index;
|
|
while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
|
|
markOneDoneBinary(__FUNCTION__, lesser, winding, oppWinding);
|
|
}
|
|
do {
|
|
markOneDoneBinary(__FUNCTION__, index, winding, oppWinding);
|
|
} while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
|
|
}
|
|
|
|
void markDoneBinary(int index) {
|
|
double referenceT = fTs[index].fT;
|
|
int lesser = index;
|
|
while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
|
|
markOneDoneBinary(__FUNCTION__, lesser);
|
|
}
|
|
do {
|
|
markOneDoneBinary(__FUNCTION__, index);
|
|
} while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
|
|
}
|
|
|
|
void markDoneUnary(int index, int winding) {
|
|
// SkASSERT(!done());
|
|
SkASSERT(winding);
|
|
double referenceT = fTs[index].fT;
|
|
int lesser = index;
|
|
while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
|
|
markOneDoneUnary(__FUNCTION__, lesser, winding);
|
|
}
|
|
do {
|
|
markOneDoneUnary(__FUNCTION__, index, winding);
|
|
} while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
|
|
}
|
|
|
|
void markDoneUnary(int index) {
|
|
double referenceT = fTs[index].fT;
|
|
int lesser = index;
|
|
while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
|
|
markOneDoneUnary(__FUNCTION__, lesser);
|
|
}
|
|
do {
|
|
markOneDoneUnary(__FUNCTION__, index);
|
|
} while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
|
|
}
|
|
|
|
void markOneDone(const char* funName, int tIndex, int winding) {
|
|
Span* span = markOneWinding(funName, tIndex, winding);
|
|
if (!span) {
|
|
return;
|
|
}
|
|
span->fDone = true;
|
|
fDoneSpans++;
|
|
}
|
|
|
|
void markOneDoneBinary(const char* funName, int tIndex) {
|
|
Span* span = verifyOneWinding(funName, tIndex);
|
|
if (!span) {
|
|
return;
|
|
}
|
|
span->fDone = true;
|
|
fDoneSpans++;
|
|
}
|
|
|
|
void markOneDoneBinary(const char* funName, int tIndex, int winding, int oppWinding) {
|
|
Span* span = markOneWinding(funName, tIndex, winding, oppWinding);
|
|
if (!span) {
|
|
return;
|
|
}
|
|
span->fDone = true;
|
|
fDoneSpans++;
|
|
}
|
|
|
|
void markOneDoneUnary(const char* funName, int tIndex) {
|
|
Span* span = verifyOneWindingU(funName, tIndex);
|
|
if (!span) {
|
|
return;
|
|
}
|
|
span->fDone = true;
|
|
fDoneSpans++;
|
|
}
|
|
|
|
void markOneDoneUnary(const char* funName, int tIndex, int winding) {
|
|
Span* span = markOneWinding(funName, tIndex, winding);
|
|
if (!span) {
|
|
return;
|
|
}
|
|
span->fDone = true;
|
|
fDoneSpans++;
|
|
}
|
|
|
|
Span* markOneWinding(const char* funName, int tIndex, int winding) {
|
|
Span& span = fTs[tIndex];
|
|
if (span.fDone) {
|
|
return NULL;
|
|
}
|
|
#if DEBUG_MARK_DONE
|
|
debugShowNewWinding(funName, span, winding);
|
|
#endif
|
|
SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
|
|
#ifdef SK_DEBUG
|
|
SkASSERT(abs(winding) <= gDebugMaxWindSum);
|
|
#endif
|
|
span.fWindSum = winding;
|
|
return &span;
|
|
}
|
|
|
|
Span* markOneWinding(const char* funName, int tIndex, int winding, int oppWinding) {
|
|
Span& span = fTs[tIndex];
|
|
if (span.fDone) {
|
|
return NULL;
|
|
}
|
|
#if DEBUG_MARK_DONE
|
|
debugShowNewWinding(funName, span, winding, oppWinding);
|
|
#endif
|
|
SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
|
|
#ifdef SK_DEBUG
|
|
SkASSERT(abs(winding) <= gDebugMaxWindSum);
|
|
#endif
|
|
span.fWindSum = winding;
|
|
SkASSERT(span.fOppSum == SK_MinS32 || span.fOppSum == oppWinding);
|
|
#ifdef SK_DEBUG
|
|
SkASSERT(abs(oppWinding) <= gDebugMaxWindSum);
|
|
#endif
|
|
span.fOppSum = oppWinding;
|
|
return &span;
|
|
}
|
|
|
|
Span* verifyOneWinding(const char* funName, int tIndex) {
|
|
Span& span = fTs[tIndex];
|
|
if (span.fDone) {
|
|
return NULL;
|
|
}
|
|
#if DEBUG_MARK_DONE
|
|
debugShowNewWinding(funName, span, span.fWindSum, span.fOppSum);
|
|
#endif
|
|
SkASSERT(span.fWindSum != SK_MinS32);
|
|
SkASSERT(span.fOppSum != SK_MinS32);
|
|
return &span;
|
|
}
|
|
|
|
Span* verifyOneWindingU(const char* funName, int tIndex) {
|
|
Span& span = fTs[tIndex];
|
|
if (span.fDone) {
|
|
return NULL;
|
|
}
|
|
#if DEBUG_MARK_DONE
|
|
debugShowNewWinding(funName, span, span.fWindSum);
|
|
#endif
|
|
SkASSERT(span.fWindSum != SK_MinS32);
|
|
return &span;
|
|
}
|
|
|
|
// note that just because a span has one end that is unsortable, that's
|
|
// not enough to mark it done. The other end may be sortable, allowing the
|
|
// span to be added.
|
|
// FIXME: if abs(start - end) > 1, mark intermediates as unsortable on both ends
|
|
void markUnsortable(int start, int end) {
|
|
Span* span = &fTs[start];
|
|
if (start < end) {
|
|
#if DEBUG_UNSORTABLE
|
|
SkDebugf("%s start id=%d [%d] (%1.9g,%1.9g)\n", __FUNCTION__, fID, start,
|
|
xAtT(start), yAtT(start));
|
|
#endif
|
|
span->fUnsortableStart = true;
|
|
} else {
|
|
--span;
|
|
#if DEBUG_UNSORTABLE
|
|
SkDebugf("%s end id=%d [%d] (%1.9g,%1.9g) next:(%1.9g,%1.9g)\n", __FUNCTION__, fID,
|
|
start - 1, xAtT(start - 1), yAtT(start - 1), xAtT(start), yAtT(start));
|
|
#endif
|
|
span->fUnsortableEnd = true;
|
|
}
|
|
if (!span->fUnsortableStart || !span->fUnsortableEnd || span->fDone) {
|
|
return;
|
|
}
|
|
span->fDone = true;
|
|
fDoneSpans++;
|
|
}
|
|
|
|
void markWinding(int index, int winding) {
|
|
// SkASSERT(!done());
|
|
SkASSERT(winding);
|
|
double referenceT = fTs[index].fT;
|
|
int lesser = index;
|
|
while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
|
|
markOneWinding(__FUNCTION__, lesser, winding);
|
|
}
|
|
do {
|
|
markOneWinding(__FUNCTION__, index, winding);
|
|
} while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
|
|
}
|
|
|
|
void markWinding(int index, int winding, int oppWinding) {
|
|
// SkASSERT(!done());
|
|
SkASSERT(winding || oppWinding);
|
|
double referenceT = fTs[index].fT;
|
|
int lesser = index;
|
|
while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
|
|
markOneWinding(__FUNCTION__, lesser, winding, oppWinding);
|
|
}
|
|
do {
|
|
markOneWinding(__FUNCTION__, index, winding, oppWinding);
|
|
} while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
|
|
}
|
|
|
|
void matchWindingValue(int tIndex, double t, bool borrowWind) {
|
|
int nextDoorWind = SK_MaxS32;
|
|
int nextOppWind = SK_MaxS32;
|
|
if (tIndex > 0) {
|
|
const Span& below = fTs[tIndex - 1];
|
|
if (approximately_negative(t - below.fT)) {
|
|
nextDoorWind = below.fWindValue;
|
|
nextOppWind = below.fOppValue;
|
|
}
|
|
}
|
|
if (nextDoorWind == SK_MaxS32 && tIndex + 1 < fTs.count()) {
|
|
const Span& above = fTs[tIndex + 1];
|
|
if (approximately_negative(above.fT - t)) {
|
|
nextDoorWind = above.fWindValue;
|
|
nextOppWind = above.fOppValue;
|
|
}
|
|
}
|
|
if (nextDoorWind == SK_MaxS32 && borrowWind && tIndex > 0 && t < 1) {
|
|
const Span& below = fTs[tIndex - 1];
|
|
nextDoorWind = below.fWindValue;
|
|
nextOppWind = below.fOppValue;
|
|
}
|
|
if (nextDoorWind != SK_MaxS32) {
|
|
Span& newSpan = fTs[tIndex];
|
|
newSpan.fWindValue = nextDoorWind;
|
|
newSpan.fOppValue = nextOppWind;
|
|
if (!nextDoorWind && !nextOppWind && !newSpan.fDone) {
|
|
newSpan.fDone = true;
|
|
++fDoneSpans;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool moreHorizontal(int index, int endIndex, bool& unsortable) const {
|
|
// find bounds
|
|
Bounds bounds;
|
|
bounds.setPoint(xyAtT(index));
|
|
bounds.add(xyAtT(endIndex));
|
|
SkScalar width = bounds.width();
|
|
SkScalar height = bounds.height();
|
|
if (width > height) {
|
|
if (approximately_negative(width)) {
|
|
unsortable = true; // edge is too small to resolve meaningfully
|
|
}
|
|
return false;
|
|
} else {
|
|
if (approximately_negative(height)) {
|
|
unsortable = true; // edge is too small to resolve meaningfully
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// return span if when chasing, two or more radiating spans are not done
|
|
// OPTIMIZATION: ? multiple spans is detected when there is only one valid
|
|
// candidate and the remaining spans have windValue == 0 (canceled by
|
|
// coincidence). The coincident edges could either be removed altogether,
|
|
// or this code could be more complicated in detecting this case. Worth it?
|
|
bool multipleSpans(int end) const {
|
|
return end > 0 && end < fTs.count() - 1;
|
|
}
|
|
|
|
bool nextCandidate(int& start, int& end) const {
|
|
while (fTs[end].fDone) {
|
|
if (fTs[end].fT == 1) {
|
|
return false;
|
|
}
|
|
++end;
|
|
}
|
|
start = end;
|
|
end = nextExactSpan(start, 1);
|
|
return true;
|
|
}
|
|
|
|
Segment* nextChase(int& index, const int step, int& min, Span*& last) const {
|
|
int end = nextExactSpan(index, step);
|
|
SkASSERT(end >= 0);
|
|
if (multipleSpans(end)) {
|
|
last = &fTs[end];
|
|
return NULL;
|
|
}
|
|
const Span& endSpan = fTs[end];
|
|
Segment* other = endSpan.fOther;
|
|
index = endSpan.fOtherIndex;
|
|
int otherEnd = other->nextExactSpan(index, step);
|
|
min = SkMin32(index, otherEnd);
|
|
return other;
|
|
}
|
|
|
|
// This has callers for two different situations: one establishes the end
|
|
// of the current span, and one establishes the beginning of the next span
|
|
// (thus the name). When this is looking for the end of the current span,
|
|
// coincidence is found when the beginning Ts contain -step and the end
|
|
// contains step. When it is looking for the beginning of the next, the
|
|
// first Ts found can be ignored and the last Ts should contain -step.
|
|
// OPTIMIZATION: probably should split into two functions
|
|
int nextSpan(int from, int step) const {
|
|
const Span& fromSpan = fTs[from];
|
|
int count = fTs.count();
|
|
int to = from;
|
|
while (step > 0 ? ++to < count : --to >= 0) {
|
|
const Span& span = fTs[to];
|
|
if (approximately_zero(span.fT - fromSpan.fT)) {
|
|
continue;
|
|
}
|
|
return to;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
// FIXME
|
|
// this returns at any difference in T, vs. a preset minimum. It may be
|
|
// that all callers to nextSpan should use this instead.
|
|
// OPTIMIZATION splitting this into separate loops for up/down steps
|
|
// would allow using precisely_negative instead of precisely_zero
|
|
int nextExactSpan(int from, int step) const {
|
|
const Span& fromSpan = fTs[from];
|
|
int count = fTs.count();
|
|
int to = from;
|
|
while (step > 0 ? ++to < count : --to >= 0) {
|
|
const Span& span = fTs[to];
|
|
if (precisely_zero(span.fT - fromSpan.fT)) {
|
|
continue;
|
|
}
|
|
return to;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
bool operand() const {
|
|
return fOperand;
|
|
}
|
|
|
|
int oppSign(const Angle* angle) const {
|
|
SkASSERT(angle->segment() == this);
|
|
return oppSign(angle->start(), angle->end());
|
|
}
|
|
|
|
int oppSign(int startIndex, int endIndex) const {
|
|
int result = startIndex < endIndex ? -fTs[startIndex].fOppValue
|
|
: fTs[endIndex].fOppValue;
|
|
#if DEBUG_WIND_BUMP
|
|
SkDebugf("%s oppSign=%d\n", __FUNCTION__, result);
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
int oppSum(int tIndex) const {
|
|
return fTs[tIndex].fOppSum;
|
|
}
|
|
|
|
int oppSum(const Angle* angle) const {
|
|
int lesser = SkMin32(angle->start(), angle->end());
|
|
return fTs[lesser].fOppSum;
|
|
}
|
|
|
|
int oppValue(int tIndex) const {
|
|
return fTs[tIndex].fOppValue;
|
|
}
|
|
|
|
int oppValue(const Angle* angle) const {
|
|
int lesser = SkMin32(angle->start(), angle->end());
|
|
return fTs[lesser].fOppValue;
|
|
}
|
|
|
|
const SkPoint* pts() const {
|
|
return fPts;
|
|
}
|
|
|
|
void reset() {
|
|
init(NULL, (SkPath::Verb) -1, false, false);
|
|
fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
|
|
fTs.reset();
|
|
}
|
|
|
|
void setOppXor(bool isOppXor) {
|
|
fOppXor = isOppXor;
|
|
}
|
|
|
|
void setUpWinding(int index, int endIndex, int& maxWinding, int& sumWinding) {
|
|
int deltaSum = spanSign(index, endIndex);
|
|
maxWinding = sumWinding;
|
|
sumWinding = sumWinding -= deltaSum;
|
|
}
|
|
|
|
void setUpWindings(int index, int endIndex, int& sumMiWinding, int& sumSuWinding,
|
|
int& maxWinding, int& sumWinding, int& oppMaxWinding, int& oppSumWinding) {
|
|
int deltaSum = spanSign(index, endIndex);
|
|
int oppDeltaSum = oppSign(index, endIndex);
|
|
if (operand()) {
|
|
maxWinding = sumSuWinding;
|
|
sumWinding = sumSuWinding -= deltaSum;
|
|
oppMaxWinding = sumMiWinding;
|
|
oppSumWinding = sumMiWinding -= oppDeltaSum;
|
|
} else {
|
|
maxWinding = sumMiWinding;
|
|
sumWinding = sumMiWinding -= deltaSum;
|
|
oppMaxWinding = sumSuWinding;
|
|
oppSumWinding = sumSuWinding -= oppDeltaSum;
|
|
}
|
|
}
|
|
|
|
// This marks all spans unsortable so that this info is available for early
|
|
// exclusion in find top and others. This could be optimized to only mark
|
|
// adjacent spans that unsortable. However, this makes it difficult to later
|
|
// determine starting points for edge detection in find top and the like.
|
|
static bool SortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleList) {
|
|
bool sortable = true;
|
|
int angleCount = angles.count();
|
|
int angleIndex;
|
|
angleList.setReserve(angleCount);
|
|
for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
|
|
Angle& angle = angles[angleIndex];
|
|
*angleList.append() = ∠
|
|
sortable &= !angle.unsortable();
|
|
}
|
|
if (sortable) {
|
|
QSort<Angle>(angleList.begin(), angleList.end() - 1);
|
|
for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
|
|
if (angles[angleIndex].unsortable()) {
|
|
sortable = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!sortable) {
|
|
for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
|
|
Angle& angle = angles[angleIndex];
|
|
angle.segment()->markUnsortable(angle.start(), angle.end());
|
|
}
|
|
}
|
|
return sortable;
|
|
}
|
|
|
|
// OPTIMIZATION: mark as debugging only if used solely by tests
|
|
const Span& span(int tIndex) const {
|
|
return fTs[tIndex];
|
|
}
|
|
|
|
int spanSign(const Angle* angle) const {
|
|
SkASSERT(angle->segment() == this);
|
|
return spanSign(angle->start(), angle->end());
|
|
}
|
|
|
|
int spanSign(int startIndex, int endIndex) const {
|
|
int result = startIndex < endIndex ? -fTs[startIndex].fWindValue
|
|
: fTs[endIndex].fWindValue;
|
|
#if DEBUG_WIND_BUMP
|
|
SkDebugf("%s spanSign=%d\n", __FUNCTION__, result);
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
// OPTIMIZATION: mark as debugging only if used solely by tests
|
|
double t(int tIndex) const {
|
|
return fTs[tIndex].fT;
|
|
}
|
|
|
|
double tAtMid(int start, int end, double mid) const {
|
|
return fTs[start].fT * (1 - mid) + fTs[end].fT * mid;
|
|
}
|
|
|
|
bool tiny(const Angle* angle) const {
|
|
int start = angle->start();
|
|
int end = angle->end();
|
|
const Span& mSpan = fTs[SkMin32(start, end)];
|
|
return mSpan.fTiny;
|
|
}
|
|
|
|
static void TrackOutside(SkTDArray<double>& outsideTs, double end,
|
|
double start) {
|
|
int outCount = outsideTs.count();
|
|
if (outCount == 0 || !approximately_negative(end - outsideTs[outCount - 2])) {
|
|
*outsideTs.append() = end;
|
|
*outsideTs.append() = start;
|
|
}
|
|
}
|
|
|
|
void undoneSpan(int& start, int& end) {
|
|
size_t tCount = fTs.count();
|
|
size_t index;
|
|
for (index = 0; index < tCount; ++index) {
|
|
if (!fTs[index].fDone) {
|
|
break;
|
|
}
|
|
}
|
|
SkASSERT(index < tCount - 1);
|
|
start = index;
|
|
double startT = fTs[index].fT;
|
|
while (approximately_negative(fTs[++index].fT - startT))
|
|
SkASSERT(index < tCount);
|
|
SkASSERT(index < tCount);
|
|
end = index;
|
|
}
|
|
|
|
bool unsortable(int index) const {
|
|
return fTs[index].fUnsortableStart || fTs[index].fUnsortableEnd;
|
|
}
|
|
|
|
void updatePts(const SkPoint pts[]) {
|
|
fPts = pts;
|
|
}
|
|
|
|
int updateOppWinding(int index, int endIndex) const {
|
|
int lesser = SkMin32(index, endIndex);
|
|
int oppWinding = oppSum(lesser);
|
|
int oppSpanWinding = oppSign(index, endIndex);
|
|
if (oppSpanWinding && useInnerWinding(oppWinding - oppSpanWinding, oppWinding)) {
|
|
oppWinding -= oppSpanWinding;
|
|
}
|
|
return oppWinding;
|
|
}
|
|
|
|
int updateOppWinding(const Angle* angle) const {
|
|
int startIndex = angle->start();
|
|
int endIndex = angle->end();
|
|
return updateOppWinding(endIndex, startIndex);
|
|
}
|
|
|
|
int updateOppWindingReverse(const Angle* angle) const {
|
|
int startIndex = angle->start();
|
|
int endIndex = angle->end();
|
|
return updateOppWinding(startIndex, endIndex);
|
|
}
|
|
|
|
int updateWinding(int index, int endIndex) const {
|
|
int lesser = SkMin32(index, endIndex);
|
|
int winding = windSum(lesser);
|
|
int spanWinding = spanSign(index, endIndex);
|
|
if (winding && useInnerWinding(winding - spanWinding, winding)) {
|
|
winding -= spanWinding;
|
|
}
|
|
return winding;
|
|
}
|
|
|
|
int updateWinding(const Angle* angle) const {
|
|
int startIndex = angle->start();
|
|
int endIndex = angle->end();
|
|
return updateWinding(endIndex, startIndex);
|
|
}
|
|
|
|
int updateWindingReverse(const Angle* angle) const {
|
|
int startIndex = angle->start();
|
|
int endIndex = angle->end();
|
|
return updateWinding(startIndex, endIndex);
|
|
}
|
|
|
|
SkPath::Verb verb() const {
|
|
return fVerb;
|
|
}
|
|
|
|
int windingAtT(double tHit, int tIndex, bool crossOpp, SkScalar& dx) const {
|
|
if (approximately_zero(tHit - t(tIndex))) { // if we hit the end of a span, disregard
|
|
return SK_MinS32;
|
|
}
|
|
int winding = crossOpp ? oppSum(tIndex) : windSum(tIndex);
|
|
SkASSERT(winding != SK_MinS32);
|
|
int windVal = crossOpp ? oppValue(tIndex) : windValue(tIndex);
|
|
#if DEBUG_WINDING_AT_T
|
|
SkDebugf("%s oldWinding=%d windValue=%d", __FUNCTION__, winding, windVal);
|
|
#endif
|
|
// see if a + change in T results in a +/- change in X (compute x'(T))
|
|
dx = (*SegmentDXAtT[fVerb])(fPts, tHit);
|
|
if (fVerb > SkPath::kLine_Verb && approximately_zero(dx)) {
|
|
dx = fPts[2].fX - fPts[1].fX - dx;
|
|
}
|
|
if (dx == 0) {
|
|
#if DEBUG_WINDING_AT_T
|
|
SkDebugf(" dx=0 winding=SK_MinS32\n");
|
|
#endif
|
|
return SK_MinS32;
|
|
}
|
|
if (winding * dx > 0) { // if same signs, result is negative
|
|
winding += dx > 0 ? -windVal : windVal;
|
|
}
|
|
#if DEBUG_WINDING_AT_T
|
|
SkDebugf(" dx=%c winding=%d\n", dx > 0 ? '+' : '-', winding);
|
|
#endif
|
|
return winding;
|
|
}
|
|
|
|
int windSum(int tIndex) const {
|
|
return fTs[tIndex].fWindSum;
|
|
}
|
|
|
|
int windSum(const Angle* angle) const {
|
|
int start = angle->start();
|
|
int end = angle->end();
|
|
int index = SkMin32(start, end);
|
|
return windSum(index);
|
|
}
|
|
|
|
int windValue(int tIndex) const {
|
|
return fTs[tIndex].fWindValue;
|
|
}
|
|
|
|
int windValue(const Angle* angle) const {
|
|
int start = angle->start();
|
|
int end = angle->end();
|
|
int index = SkMin32(start, end);
|
|
return windValue(index);
|
|
}
|
|
|
|
int windValueAt(double t) const {
|
|
int count = fTs.count();
|
|
for (int index = 0; index < count; ++index) {
|
|
if (fTs[index].fT == t) {
|
|
return fTs[index].fWindValue;
|
|
}
|
|
}
|
|
SkASSERT(0);
|
|
return 0;
|
|
}
|
|
|
|
SkScalar xAtT(int index) const {
|
|
return xAtT(&fTs[index]);
|
|
}
|
|
|
|
SkScalar xAtT(const Span* span) const {
|
|
return xyAtT(span).fX;
|
|
}
|
|
|
|
const SkPoint& xyAtT(int index) const {
|
|
return xyAtT(&fTs[index]);
|
|
}
|
|
|
|
const SkPoint& xyAtT(const Span* span) const {
|
|
if (SkScalarIsNaN(span->fPt.fX)) {
|
|
if (span->fT == 0) {
|
|
span->fPt = fPts[0];
|
|
} else if (span->fT == 1) {
|
|
span->fPt = fPts[fVerb];
|
|
} else {
|
|
(*SegmentXYAtT[fVerb])(fPts, span->fT, &span->fPt);
|
|
}
|
|
}
|
|
return span->fPt;
|
|
}
|
|
|
|
// used only by right angle winding finding
|
|
void xyAtT(double mid, SkPoint& pt) const {
|
|
(*SegmentXYAtT[fVerb])(fPts, mid, &pt);
|
|
}
|
|
|
|
SkScalar yAtT(int index) const {
|
|
return yAtT(&fTs[index]);
|
|
}
|
|
|
|
SkScalar yAtT(const Span* span) const {
|
|
return xyAtT(span).fY;
|
|
}
|
|
|
|
void zeroCoincidentOpp(Span* oTest, int index) {
|
|
Span* const test = &fTs[index];
|
|
Span* end = test;
|
|
do {
|
|
end->fOppValue = 0;
|
|
end = &fTs[++index];
|
|
} while (approximately_negative(end->fT - test->fT));
|
|
}
|
|
|
|
void zeroCoincidentOther(Span* test, const double tRatio, const double oEndT, int oIndex) {
|
|
Span* const oTest = &fTs[oIndex];
|
|
Span* oEnd = oTest;
|
|
const double startT = test->fT;
|
|
const double oStartT = oTest->fT;
|
|
double otherTMatch = (test->fT - startT) * tRatio + oStartT;
|
|
while (!approximately_negative(oEndT - oEnd->fT)
|
|
&& approximately_negative(oEnd->fT - otherTMatch)) {
|
|
oEnd->fOppValue = 0;
|
|
oEnd = &fTs[++oIndex];
|
|
}
|
|
}
|
|
|
|
void zeroSpan(Span* span) {
|
|
SkASSERT(span->fWindValue > 0 || span->fOppValue > 0);
|
|
span->fWindValue = 0;
|
|
span->fOppValue = 0;
|
|
SkASSERT(!span->fDone);
|
|
span->fDone = true;
|
|
++fDoneSpans;
|
|
}
|
|
|
|
#if DEBUG_DUMP
|
|
void dump() const {
|
|
const char className[] = "Segment";
|
|
const int tab = 4;
|
|
for (int i = 0; i < fTs.count(); ++i) {
|
|
SkPoint out;
|
|
(*SegmentXYAtT[fVerb])(fPts, t(i), &out);
|
|
SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d"
|
|
" otherT=%1.9g windSum=%d\n",
|
|
tab + sizeof(className), className, fID,
|
|
kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY,
|
|
fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWindSum);
|
|
}
|
|
SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)",
|
|
tab + sizeof(className), className, fID,
|
|
fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
|
|
}
|
|
#endif
|
|
|
|
#if DEBUG_CONCIDENT
|
|
// assert if pair has not already been added
|
|
void debugAddTPair(double t, const Segment& other, double otherT) const {
|
|
for (int i = 0; i < fTs.count(); ++i) {
|
|
if (fTs[i].fT == t && fTs[i].fOther == &other && fTs[i].fOtherT == otherT) {
|
|
return;
|
|
}
|
|
}
|
|
SkASSERT(0);
|
|
}
|
|
#endif
|
|
|
|
#if DEBUG_DUMP
|
|
int debugID() const {
|
|
return fID;
|
|
}
|
|
#endif
|
|
|
|
#if DEBUG_WINDING
|
|
void debugShowSums() const {
|
|
SkDebugf("%s id=%d (%1.9g,%1.9g %1.9g,%1.9g)", __FUNCTION__, fID,
|
|
fPts[0].fX, fPts[0].fY, fPts[fVerb].fX, fPts[fVerb].fY);
|
|
for (int i = 0; i < fTs.count(); ++i) {
|
|
const Span& span = fTs[i];
|
|
SkDebugf(" [t=%1.3g %1.9g,%1.9g w=", span.fT, xAtT(&span), yAtT(&span));
|
|
if (span.fWindSum == SK_MinS32) {
|
|
SkDebugf("?");
|
|
} else {
|
|
SkDebugf("%d", span.fWindSum);
|
|
}
|
|
SkDebugf("]");
|
|
}
|
|
SkDebugf("\n");
|
|
}
|
|
#endif
|
|
|
|
#if DEBUG_CONCIDENT
|
|
void debugShowTs() const {
|
|
SkDebugf("%s id=%d", __FUNCTION__, fID);
|
|
int lastWind = -1;
|
|
int lastOpp = -1;
|
|
double lastT = -1;
|
|
int i;
|
|
for (i = 0; i < fTs.count(); ++i) {
|
|
bool change = lastT != fTs[i].fT || lastWind != fTs[i].fWindValue
|
|
|| lastOpp != fTs[i].fOppValue;
|
|
if (change && lastWind >= 0) {
|
|
SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]",
|
|
lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp);
|
|
}
|
|
if (change) {
|
|
SkDebugf(" [o=%d", fTs[i].fOther->fID);
|
|
lastWind = fTs[i].fWindValue;
|
|
lastOpp = fTs[i].fOppValue;
|
|
lastT = fTs[i].fT;
|
|
} else {
|
|
SkDebugf(",%d", fTs[i].fOther->fID);
|
|
}
|
|
}
|
|
if (i <= 0) {
|
|
return;
|
|
}
|
|
SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]",
|
|
lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp);
|
|
if (fOperand) {
|
|
SkDebugf(" operand");
|
|
}
|
|
if (done()) {
|
|
SkDebugf(" done");
|
|
}
|
|
SkDebugf("\n");
|
|
}
|
|
#endif
|
|
|
|
#if DEBUG_ACTIVE_SPANS
|
|
void debugShowActiveSpans() const {
|
|
if (done()) {
|
|
return;
|
|
}
|
|
#if DEBUG_ACTIVE_SPANS_SHORT_FORM
|
|
int lastId = -1;
|
|
double lastT = -1;
|
|
#endif
|
|
for (int i = 0; i < fTs.count(); ++i) {
|
|
if (fTs[i].fDone) {
|
|
continue;
|
|
}
|
|
#if DEBUG_ACTIVE_SPANS_SHORT_FORM
|
|
if (lastId == fID && lastT == fTs[i].fT) {
|
|
continue;
|
|
}
|
|
lastId = fID;
|
|
lastT = fTs[i].fT;
|
|
#endif
|
|
SkDebugf("%s id=%d", __FUNCTION__, fID);
|
|
SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
|
|
for (int vIndex = 1; vIndex <= fVerb; ++vIndex) {
|
|
SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
|
|
}
|
|
const Span* span = &fTs[i];
|
|
SkDebugf(") t=%1.9g (%1.9g,%1.9g)", fTs[i].fT,
|
|
xAtT(span), yAtT(span));
|
|
const Segment* other = fTs[i].fOther;
|
|
SkDebugf(" other=%d otherT=%1.9g otherIndex=%d windSum=",
|
|
other->fID, fTs[i].fOtherT, fTs[i].fOtherIndex);
|
|
if (fTs[i].fWindSum == SK_MinS32) {
|
|
SkDebugf("?");
|
|
} else {
|
|
SkDebugf("%d", fTs[i].fWindSum);
|
|
}
|
|
SkDebugf(" windValue=%d oppValue=%d\n", fTs[i].fWindValue, fTs[i].fOppValue);
|
|
}
|
|
}
|
|
|
|
// This isn't useful yet -- but leaving it in for now in case i think of something
|
|
// to use it for
|
|
void validateActiveSpans() const {
|
|
if (done()) {
|
|
return;
|
|
}
|
|
int tCount = fTs.count();
|
|
for (int index = 0; index < tCount; ++index) {
|
|
if (fTs[index].fDone) {
|
|
continue;
|
|
}
|
|
// count number of connections which are not done
|
|
int first = index;
|
|
double baseT = fTs[index].fT;
|
|
while (first > 0 && approximately_equal(fTs[first - 1].fT, baseT)) {
|
|
--first;
|
|
}
|
|
int last = index;
|
|
while (last < tCount - 1 && approximately_equal(fTs[last + 1].fT, baseT)) {
|
|
++last;
|
|
}
|
|
int connections = 0;
|
|
connections += first > 0 && !fTs[first - 1].fDone;
|
|
for (int test = first; test <= last; ++test) {
|
|
connections += !fTs[test].fDone;
|
|
const Segment* other = fTs[test].fOther;
|
|
int oIndex = fTs[test].fOtherIndex;
|
|
connections += !other->fTs[oIndex].fDone;
|
|
connections += oIndex > 0 && !other->fTs[oIndex - 1].fDone;
|
|
}
|
|
// SkASSERT(!(connections & 1));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if DEBUG_MARK_DONE
|
|
void debugShowNewWinding(const char* fun, const Span& span, int winding) {
|
|
const SkPoint& pt = xyAtT(&span);
|
|
SkDebugf("%s id=%d", fun, fID);
|
|
SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
|
|
for (int vIndex = 1; vIndex <= fVerb; ++vIndex) {
|
|
SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
|
|
}
|
|
SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther->
|
|
fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]);
|
|
SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) newWindSum=%d windSum=",
|
|
span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY, winding);
|
|
if (span.fWindSum == SK_MinS32) {
|
|
SkDebugf("?");
|
|
} else {
|
|
SkDebugf("%d", span.fWindSum);
|
|
}
|
|
SkDebugf(" windValue=%d\n", span.fWindValue);
|
|
}
|
|
|
|
void debugShowNewWinding(const char* fun, const Span& span, int winding, int oppWinding) {
|
|
const SkPoint& pt = xyAtT(&span);
|
|
SkDebugf("%s id=%d", fun, fID);
|
|
SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
|
|
for (int vIndex = 1; vIndex <= fVerb; ++vIndex) {
|
|
SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
|
|
}
|
|
SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther->
|
|
fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]);
|
|
SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) newWindSum=%d newOppSum=%d oppSum=",
|
|
span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY,
|
|
winding, oppWinding);
|
|
if (span.fOppSum == SK_MinS32) {
|
|
SkDebugf("?");
|
|
} else {
|
|
SkDebugf("%d", span.fOppSum);
|
|
}
|
|
SkDebugf(" windSum=");
|
|
if (span.fWindSum == SK_MinS32) {
|
|
SkDebugf("?");
|
|
} else {
|
|
SkDebugf("%d", span.fWindSum);
|
|
}
|
|
SkDebugf(" windValue=%d\n", span.fWindValue);
|
|
}
|
|
#endif
|
|
|
|
#if DEBUG_SORT
|
|
void debugShowSort(const char* fun, const SkTDArray<Angle*>& angles, int first,
|
|
const int contourWinding, const int oppContourWinding) const {
|
|
SkASSERT(angles[first]->segment() == this);
|
|
SkASSERT(angles.count() > 1);
|
|
int lastSum = contourWinding;
|
|
int oppLastSum = oppContourWinding;
|
|
const Angle* firstAngle = angles[first];
|
|
int windSum = lastSum - spanSign(firstAngle);
|
|
int oppoSign = oppSign(firstAngle);
|
|
int oppWindSum = oppLastSum - oppoSign;
|
|
SkDebugf("%s %s contourWinding=%d oppContourWinding=%d sign=%d\n", fun, __FUNCTION__,
|
|
contourWinding, oppContourWinding, spanSign(angles[first]));
|
|
int index = first;
|
|
bool firstTime = true;
|
|
do {
|
|
const Angle& angle = *angles[index];
|
|
const Segment& segment = *angle.segment();
|
|
int start = angle.start();
|
|
int end = angle.end();
|
|
const Span& sSpan = segment.fTs[start];
|
|
const Span& eSpan = segment.fTs[end];
|
|
const Span& mSpan = segment.fTs[SkMin32(start, end)];
|
|
bool opp = segment.fOperand ^ fOperand;
|
|
if (!firstTime) {
|
|
oppoSign = segment.oppSign(&angle);
|
|
if (opp) {
|
|
oppLastSum = oppWindSum;
|
|
oppWindSum -= segment.spanSign(&angle);
|
|
if (oppoSign) {
|
|
lastSum = windSum;
|
|
windSum -= oppoSign;
|
|
}
|
|
} else {
|
|
lastSum = windSum;
|
|
windSum -= segment.spanSign(&angle);
|
|
if (oppoSign) {
|
|
oppLastSum = oppWindSum;
|
|
oppWindSum -= oppoSign;
|
|
}
|
|
}
|
|
}
|
|
SkDebugf("%s [%d] %sid=%d %s start=%d (%1.9g,%,1.9g) end=%d (%1.9g,%,1.9g)"
|
|
" sign=%d windValue=%d windSum=",
|
|
__FUNCTION__, index, angle.unsortable() ? "*** UNSORTABLE *** " : "",
|
|
segment.fID, kLVerbStr[segment.fVerb],
|
|
start, segment.xAtT(&sSpan), segment.yAtT(&sSpan), end,
|
|
segment.xAtT(&eSpan), segment.yAtT(&eSpan), angle.sign(),
|
|
mSpan.fWindValue);
|
|
if (mSpan.fWindSum == SK_MinS32) {
|
|
SkDebugf("?");
|
|
} else {
|
|
SkDebugf("%d", mSpan.fWindSum);
|
|
}
|
|
int last, wind;
|
|
if (opp) {
|
|
last = oppLastSum;
|
|
wind = oppWindSum;
|
|
} else {
|
|
last = lastSum;
|
|
wind = windSum;
|
|
}
|
|
if (!oppoSign) {
|
|
SkDebugf(" %d->%d (max=%d)", last, wind,
|
|
useInnerWinding(last, wind) ? wind : last);
|
|
} else {
|
|
SkDebugf(" %d->%d (%d->%d)", last, wind, opp ? lastSum : oppLastSum,
|
|
opp ? windSum : oppWindSum);
|
|
}
|
|
SkDebugf(" done=%d tiny=%d opp=%d\n", mSpan.fDone, mSpan.fTiny, opp);
|
|
#if false && DEBUG_ANGLE
|
|
angle.debugShow(segment.xyAtT(&sSpan));
|
|
#endif
|
|
++index;
|
|
if (index == angles.count()) {
|
|
index = 0;
|
|
}
|
|
if (firstTime) {
|
|
firstTime = false;
|
|
}
|
|
} while (index != first);
|
|
}
|
|
|
|
void debugShowSort(const char* fun, const SkTDArray<Angle*>& angles, int first) {
|
|
const Angle* firstAngle = angles[first];
|
|
const Segment* segment = firstAngle->segment();
|
|
int winding = segment->updateWinding(firstAngle);
|
|
int oppWinding = segment->updateOppWinding(firstAngle);
|
|
debugShowSort(fun, angles, first, winding, oppWinding);
|
|
}
|
|
|
|
#endif
|
|
|
|
#if DEBUG_WINDING
|
|
static char as_digit(int value) {
|
|
return value < 0 ? '?' : value <= 9 ? '0' + value : '+';
|
|
}
|
|
#endif
|
|
|
|
#if DEBUG_SHOW_WINDING
|
|
int debugShowWindingValues(int slotCount, int ofInterest) const {
|
|
if (!(1 << fID & ofInterest)) {
|
|
return 0;
|
|
}
|
|
int sum = 0;
|
|
SkTDArray<char> slots;
|
|
slots.setCount(slotCount * 2);
|
|
memset(slots.begin(), ' ', slotCount * 2);
|
|
for (int i = 0; i < fTs.count(); ++i) {
|
|
// if (!(1 << fTs[i].fOther->fID & ofInterest)) {
|
|
// continue;
|
|
// }
|
|
sum += fTs[i].fWindValue;
|
|
slots[fTs[i].fOther->fID - 1] = as_digit(fTs[i].fWindValue);
|
|
sum += fTs[i].fOppValue;
|
|
slots[slotCount + fTs[i].fOther->fID - 1] = as_digit(fTs[i].fOppValue);
|
|
}
|
|
SkDebugf("%s id=%2d %.*s | %.*s\n", __FUNCTION__, fID, slotCount, slots.begin(), slotCount,
|
|
slots.begin() + slotCount);
|
|
return sum;
|
|
}
|
|
#endif
|
|
|
|
private:
|
|
const SkPoint* fPts;
|
|
Bounds fBounds;
|
|
SkTDArray<Span> fTs; // two or more (always includes t=0 t=1)
|
|
// OPTIMIZATION: could pack donespans, verb, operand, xor into 1 int-sized value
|
|
int fDoneSpans; // quick check that segment is finished
|
|
// OPTIMIZATION: force the following to be byte-sized
|
|
SkPath::Verb fVerb;
|
|
bool fOperand;
|
|
bool fXor; // set if original contour had even-odd fill
|
|
bool fOppXor; // set if opposite operand had even-odd fill
|
|
#if DEBUG_DUMP
|
|
int fID;
|
|
#endif
|
|
};
|
|
|
|
class Contour;
|
|
|
|
struct Coincidence {
|
|
Contour* fContours[2];
|
|
int fSegments[2];
|
|
double fTs[2][2];
|
|
};
|
|
|
|
class Contour {
|
|
public:
|
|
Contour() {
|
|
reset();
|
|
#if DEBUG_DUMP
|
|
fID = ++gContourID;
|
|
#endif
|
|
}
|
|
|
|
bool operator<(const Contour& rh) const {
|
|
return fBounds.fTop == rh.fBounds.fTop
|
|
? fBounds.fLeft < rh.fBounds.fLeft
|
|
: fBounds.fTop < rh.fBounds.fTop;
|
|
}
|
|
|
|
void addCoincident(int index, Contour* other, int otherIndex,
|
|
const Intersections& ts, bool swap) {
|
|
Coincidence& coincidence = *fCoincidences.append();
|
|
coincidence.fContours[0] = this; // FIXME: no need to store
|
|
coincidence.fContours[1] = other;
|
|
coincidence.fSegments[0] = index;
|
|
coincidence.fSegments[1] = otherIndex;
|
|
if (fSegments[index].verb() == SkPath::kLine_Verb &&
|
|
other->fSegments[otherIndex].verb() == SkPath::kLine_Verb) {
|
|
// FIXME: coincident lines use legacy Ts instead of coincident Ts
|
|
coincidence.fTs[swap][0] = ts.fT[0][0];
|
|
coincidence.fTs[swap][1] = ts.fT[0][1];
|
|
coincidence.fTs[!swap][0] = ts.fT[1][0];
|
|
coincidence.fTs[!swap][1] = ts.fT[1][1];
|
|
} else if (fSegments[index].verb() == SkPath::kQuad_Verb &&
|
|
other->fSegments[otherIndex].verb() == SkPath::kQuad_Verb) {
|
|
coincidence.fTs[swap][0] = ts.fCoincidentT[0][0];
|
|
coincidence.fTs[swap][1] = ts.fCoincidentT[0][1];
|
|
coincidence.fTs[!swap][0] = ts.fCoincidentT[1][0];
|
|
coincidence.fTs[!swap][1] = ts.fCoincidentT[1][1];
|
|
}
|
|
}
|
|
|
|
void addCross(const Contour* crosser) {
|
|
#ifdef DEBUG_CROSS
|
|
for (int index = 0; index < fCrosses.count(); ++index) {
|
|
SkASSERT(fCrosses[index] != crosser);
|
|
}
|
|
#endif
|
|
*fCrosses.append() = crosser;
|
|
}
|
|
|
|
void addCubic(const SkPoint pts[4]) {
|
|
fSegments.push_back().addCubic(pts, fOperand, fXor);
|
|
fContainsCurves = true;
|
|
}
|
|
|
|
int addLine(const SkPoint pts[2]) {
|
|
fSegments.push_back().addLine(pts, fOperand, fXor);
|
|
return fSegments.count();
|
|
}
|
|
|
|
void addOtherT(int segIndex, int tIndex, double otherT, int otherIndex) {
|
|
fSegments[segIndex].addOtherT(tIndex, otherT, otherIndex);
|
|
}
|
|
|
|
int addQuad(const SkPoint pts[3]) {
|
|
fSegments.push_back().addQuad(pts, fOperand, fXor);
|
|
fContainsCurves = true;
|
|
return fSegments.count();
|
|
}
|
|
|
|
int addT(int segIndex, double newT, Contour* other, int otherIndex) {
|
|
containsIntercepts();
|
|
return fSegments[segIndex].addT(newT, &other->fSegments[otherIndex]);
|
|
}
|
|
|
|
int addUnsortableT(int segIndex, double newT, Contour* other, int otherIndex, bool start) {
|
|
return fSegments[segIndex].addUnsortableT(newT, &other->fSegments[otherIndex], start);
|
|
}
|
|
|
|
const Bounds& bounds() const {
|
|
return fBounds;
|
|
}
|
|
|
|
void complete() {
|
|
setBounds();
|
|
fContainsIntercepts = false;
|
|
}
|
|
|
|
void containsIntercepts() {
|
|
fContainsIntercepts = true;
|
|
}
|
|
|
|
bool crosses(const Contour* crosser) const {
|
|
for (int index = 0; index < fCrosses.count(); ++index) {
|
|
if (fCrosses[index] == crosser) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool done() const {
|
|
return fDone;
|
|
}
|
|
|
|
const SkPoint& end() const {
|
|
const Segment& segment = fSegments.back();
|
|
return segment.pts()[segment.verb()];
|
|
}
|
|
|
|
void findTooCloseToCall() {
|
|
int segmentCount = fSegments.count();
|
|
for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
|
|
fSegments[sIndex].findTooCloseToCall();
|
|
}
|
|
}
|
|
|
|
void fixOtherTIndex() {
|
|
int segmentCount = fSegments.count();
|
|
for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
|
|
fSegments[sIndex].fixOtherTIndex();
|
|
}
|
|
}
|
|
|
|
Segment* nonVerticalSegment(int& start, int& end) {
|
|
int segmentCount = fSortedSegments.count();
|
|
SkASSERT(segmentCount > 0);
|
|
for (int sortedIndex = fFirstSorted; sortedIndex < segmentCount; ++sortedIndex) {
|
|
Segment* testSegment = fSortedSegments[sortedIndex];
|
|
if (testSegment->done()) {
|
|
continue;
|
|
}
|
|
start = end = 0;
|
|
while (testSegment->nextCandidate(start, end)) {
|
|
if (!testSegment->isVertical(start, end)) {
|
|
return testSegment;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
bool operand() const {
|
|
return fOperand;
|
|
}
|
|
|
|
void reset() {
|
|
fSegments.reset();
|
|
fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
|
|
fContainsCurves = fContainsIntercepts = fDone = false;
|
|
}
|
|
|
|
void resolveCoincidence(SkTDArray<Contour*>& contourList) {
|
|
int count = fCoincidences.count();
|
|
for (int index = 0; index < count; ++index) {
|
|
Coincidence& coincidence = fCoincidences[index];
|
|
SkASSERT(coincidence.fContours[0] == this);
|
|
int thisIndex = coincidence.fSegments[0];
|
|
Segment& thisOne = fSegments[thisIndex];
|
|
Contour* otherContour = coincidence.fContours[1];
|
|
int otherIndex = coincidence.fSegments[1];
|
|
Segment& other = otherContour->fSegments[otherIndex];
|
|
if ((thisOne.done() || other.done()) && thisOne.complete() && other.complete()) {
|
|
continue;
|
|
}
|
|
#if DEBUG_CONCIDENT
|
|
thisOne.debugShowTs();
|
|
other.debugShowTs();
|
|
#endif
|
|
double startT = coincidence.fTs[0][0];
|
|
double endT = coincidence.fTs[0][1];
|
|
bool cancelers = false;
|
|
if (startT > endT) {
|
|
SkTSwap<double>(startT, endT);
|
|
cancelers ^= true; // FIXME: just assign true
|
|
}
|
|
SkASSERT(!approximately_negative(endT - startT));
|
|
double oStartT = coincidence.fTs[1][0];
|
|
double oEndT = coincidence.fTs[1][1];
|
|
if (oStartT > oEndT) {
|
|
SkTSwap<double>(oStartT, oEndT);
|
|
cancelers ^= true;
|
|
}
|
|
SkASSERT(!approximately_negative(oEndT - oStartT));
|
|
bool opp = fOperand ^ otherContour->fOperand;
|
|
if (cancelers && !opp) {
|
|
// make sure startT and endT have t entries
|
|
if (startT > 0 || oEndT < 1
|
|
|| thisOne.isMissing(startT) || other.isMissing(oEndT)) {
|
|
thisOne.addTPair(startT, other, oEndT, true);
|
|
}
|
|
if (oStartT > 0 || endT < 1
|
|
|| thisOne.isMissing(endT) || other.isMissing(oStartT)) {
|
|
other.addTPair(oStartT, thisOne, endT, true);
|
|
}
|
|
if (!thisOne.done() && !other.done()) {
|
|
thisOne.addTCancel(startT, endT, other, oStartT, oEndT);
|
|
}
|
|
} else {
|
|
if (startT > 0 || oStartT > 0
|
|
|| thisOne.isMissing(startT) || other.isMissing(oStartT)) {
|
|
thisOne.addTPair(startT, other, oStartT, true);
|
|
}
|
|
if (endT < 1 || oEndT < 1
|
|
|| thisOne.isMissing(endT) || other.isMissing(oEndT)) {
|
|
other.addTPair(oEndT, thisOne, endT, true);
|
|
}
|
|
if (!thisOne.done() && !other.done()) {
|
|
thisOne.addTCoincident(startT, endT, other, oStartT, oEndT);
|
|
}
|
|
}
|
|
#if DEBUG_CONCIDENT
|
|
thisOne.debugShowTs();
|
|
other.debugShowTs();
|
|
#endif
|
|
#if DEBUG_SHOW_WINDING
|
|
debugShowWindingValues(contourList);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// first pass, add missing T values
|
|
// second pass, determine winding values of overlaps
|
|
void addCoincidentPoints() {
|
|
int count = fCoincidences.count();
|
|
for (int index = 0; index < count; ++index) {
|
|
Coincidence& coincidence = fCoincidences[index];
|
|
SkASSERT(coincidence.fContours[0] == this);
|
|
int thisIndex = coincidence.fSegments[0];
|
|
Segment& thisOne = fSegments[thisIndex];
|
|
Contour* otherContour = coincidence.fContours[1];
|
|
int otherIndex = coincidence.fSegments[1];
|
|
Segment& other = otherContour->fSegments[otherIndex];
|
|
if ((thisOne.done() || other.done()) && thisOne.complete() && other.complete()) {
|
|
// OPTIMIZATION: remove from array
|
|
continue;
|
|
}
|
|
#if DEBUG_CONCIDENT
|
|
thisOne.debugShowTs();
|
|
other.debugShowTs();
|
|
#endif
|
|
double startT = coincidence.fTs[0][0];
|
|
double endT = coincidence.fTs[0][1];
|
|
bool cancelers;
|
|
if ((cancelers = startT > endT)) {
|
|
SkTSwap<double>(startT, endT);
|
|
}
|
|
SkASSERT(!approximately_negative(endT - startT));
|
|
double oStartT = coincidence.fTs[1][0];
|
|
double oEndT = coincidence.fTs[1][1];
|
|
if (oStartT > oEndT) {
|
|
SkTSwap<double>(oStartT, oEndT);
|
|
cancelers ^= true;
|
|
}
|
|
SkASSERT(!approximately_negative(oEndT - oStartT));
|
|
bool opp = fOperand ^ otherContour->fOperand;
|
|
if (cancelers && !opp) {
|
|
// make sure startT and endT have t entries
|
|
if (startT > 0 || oEndT < 1
|
|
|| thisOne.isMissing(startT) || other.isMissing(oEndT)) {
|
|
thisOne.addTPair(startT, other, oEndT, true);
|
|
}
|
|
if (oStartT > 0 || endT < 1
|
|
|| thisOne.isMissing(endT) || other.isMissing(oStartT)) {
|
|
other.addTPair(oStartT, thisOne, endT, true);
|
|
}
|
|
} else {
|
|
if (startT > 0 || oStartT > 0
|
|
|| thisOne.isMissing(startT) || other.isMissing(oStartT)) {
|
|
thisOne.addTPair(startT, other, oStartT, true);
|
|
}
|
|
if (endT < 1 || oEndT < 1
|
|
|| thisOne.isMissing(endT) || other.isMissing(oEndT)) {
|
|
other.addTPair(oEndT, thisOne, endT, true);
|
|
}
|
|
}
|
|
#if DEBUG_CONCIDENT
|
|
thisOne.debugShowTs();
|
|
other.debugShowTs();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void calcCoincidentWinding() {
|
|
int count = fCoincidences.count();
|
|
for (int index = 0; index < count; ++index) {
|
|
Coincidence& coincidence = fCoincidences[index];
|
|
SkASSERT(coincidence.fContours[0] == this);
|
|
int thisIndex = coincidence.fSegments[0];
|
|
Segment& thisOne = fSegments[thisIndex];
|
|
if (thisOne.done()) {
|
|
continue;
|
|
}
|
|
Contour* otherContour = coincidence.fContours[1];
|
|
int otherIndex = coincidence.fSegments[1];
|
|
Segment& other = otherContour->fSegments[otherIndex];
|
|
if (other.done()) {
|
|
continue;
|
|
}
|
|
double startT = coincidence.fTs[0][0];
|
|
double endT = coincidence.fTs[0][1];
|
|
bool cancelers;
|
|
if ((cancelers = startT > endT)) {
|
|
SkTSwap<double>(startT, endT);
|
|
}
|
|
SkASSERT(!approximately_negative(endT - startT));
|
|
double oStartT = coincidence.fTs[1][0];
|
|
double oEndT = coincidence.fTs[1][1];
|
|
if (oStartT > oEndT) {
|
|
SkTSwap<double>(oStartT, oEndT);
|
|
cancelers ^= true;
|
|
}
|
|
SkASSERT(!approximately_negative(oEndT - oStartT));
|
|
bool opp = fOperand ^ otherContour->fOperand;
|
|
if (cancelers && !opp) {
|
|
// make sure startT and endT have t entries
|
|
if (!thisOne.done() && !other.done()) {
|
|
thisOne.addTCancel(startT, endT, other, oStartT, oEndT);
|
|
}
|
|
} else {
|
|
if (!thisOne.done() && !other.done()) {
|
|
thisOne.addTCoincident(startT, endT, other, oStartT, oEndT);
|
|
}
|
|
}
|
|
#if DEBUG_CONCIDENT
|
|
thisOne.debugShowTs();
|
|
other.debugShowTs();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
SkTArray<Segment>& segments() {
|
|
return fSegments;
|
|
}
|
|
|
|
void setOperand(bool isOp) {
|
|
fOperand = isOp;
|
|
}
|
|
|
|
void setOppXor(bool isOppXor) {
|
|
fOppXor = isOppXor;
|
|
int segmentCount = fSegments.count();
|
|
for (int test = 0; test < segmentCount; ++test) {
|
|
fSegments[test].setOppXor(isOppXor);
|
|
}
|
|
}
|
|
|
|
void setXor(bool isXor) {
|
|
fXor = isXor;
|
|
}
|
|
|
|
void sortSegments() {
|
|
int segmentCount = fSegments.count();
|
|
fSortedSegments.setReserve(segmentCount);
|
|
for (int test = 0; test < segmentCount; ++test) {
|
|
*fSortedSegments.append() = &fSegments[test];
|
|
}
|
|
QSort<Segment>(fSortedSegments.begin(), fSortedSegments.end() - 1);
|
|
fFirstSorted = 0;
|
|
}
|
|
|
|
const SkPoint& start() const {
|
|
return fSegments.front().pts()[0];
|
|
}
|
|
|
|
void toPath(PathWrapper& path) const {
|
|
int segmentCount = fSegments.count();
|
|
const SkPoint& pt = fSegments.front().pts()[0];
|
|
path.deferredMove(pt);
|
|
for (int test = 0; test < segmentCount; ++test) {
|
|
fSegments[test].addCurveTo(0, 1, path, true);
|
|
}
|
|
path.close();
|
|
}
|
|
|
|
void toPartialBackward(PathWrapper& path) const {
|
|
int segmentCount = fSegments.count();
|
|
for (int test = segmentCount - 1; test >= 0; --test) {
|
|
fSegments[test].addCurveTo(1, 0, path, true);
|
|
}
|
|
}
|
|
|
|
void toPartialForward(PathWrapper& path) const {
|
|
int segmentCount = fSegments.count();
|
|
for (int test = 0; test < segmentCount; ++test) {
|
|
fSegments[test].addCurveTo(0, 1, path, true);
|
|
}
|
|
}
|
|
|
|
void topSortableSegment(const SkPoint& topLeft, SkPoint& bestXY, Segment*& topStart) {
|
|
int segmentCount = fSortedSegments.count();
|
|
SkASSERT(segmentCount > 0);
|
|
int sortedIndex = fFirstSorted;
|
|
fDone = true; // may be cleared below
|
|
for ( ; sortedIndex < segmentCount; ++sortedIndex) {
|
|
Segment* testSegment = fSortedSegments[sortedIndex];
|
|
if (testSegment->done()) {
|
|
if (sortedIndex == fFirstSorted) {
|
|
++fFirstSorted;
|
|
}
|
|
continue;
|
|
}
|
|
fDone = false;
|
|
SkPoint testXY;
|
|
testSegment->activeLeftTop(testXY);
|
|
if (topStart) {
|
|
if (testXY.fY < topLeft.fY) {
|
|
continue;
|
|
}
|
|
if (testXY.fY == topLeft.fY && testXY.fX < topLeft.fX) {
|
|
continue;
|
|
}
|
|
if (bestXY.fY < testXY.fY) {
|
|
continue;
|
|
}
|
|
if (bestXY.fY == testXY.fY && bestXY.fX < testXY.fX) {
|
|
continue;
|
|
}
|
|
}
|
|
topStart = testSegment;
|
|
bestXY = testXY;
|
|
}
|
|
}
|
|
|
|
Segment* undoneSegment(int& start, int& end) {
|
|
int segmentCount = fSegments.count();
|
|
for (int test = 0; test < segmentCount; ++test) {
|
|
Segment* testSegment = &fSegments[test];
|
|
if (testSegment->done()) {
|
|
continue;
|
|
}
|
|
testSegment->undoneSpan(start, end);
|
|
return testSegment;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int updateSegment(int index, const SkPoint* pts) {
|
|
Segment& segment = fSegments[index];
|
|
segment.updatePts(pts);
|
|
return segment.verb() + 1;
|
|
}
|
|
|
|
#if DEBUG_TEST
|
|
SkTArray<Segment>& debugSegments() {
|
|
return fSegments;
|
|
}
|
|
#endif
|
|
|
|
#if DEBUG_DUMP
|
|
void dump() {
|
|
int i;
|
|
const char className[] = "Contour";
|
|
const int tab = 4;
|
|
SkDebugf("%s %p (contour=%d)\n", className, this, fID);
|
|
for (i = 0; i < fSegments.count(); ++i) {
|
|
SkDebugf("%*s.fSegments[%d]:\n", tab + sizeof(className),
|
|
className, i);
|
|
fSegments[i].dump();
|
|
}
|
|
SkDebugf("%*s.fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n",
|
|
tab + sizeof(className), className,
|
|
fBounds.fLeft, fBounds.fTop,
|
|
fBounds.fRight, fBounds.fBottom);
|
|
SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className),
|
|
className, fContainsIntercepts);
|
|
SkDebugf("%*s.fContainsCurves=%d\n", tab + sizeof(className),
|
|
className, fContainsCurves);
|
|
}
|
|
#endif
|
|
|
|
#if DEBUG_ACTIVE_SPANS
|
|
void debugShowActiveSpans() {
|
|
for (int index = 0; index < fSegments.count(); ++index) {
|
|
fSegments[index].debugShowActiveSpans();
|
|
}
|
|
}
|
|
|
|
void validateActiveSpans() {
|
|
for (int index = 0; index < fSegments.count(); ++index) {
|
|
fSegments[index].validateActiveSpans();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if DEBUG_SHOW_WINDING
|
|
int debugShowWindingValues(int totalSegments, int ofInterest) {
|
|
int count = fSegments.count();
|
|
int sum = 0;
|
|
for (int index = 0; index < count; ++index) {
|
|
sum += fSegments[index].debugShowWindingValues(totalSegments, ofInterest);
|
|
}
|
|
// SkDebugf("%s sum=%d\n", __FUNCTION__, sum);
|
|
return sum;
|
|
}
|
|
|
|
static void debugShowWindingValues(SkTDArray<Contour*>& contourList) {
|
|
// int ofInterest = 1 << 1 | 1 << 5 | 1 << 9 | 1 << 13;
|
|
// int ofInterest = 1 << 4 | 1 << 8 | 1 << 12 | 1 << 16;
|
|
int ofInterest = 1 << 5 | 1 << 8;
|
|
int total = 0;
|
|
int index;
|
|
for (index = 0; index < contourList.count(); ++index) {
|
|
total += contourList[index]->segments().count();
|
|
}
|
|
int sum = 0;
|
|
for (index = 0; index < contourList.count(); ++index) {
|
|
sum += contourList[index]->debugShowWindingValues(total, ofInterest);
|
|
}
|
|
// SkDebugf("%s total=%d\n", __FUNCTION__, sum);
|
|
}
|
|
#endif
|
|
|
|
protected:
|
|
void setBounds() {
|
|
int count = fSegments.count();
|
|
if (count == 0) {
|
|
SkDebugf("%s empty contour\n", __FUNCTION__);
|
|
SkASSERT(0);
|
|
// FIXME: delete empty contour?
|
|
return;
|
|
}
|
|
fBounds = fSegments.front().bounds();
|
|
for (int index = 1; index < count; ++index) {
|
|
fBounds.add(fSegments[index].bounds());
|
|
}
|
|
}
|
|
|
|
private:
|
|
SkTArray<Segment> fSegments;
|
|
SkTDArray<Segment*> fSortedSegments;
|
|
int fFirstSorted;
|
|
SkTDArray<Coincidence> fCoincidences;
|
|
SkTDArray<const Contour*> fCrosses;
|
|
Bounds fBounds;
|
|
bool fContainsIntercepts;
|
|
bool fContainsCurves;
|
|
bool fDone;
|
|
bool fOperand; // true for the second argument to a binary operator
|
|
bool fXor;
|
|
bool fOppXor;
|
|
#if DEBUG_DUMP
|
|
int fID;
|
|
#endif
|
|
};
|
|
|
|
class EdgeBuilder {
|
|
public:
|
|
|
|
EdgeBuilder(const PathWrapper& path, SkTArray<Contour>& contours)
|
|
: fPath(path.nativePath())
|
|
, fContours(contours)
|
|
{
|
|
init();
|
|
}
|
|
|
|
EdgeBuilder(const SkPath& path, SkTArray<Contour>& contours)
|
|
: fPath(&path)
|
|
, fContours(contours)
|
|
{
|
|
init();
|
|
}
|
|
|
|
void init() {
|
|
fCurrentContour = NULL;
|
|
fOperand = false;
|
|
fXorMask[0] = fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_Mask : kWinding_Mask;
|
|
#if DEBUG_DUMP
|
|
gContourID = 0;
|
|
gSegmentID = 0;
|
|
#endif
|
|
fSecondHalf = preFetch();
|
|
}
|
|
|
|
void addOperand(const SkPath& path) {
|
|
SkASSERT(fPathVerbs.count() > 0 && fPathVerbs.end()[-1] == SkPath::kDone_Verb);
|
|
fPathVerbs.pop();
|
|
fPath = &path;
|
|
fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_Mask : kWinding_Mask;
|
|
preFetch();
|
|
}
|
|
|
|
void finish() {
|
|
walk();
|
|
complete();
|
|
if (fCurrentContour && !fCurrentContour->segments().count()) {
|
|
fContours.pop_back();
|
|
}
|
|
// correct pointers in contours since fReducePts may have moved as it grew
|
|
int cIndex = 0;
|
|
int extraCount = fExtra.count();
|
|
SkASSERT(extraCount == 0 || fExtra[0] == -1);
|
|
int eIndex = 0;
|
|
int rIndex = 0;
|
|
while (++eIndex < extraCount) {
|
|
int offset = fExtra[eIndex];
|
|
if (offset < 0) {
|
|
++cIndex;
|
|
continue;
|
|
}
|
|
fCurrentContour = &fContours[cIndex];
|
|
rIndex += fCurrentContour->updateSegment(offset - 1,
|
|
&fReducePts[rIndex]);
|
|
}
|
|
fExtra.reset(); // we're done with this
|
|
}
|
|
|
|
ShapeOpMask xorMask() const {
|
|
return fXorMask[fOperand];
|
|
}
|
|
|
|
protected:
|
|
|
|
void complete() {
|
|
if (fCurrentContour && fCurrentContour->segments().count()) {
|
|
fCurrentContour->complete();
|
|
fCurrentContour = NULL;
|
|
}
|
|
}
|
|
|
|
// FIXME:remove once we can access path pts directly
|
|
int preFetch() {
|
|
SkPath::RawIter iter(*fPath); // FIXME: access path directly when allowed
|
|
SkPoint pts[4];
|
|
SkPath::Verb verb;
|
|
do {
|
|
verb = iter.next(pts);
|
|
*fPathVerbs.append() = verb;
|
|
if (verb == SkPath::kMove_Verb) {
|
|
*fPathPts.append() = pts[0];
|
|
} else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) {
|
|
fPathPts.append(verb, &pts[1]);
|
|
}
|
|
} while (verb != SkPath::kDone_Verb);
|
|
return fPathVerbs.count() - 1;
|
|
}
|
|
|
|
void walk() {
|
|
SkPath::Verb reducedVerb;
|
|
uint8_t* verbPtr = fPathVerbs.begin();
|
|
uint8_t* endOfFirstHalf = &verbPtr[fSecondHalf];
|
|
const SkPoint* pointsPtr = fPathPts.begin();
|
|
const SkPoint* finalCurveStart = NULL;
|
|
const SkPoint* finalCurveEnd = NULL;
|
|
SkPath::Verb verb;
|
|
while ((verb = (SkPath::Verb) *verbPtr++) != SkPath::kDone_Verb) {
|
|
switch (verb) {
|
|
case SkPath::kMove_Verb:
|
|
complete();
|
|
if (!fCurrentContour) {
|
|
fCurrentContour = fContours.push_back_n(1);
|
|
fCurrentContour->setOperand(fOperand);
|
|
fCurrentContour->setXor(fXorMask[fOperand] == kEvenOdd_Mask);
|
|
*fExtra.append() = -1; // start new contour
|
|
}
|
|
finalCurveEnd = pointsPtr++;
|
|
goto nextVerb;
|
|
case SkPath::kLine_Verb:
|
|
// skip degenerate points
|
|
if (pointsPtr[-1].fX != pointsPtr[0].fX
|
|
|| pointsPtr[-1].fY != pointsPtr[0].fY) {
|
|
fCurrentContour->addLine(&pointsPtr[-1]);
|
|
}
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
|
|
reducedVerb = QuadReduceOrder(&pointsPtr[-1], fReducePts);
|
|
if (reducedVerb == 0) {
|
|
break; // skip degenerate points
|
|
}
|
|
if (reducedVerb == 1) {
|
|
*fExtra.append() =
|
|
fCurrentContour->addLine(fReducePts.end() - 2);
|
|
break;
|
|
}
|
|
fCurrentContour->addQuad(&pointsPtr[-1]);
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
reducedVerb = CubicReduceOrder(&pointsPtr[-1], fReducePts);
|
|
if (reducedVerb == 0) {
|
|
break; // skip degenerate points
|
|
}
|
|
if (reducedVerb == 1) {
|
|
*fExtra.append() =
|
|
fCurrentContour->addLine(fReducePts.end() - 2);
|
|
break;
|
|
}
|
|
if (reducedVerb == 2) {
|
|
*fExtra.append() =
|
|
fCurrentContour->addQuad(fReducePts.end() - 3);
|
|
break;
|
|
}
|
|
fCurrentContour->addCubic(&pointsPtr[-1]);
|
|
break;
|
|
case SkPath::kClose_Verb:
|
|
SkASSERT(fCurrentContour);
|
|
if (finalCurveStart && finalCurveEnd
|
|
&& *finalCurveStart != *finalCurveEnd) {
|
|
*fReducePts.append() = *finalCurveStart;
|
|
*fReducePts.append() = *finalCurveEnd;
|
|
*fExtra.append() =
|
|
fCurrentContour->addLine(fReducePts.end() - 2);
|
|
}
|
|
complete();
|
|
goto nextVerb;
|
|
default:
|
|
SkDEBUGFAIL("bad verb");
|
|
return;
|
|
}
|
|
finalCurveStart = &pointsPtr[verb - 1];
|
|
pointsPtr += verb;
|
|
SkASSERT(fCurrentContour);
|
|
nextVerb:
|
|
if (verbPtr == endOfFirstHalf) {
|
|
fOperand = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
const SkPath* fPath;
|
|
SkTDArray<SkPoint> fPathPts; // FIXME: point directly to path pts instead
|
|
SkTDArray<uint8_t> fPathVerbs; // FIXME: remove
|
|
Contour* fCurrentContour;
|
|
SkTArray<Contour>& fContours;
|
|
SkTDArray<SkPoint> fReducePts; // segments created on the fly
|
|
SkTDArray<int> fExtra; // -1 marks new contour, > 0 offsets into contour
|
|
ShapeOpMask fXorMask[2];
|
|
int fSecondHalf;
|
|
bool fOperand;
|
|
};
|
|
|
|
class Work {
|
|
public:
|
|
enum SegmentType {
|
|
kHorizontalLine_Segment = -1,
|
|
kVerticalLine_Segment = 0,
|
|
kLine_Segment = SkPath::kLine_Verb,
|
|
kQuad_Segment = SkPath::kQuad_Verb,
|
|
kCubic_Segment = SkPath::kCubic_Verb,
|
|
};
|
|
|
|
void addCoincident(Work& other, const Intersections& ts, bool swap) {
|
|
fContour->addCoincident(fIndex, other.fContour, other.fIndex, ts, swap);
|
|
}
|
|
|
|
// FIXME: does it make sense to write otherIndex now if we're going to
|
|
// fix it up later?
|
|
void addOtherT(int index, double otherT, int otherIndex) {
|
|
fContour->addOtherT(fIndex, index, otherT, otherIndex);
|
|
}
|
|
|
|
// Avoid collapsing t values that are close to the same since
|
|
// we walk ts to describe consecutive intersections. Since a pair of ts can
|
|
// be nearly equal, any problems caused by this should be taken care
|
|
// of later.
|
|
// On the edge or out of range values are negative; add 2 to get end
|
|
int addT(double newT, const Work& other) {
|
|
return fContour->addT(fIndex, newT, other.fContour, other.fIndex);
|
|
}
|
|
|
|
int addUnsortableT(double newT, const Work& other, bool start) {
|
|
return fContour->addUnsortableT(fIndex, newT, other.fContour, other.fIndex, start);
|
|
}
|
|
|
|
bool advance() {
|
|
return ++fIndex < fLast;
|
|
}
|
|
|
|
SkScalar bottom() const {
|
|
return bounds().fBottom;
|
|
}
|
|
|
|
const Bounds& bounds() const {
|
|
return fContour->segments()[fIndex].bounds();
|
|
}
|
|
|
|
#if !APPROXIMATE_CUBICS
|
|
const SkPoint* cubic() const {
|
|
return fCubic;
|
|
}
|
|
#endif
|
|
|
|
void init(Contour* contour) {
|
|
fContour = contour;
|
|
fIndex = 0;
|
|
fLast = contour->segments().count();
|
|
}
|
|
|
|
bool isAdjacent(const Work& next) {
|
|
return fContour == next.fContour && fIndex + 1 == next.fIndex;
|
|
}
|
|
|
|
bool isFirstLast(const Work& next) {
|
|
return fContour == next.fContour && fIndex == 0
|
|
&& next.fIndex == fLast - 1;
|
|
}
|
|
|
|
SkScalar left() const {
|
|
return bounds().fLeft;
|
|
}
|
|
|
|
#if !APPROXIMATE_CUBICS
|
|
void promoteToCubic() {
|
|
fCubic[0] = pts()[0];
|
|
fCubic[2] = pts()[1];
|
|
fCubic[3] = pts()[2];
|
|
fCubic[1].fX = (fCubic[0].fX + fCubic[2].fX * 2) / 3;
|
|
fCubic[1].fY = (fCubic[0].fY + fCubic[2].fY * 2) / 3;
|
|
fCubic[2].fX = (fCubic[3].fX + fCubic[2].fX * 2) / 3;
|
|
fCubic[2].fY = (fCubic[3].fY + fCubic[2].fY * 2) / 3;
|
|
}
|
|
#endif
|
|
|
|
const SkPoint* pts() const {
|
|
return fContour->segments()[fIndex].pts();
|
|
}
|
|
|
|
SkScalar right() const {
|
|
return bounds().fRight;
|
|
}
|
|
|
|
ptrdiff_t segmentIndex() const {
|
|
return fIndex;
|
|
}
|
|
|
|
SegmentType segmentType() const {
|
|
const Segment& segment = fContour->segments()[fIndex];
|
|
SegmentType type = (SegmentType) segment.verb();
|
|
if (type != kLine_Segment) {
|
|
return type;
|
|
}
|
|
if (segment.isHorizontal()) {
|
|
return kHorizontalLine_Segment;
|
|
}
|
|
if (segment.isVertical()) {
|
|
return kVerticalLine_Segment;
|
|
}
|
|
return kLine_Segment;
|
|
}
|
|
|
|
bool startAfter(const Work& after) {
|
|
fIndex = after.fIndex;
|
|
return advance();
|
|
}
|
|
|
|
SkScalar top() const {
|
|
return bounds().fTop;
|
|
}
|
|
|
|
SkPath::Verb verb() const {
|
|
return fContour->segments()[fIndex].verb();
|
|
}
|
|
|
|
SkScalar x() const {
|
|
return bounds().fLeft;
|
|
}
|
|
|
|
bool xFlipped() const {
|
|
return x() != pts()[0].fX;
|
|
}
|
|
|
|
SkScalar y() const {
|
|
return bounds().fTop;
|
|
}
|
|
|
|
bool yFlipped() const {
|
|
return y() != pts()[0].fY;
|
|
}
|
|
|
|
protected:
|
|
Contour* fContour;
|
|
#if !APPROXIMATE_CUBICS
|
|
SkPoint fCubic[4];
|
|
#endif
|
|
int fIndex;
|
|
int fLast;
|
|
};
|
|
|
|
#if DEBUG_ADD_INTERSECTING_TS
|
|
static void debugShowLineIntersection(int pts, const Work& wt,
|
|
const Work& wn, const double wtTs[2], const double wnTs[2]) {
|
|
return;
|
|
if (!pts) {
|
|
SkDebugf("%s no intersect (%1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g %1.9g,%1.9g)\n",
|
|
__FUNCTION__, wt.pts()[0].fX, wt.pts()[0].fY,
|
|
wt.pts()[1].fX, wt.pts()[1].fY, wn.pts()[0].fX, wn.pts()[0].fY,
|
|
wn.pts()[1].fX, wn.pts()[1].fY);
|
|
return;
|
|
}
|
|
SkPoint wtOutPt, wnOutPt;
|
|
LineXYAtT(wt.pts(), wtTs[0], &wtOutPt);
|
|
LineXYAtT(wn.pts(), wnTs[0], &wnOutPt);
|
|
SkDebugf("%s wtTs[0]=%1.9g (%1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g)",
|
|
__FUNCTION__,
|
|
wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY,
|
|
wt.pts()[1].fX, wt.pts()[1].fY, wtOutPt.fX, wtOutPt.fY);
|
|
if (pts == 2) {
|
|
SkDebugf(" wtTs[1]=%1.9g", wtTs[1]);
|
|
}
|
|
SkDebugf(" wnTs[0]=%g (%1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g)",
|
|
wnTs[0], wn.pts()[0].fX, wn.pts()[0].fY,
|
|
wn.pts()[1].fX, wn.pts()[1].fY, wnOutPt.fX, wnOutPt.fY);
|
|
if (pts == 2) {
|
|
SkDebugf(" wnTs[1]=%1.9g", wnTs[1]);
|
|
}
|
|
SkDebugf("\n");
|
|
}
|
|
|
|
static void debugShowQuadLineIntersection(int pts, const Work& wt,
|
|
const Work& wn, const double wtTs[2], const double wnTs[2]) {
|
|
if (!pts) {
|
|
SkDebugf("%s no intersect (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
|
|
" (%1.9g,%1.9g %1.9g,%1.9g)\n",
|
|
__FUNCTION__, wt.pts()[0].fX, wt.pts()[0].fY,
|
|
wt.pts()[1].fX, wt.pts()[1].fY, wt.pts()[2].fX, wt.pts()[2].fY,
|
|
wn.pts()[0].fX, wn.pts()[0].fY, wn.pts()[1].fX, wn.pts()[1].fY);
|
|
return;
|
|
}
|
|
SkPoint wtOutPt, wnOutPt;
|
|
QuadXYAtT(wt.pts(), wtTs[0], &wtOutPt);
|
|
LineXYAtT(wn.pts(), wnTs[0], &wnOutPt);
|
|
SkDebugf("%s wtTs[0]=%1.9g (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g)",
|
|
__FUNCTION__,
|
|
wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY,
|
|
wt.pts()[1].fX, wt.pts()[1].fY, wt.pts()[2].fX, wt.pts()[2].fY,
|
|
wtOutPt.fX, wtOutPt.fY);
|
|
if (pts == 2) {
|
|
QuadXYAtT(wt.pts(), wtTs[1], &wtOutPt);
|
|
SkDebugf(" wtTs[1]=%1.9g (%1.9g,%1.9g)", wtTs[1], wtOutPt.fX, wtOutPt.fY);
|
|
}
|
|
SkDebugf(" wnTs[0]=%g (%1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g)",
|
|
wnTs[0], wn.pts()[0].fX, wn.pts()[0].fY,
|
|
wn.pts()[1].fX, wn.pts()[1].fY, wnOutPt.fX, wnOutPt.fY);
|
|
if (pts == 2) {
|
|
LineXYAtT(wn.pts(), wnTs[1], &wnOutPt);
|
|
SkDebugf(" wnTs[1]=%1.9g (%1.9g,%1.9g)", wnTs[1], wnOutPt.fX, wnOutPt.fY);
|
|
}
|
|
SkDebugf("\n");
|
|
}
|
|
|
|
// FIXME: show more than two intersection points
|
|
static void debugShowQuadIntersection(int pts, const Work& wt,
|
|
const Work& wn, const double wtTs[2], const double wnTs[2]) {
|
|
if (!pts) {
|
|
SkDebugf("%s no intersect (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
|
|
" (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)\n",
|
|
__FUNCTION__, wt.pts()[0].fX, wt.pts()[0].fY,
|
|
wt.pts()[1].fX, wt.pts()[1].fY, wt.pts()[2].fX, wt.pts()[2].fY,
|
|
wn.pts()[0].fX, wn.pts()[0].fY, wn.pts()[1].fX, wn.pts()[1].fY,
|
|
wn.pts()[2].fX, wn.pts()[2].fY );
|
|
return;
|
|
}
|
|
SkPoint wtOutPt, wnOutPt;
|
|
QuadXYAtT(wt.pts(), wtTs[0], &wtOutPt);
|
|
QuadXYAtT(wn.pts(), wnTs[0], &wnOutPt);
|
|
SkDebugf("%s wtTs[0]=%1.9g (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g)",
|
|
__FUNCTION__,
|
|
wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY,
|
|
wt.pts()[1].fX, wt.pts()[1].fY, wt.pts()[2].fX, wt.pts()[2].fY,
|
|
wtOutPt.fX, wtOutPt.fY);
|
|
if (pts == 2) {
|
|
SkDebugf(" wtTs[1]=%1.9g", wtTs[1]);
|
|
}
|
|
SkDebugf(" wnTs[0]=%g (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g)",
|
|
wnTs[0], wn.pts()[0].fX, wn.pts()[0].fY,
|
|
wn.pts()[1].fX, wn.pts()[1].fY, wn.pts()[2].fX, wn.pts()[2].fY,
|
|
wnOutPt.fX, wnOutPt.fY);
|
|
if (pts == 2) {
|
|
SkDebugf(" wnTs[1]=%1.9g", wnTs[1]);
|
|
}
|
|
SkDebugf("\n");
|
|
}
|
|
|
|
static void debugShowCubicLineIntersection(int pts, const Work& wt,
|
|
const Work& wn, const double wtTs[2], const double wnTs[2]) {
|
|
if (!pts) {
|
|
SkDebugf("%s no intersect (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
|
|
" (%1.9g,%1.9g %1.9g,%1.9g)\n",
|
|
__FUNCTION__, wt.pts()[0].fX, wt.pts()[0].fY, wt.pts()[1].fX, wt.pts()[1].fY,
|
|
wt.pts()[2].fX, wt.pts()[2].fY, wt.pts()[3].fX, wt.pts()[3].fY,
|
|
wn.pts()[0].fX, wn.pts()[0].fY, wn.pts()[1].fX, wn.pts()[1].fY);
|
|
return;
|
|
}
|
|
SkPoint wtOutPt, wnOutPt;
|
|
CubicXYAtT(wt.pts(), wtTs[0], &wtOutPt);
|
|
LineXYAtT(wn.pts(), wnTs[0], &wnOutPt);
|
|
SkDebugf("%s wtTs[0]=%1.9g (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g)",
|
|
__FUNCTION__,
|
|
wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY, wt.pts()[1].fX, wt.pts()[1].fY,
|
|
wt.pts()[2].fX, wt.pts()[2].fY, wt.pts()[3].fX, wt.pts()[3].fY,
|
|
wtOutPt.fX, wtOutPt.fY);
|
|
if (pts == 2) {
|
|
CubicXYAtT(wt.pts(), wtTs[1], &wtOutPt);
|
|
SkDebugf(" wtTs[1]=%1.9g (%1.9g,%1.9g)", wtTs[1], wtOutPt.fX, wtOutPt.fY);
|
|
}
|
|
SkDebugf(" wnTs[0]=%g (%1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g)",
|
|
wtTs[0], wn.pts()[0].fX, wn.pts()[0].fY, wn.pts()[1].fX, wn.pts()[1].fY,
|
|
wnOutPt.fX, wnOutPt.fY);
|
|
if (pts == 2) {
|
|
LineXYAtT(wn.pts(), wnTs[1], &wnOutPt);
|
|
SkDebugf(" wnTs[1]=%1.9g (%1.9g,%1.9g)", wnTs[1], wnOutPt.fX, wnOutPt.fY);
|
|
}
|
|
SkDebugf("\n");
|
|
}
|
|
|
|
#if APPROXIMATE_CUBICS
|
|
// FIXME: show more than two intersection points
|
|
static void debugShowCubicQuadIntersection(int pts, const Work& wt,
|
|
const Work& wn, const double wtTs[2], const double wnTs[2]) {
|
|
if (!pts) {
|
|
SkDebugf("%s no intersect (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
|
|
" (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)\n",
|
|
__FUNCTION__, wt.pts()[0].fX, wt.pts()[0].fY, wt.pts()[1].fX, wt.pts()[1].fY,
|
|
wt.pts()[2].fX, wt.pts()[2].fY, wt.pts()[3].fX, wt.pts()[3].fY,
|
|
wn.pts()[0].fX, wn.pts()[0].fY, wn.pts()[1].fX, wn.pts()[1].fY,
|
|
wn.pts()[2].fX, wn.pts()[2].fY );
|
|
return;
|
|
}
|
|
SkPoint wtOutPt, wnOutPt;
|
|
CubicXYAtT(wt.pts(), wtTs[0], &wtOutPt);
|
|
CubicXYAtT(wn.pts(), wnTs[0], &wnOutPt);
|
|
SkDebugf("%s wtTs[0]=%1.9g (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g)",
|
|
__FUNCTION__,
|
|
wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY, wt.pts()[1].fX, wt.pts()[1].fY,
|
|
wt.pts()[2].fX, wt.pts()[2].fY, wt.pts()[3].fX, wt.pts()[3].fY,
|
|
wtOutPt.fX, wtOutPt.fY);
|
|
if (pts == 2) {
|
|
SkDebugf(" wtTs[1]=%1.9g", wtTs[1]);
|
|
}
|
|
SkDebugf(" wnTs[0]=%g (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g)",
|
|
wnTs[0], wn.pts()[0].fX, wn.pts()[0].fY, wn.pts()[1].fX, wn.pts()[1].fY,
|
|
wn.pts()[2].fX, wn.pts()[2].fY,
|
|
wnOutPt.fX, wnOutPt.fY);
|
|
if (pts == 2) {
|
|
SkDebugf(" wnTs[1]=%1.9g", wnTs[1]);
|
|
}
|
|
SkDebugf("\n");
|
|
}
|
|
|
|
// FIXME: show more than two intersection points
|
|
static void debugShowCubicIntersection(int pts, const Work& wt,
|
|
const Work& wn, const double wtTs[2], const double wnTs[2]) {
|
|
if (!pts) {
|
|
SkDebugf("%s no intersect (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
|
|
" (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)\n",
|
|
__FUNCTION__, wt.pts()[0].fX, wt.pts()[0].fY, wt.pts()[1].fX, wt.pts()[1].fY,
|
|
wt.pts()[2].fX, wt.pts()[2].fY, wt.pts()[3].fX, wt.pts()[3].fY,
|
|
wn.pts()[0].fX, wn.pts()[0].fY, wn.pts()[1].fX, wn.pts()[1].fY,
|
|
wn.pts()[2].fX, wn.pts()[2].fY, wn.pts()[3].fX, wn.pts()[3].fY );
|
|
return;
|
|
}
|
|
SkPoint wtOutPt, wnOutPt;
|
|
CubicXYAtT(wt.pts(), wtTs[0], &wtOutPt);
|
|
CubicXYAtT(wn.pts(), wnTs[0], &wnOutPt);
|
|
SkDebugf("%s wtTs[0]=%1.9g (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g)",
|
|
__FUNCTION__,
|
|
wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY, wt.pts()[1].fX, wt.pts()[1].fY,
|
|
wt.pts()[2].fX, wt.pts()[2].fY, wt.pts()[3].fX, wt.pts()[3].fY,
|
|
wtOutPt.fX, wtOutPt.fY);
|
|
if (pts == 2) {
|
|
SkDebugf(" wtTs[1]=%1.9g", wtTs[1]);
|
|
}
|
|
SkDebugf(" wnTs[0]=%g (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g)",
|
|
wnTs[0], wn.pts()[0].fX, wn.pts()[0].fY, wn.pts()[1].fX, wn.pts()[1].fY,
|
|
wn.pts()[2].fX, wn.pts()[2].fY, wn.pts()[3].fX, wn.pts()[3].fY,
|
|
wnOutPt.fX, wnOutPt.fY);
|
|
if (pts == 2) {
|
|
SkDebugf(" wnTs[1]=%1.9g", wnTs[1]);
|
|
}
|
|
SkDebugf("\n");
|
|
}
|
|
#endif
|
|
#else
|
|
static void debugShowLineIntersection(int , const Work& ,
|
|
const Work& , const double [2], const double [2]) {
|
|
}
|
|
|
|
static void debugShowQuadLineIntersection(int , const Work& ,
|
|
const Work& , const double [2], const double [2]) {
|
|
}
|
|
|
|
static void debugShowQuadIntersection(int , const Work& ,
|
|
const Work& , const double [2], const double [2]) {
|
|
}
|
|
|
|
static void debugShowCubicLineIntersection(int , const Work& ,
|
|
const Work& , const double [2], const double [2]) {
|
|
}
|
|
|
|
#if APPROXIMATE_CUBICS
|
|
static void debugShowCubicQuadIntersection(int , const Work& ,
|
|
const Work& , const double [2], const double [2]) {
|
|
}
|
|
|
|
static void debugShowCubicIntersection(int , const Work& ,
|
|
const Work& , const double [2], const double [2]) {
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
static bool addIntersectTs(Contour* test, Contour* next) {
|
|
|
|
if (test != next) {
|
|
if (test->bounds().fBottom < next->bounds().fTop) {
|
|
return false;
|
|
}
|
|
if (!Bounds::Intersects(test->bounds(), next->bounds())) {
|
|
return true;
|
|
}
|
|
}
|
|
Work wt;
|
|
wt.init(test);
|
|
bool foundCommonContour = test == next;
|
|
do {
|
|
Work wn;
|
|
wn.init(next);
|
|
if (test == next && !wn.startAfter(wt)) {
|
|
continue;
|
|
}
|
|
do {
|
|
if (!Bounds::Intersects(wt.bounds(), wn.bounds())) {
|
|
continue;
|
|
}
|
|
int pts;
|
|
Intersections ts;
|
|
bool swap = false;
|
|
switch (wt.segmentType()) {
|
|
case Work::kHorizontalLine_Segment:
|
|
swap = true;
|
|
switch (wn.segmentType()) {
|
|
case Work::kHorizontalLine_Segment:
|
|
case Work::kVerticalLine_Segment:
|
|
case Work::kLine_Segment: {
|
|
pts = HLineIntersect(wn.pts(), wt.left(),
|
|
wt.right(), wt.y(), wt.xFlipped(), ts);
|
|
debugShowLineIntersection(pts, wt, wn,
|
|
ts.fT[1], ts.fT[0]);
|
|
break;
|
|
}
|
|
case Work::kQuad_Segment: {
|
|
pts = HQuadIntersect(wn.pts(), wt.left(),
|
|
wt.right(), wt.y(), wt.xFlipped(), ts);
|
|
break;
|
|
}
|
|
case Work::kCubic_Segment: {
|
|
pts = HCubicIntersect(wn.pts(), wt.left(),
|
|
wt.right(), wt.y(), wt.xFlipped(), ts);
|
|
debugShowCubicLineIntersection(pts, wn, wt, ts.fT[0], ts.fT[1]);
|
|
break;
|
|
}
|
|
default:
|
|
SkASSERT(0);
|
|
}
|
|
break;
|
|
case Work::kVerticalLine_Segment:
|
|
swap = true;
|
|
switch (wn.segmentType()) {
|
|
case Work::kHorizontalLine_Segment:
|
|
case Work::kVerticalLine_Segment:
|
|
case Work::kLine_Segment: {
|
|
pts = VLineIntersect(wn.pts(), wt.top(),
|
|
wt.bottom(), wt.x(), wt.yFlipped(), ts);
|
|
debugShowLineIntersection(pts, wt, wn,
|
|
ts.fT[1], ts.fT[0]);
|
|
break;
|
|
}
|
|
case Work::kQuad_Segment: {
|
|
pts = VQuadIntersect(wn.pts(), wt.top(),
|
|
wt.bottom(), wt.x(), wt.yFlipped(), ts);
|
|
break;
|
|
}
|
|
case Work::kCubic_Segment: {
|
|
pts = VCubicIntersect(wn.pts(), wt.top(),
|
|
wt.bottom(), wt.x(), wt.yFlipped(), ts);
|
|
debugShowCubicLineIntersection(pts, wn, wt, ts.fT[0], ts.fT[1]);
|
|
break;
|
|
}
|
|
default:
|
|
SkASSERT(0);
|
|
}
|
|
break;
|
|
case Work::kLine_Segment:
|
|
switch (wn.segmentType()) {
|
|
case Work::kHorizontalLine_Segment:
|
|
pts = HLineIntersect(wt.pts(), wn.left(),
|
|
wn.right(), wn.y(), wn.xFlipped(), ts);
|
|
debugShowLineIntersection(pts, wt, wn,
|
|
ts.fT[1], ts.fT[0]);
|
|
break;
|
|
case Work::kVerticalLine_Segment:
|
|
pts = VLineIntersect(wt.pts(), wn.top(),
|
|
wn.bottom(), wn.x(), wn.yFlipped(), ts);
|
|
debugShowLineIntersection(pts, wt, wn,
|
|
ts.fT[1], ts.fT[0]);
|
|
break;
|
|
case Work::kLine_Segment: {
|
|
pts = LineIntersect(wt.pts(), wn.pts(), ts);
|
|
debugShowLineIntersection(pts, wt, wn,
|
|
ts.fT[1], ts.fT[0]);
|
|
break;
|
|
}
|
|
case Work::kQuad_Segment: {
|
|
swap = true;
|
|
pts = QuadLineIntersect(wn.pts(), wt.pts(), ts);
|
|
debugShowQuadLineIntersection(pts, wn, wt,
|
|
ts.fT[0], ts.fT[1]);
|
|
break;
|
|
}
|
|
case Work::kCubic_Segment: {
|
|
swap = true;
|
|
pts = CubicLineIntersect(wn.pts(), wt.pts(), ts);
|
|
debugShowCubicLineIntersection(pts, wn, wt, ts.fT[0], ts.fT[1]);
|
|
break;
|
|
}
|
|
default:
|
|
SkASSERT(0);
|
|
}
|
|
break;
|
|
case Work::kQuad_Segment:
|
|
switch (wn.segmentType()) {
|
|
case Work::kHorizontalLine_Segment:
|
|
pts = HQuadIntersect(wt.pts(), wn.left(),
|
|
wn.right(), wn.y(), wn.xFlipped(), ts);
|
|
break;
|
|
case Work::kVerticalLine_Segment:
|
|
pts = VQuadIntersect(wt.pts(), wn.top(),
|
|
wn.bottom(), wn.x(), wn.yFlipped(), ts);
|
|
break;
|
|
case Work::kLine_Segment: {
|
|
pts = QuadLineIntersect(wt.pts(), wn.pts(), ts);
|
|
debugShowQuadLineIntersection(pts, wt, wn,
|
|
ts.fT[0], ts.fT[1]);
|
|
break;
|
|
}
|
|
case Work::kQuad_Segment: {
|
|
pts = QuadIntersect(wt.pts(), wn.pts(), ts);
|
|
debugShowQuadIntersection(pts, wt, wn,
|
|
ts.fT[0], ts.fT[1]);
|
|
break;
|
|
}
|
|
case Work::kCubic_Segment: {
|
|
#if APPROXIMATE_CUBICS
|
|
swap = true;
|
|
pts = CubicQuadIntersect(wn.pts(), wt.pts(), ts);
|
|
debugShowCubicQuadIntersection(pts, wn, wt, ts.fT[0], ts.fT[1]);
|
|
#else
|
|
wt.promoteToCubic();
|
|
pts = CubicIntersect(wt.cubic(), wn.pts(), ts);
|
|
#endif
|
|
break;
|
|
}
|
|
default:
|
|
SkASSERT(0);
|
|
}
|
|
break;
|
|
case Work::kCubic_Segment:
|
|
switch (wn.segmentType()) {
|
|
case Work::kHorizontalLine_Segment:
|
|
pts = HCubicIntersect(wt.pts(), wn.left(),
|
|
wn.right(), wn.y(), wn.xFlipped(), ts);
|
|
break;
|
|
case Work::kVerticalLine_Segment:
|
|
pts = VCubicIntersect(wt.pts(), wn.top(),
|
|
wn.bottom(), wn.x(), wn.yFlipped(), ts);
|
|
debugShowCubicLineIntersection(pts, wt, wn, ts.fT[0], ts.fT[1]);
|
|
break;
|
|
case Work::kLine_Segment: {
|
|
pts = CubicLineIntersect(wt.pts(), wn.pts(), ts);
|
|
debugShowCubicLineIntersection(pts, wt, wn, ts.fT[0], ts.fT[1]);
|
|
break;
|
|
}
|
|
case Work::kQuad_Segment: {
|
|
#if APPROXIMATE_CUBICS
|
|
pts = CubicQuadIntersect(wt.pts(), wn.pts(), ts);
|
|
debugShowCubicQuadIntersection(pts, wt, wn, ts.fT[0], ts.fT[1]);
|
|
#else
|
|
wn.promoteToCubic();
|
|
pts = CubicIntersect(wt.pts(), wn.cubic(), ts);
|
|
#endif
|
|
break;
|
|
}
|
|
case Work::kCubic_Segment: {
|
|
#if APPROXIMATE_CUBICS
|
|
pts = CubicIntersect(wt.pts(), wn.pts(), ts);
|
|
debugShowCubicIntersection(pts, wt, wn, ts.fT[0], ts.fT[1]);
|
|
#else
|
|
pts = CubicIntersect(wt.pts(), wn.pts(), ts);
|
|
#endif
|
|
break;
|
|
}
|
|
default:
|
|
SkASSERT(0);
|
|
}
|
|
break;
|
|
default:
|
|
SkASSERT(0);
|
|
}
|
|
if (!foundCommonContour && pts > 0) {
|
|
test->addCross(next);
|
|
next->addCross(test);
|
|
foundCommonContour = true;
|
|
}
|
|
// in addition to recording T values, record matching segment
|
|
if (ts.unsortable()) {
|
|
bool start = true;
|
|
for (int pt = 0; pt < ts.used(); ++pt) {
|
|
// FIXME: if unsortable, the other points to the original. This logic is
|
|
// untested downstream.
|
|
int testTAt = wt.addUnsortableT(ts.fT[swap][pt], wt, start);
|
|
wt.addOtherT(testTAt, ts.fT[swap][pt], testTAt);
|
|
testTAt = wn.addUnsortableT(ts.fT[!swap][pt], wn, start ^ ts.fFlip);
|
|
wn.addOtherT(testTAt, ts.fT[!swap][pt], testTAt);
|
|
start ^= true;
|
|
}
|
|
continue;
|
|
}
|
|
if (pts == 2) {
|
|
if (wn.segmentType() <= Work::kLine_Segment
|
|
&& wt.segmentType() <= Work::kLine_Segment) {
|
|
wt.addCoincident(wn, ts, swap);
|
|
continue;
|
|
}
|
|
if (wn.segmentType() == Work::kQuad_Segment
|
|
&& wt.segmentType() == Work::kQuad_Segment
|
|
&& ts.coincidentUsed() == 2) {
|
|
wt.addCoincident(wn, ts, swap);
|
|
continue;
|
|
}
|
|
|
|
}
|
|
for (int pt = 0; pt < pts; ++pt) {
|
|
SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1);
|
|
SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1);
|
|
int testTAt = wt.addT(ts.fT[swap][pt], wn);
|
|
int nextTAt = wn.addT(ts.fT[!swap][pt], wt);
|
|
wt.addOtherT(testTAt, ts.fT[!swap][pt ^ ts.fFlip], nextTAt);
|
|
wn.addOtherT(nextTAt, ts.fT[swap][pt ^ ts.fFlip], testTAt);
|
|
}
|
|
} while (wn.advance());
|
|
} while (wt.advance());
|
|
return true;
|
|
}
|
|
|
|
// resolve any coincident pairs found while intersecting, and
|
|
// see if coincidence is formed by clipping non-concident segments
|
|
static void coincidenceCheck(SkTDArray<Contour*>& contourList, int total) {
|
|
int contourCount = contourList.count();
|
|
#if ONE_PASS_COINCIDENCE_CHECK
|
|
for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
|
|
Contour* contour = contourList[cIndex];
|
|
contour->resolveCoincidence(contourList);
|
|
}
|
|
#else
|
|
for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
|
|
Contour* contour = contourList[cIndex];
|
|
contour->addCoincidentPoints();
|
|
}
|
|
for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
|
|
Contour* contour = contourList[cIndex];
|
|
contour->calcCoincidentWinding();
|
|
}
|
|
#endif
|
|
for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
|
|
Contour* contour = contourList[cIndex];
|
|
contour->findTooCloseToCall();
|
|
}
|
|
}
|
|
|
|
static int contourRangeCheckY(SkTDArray<Contour*>& contourList, Segment*& current, int& index,
|
|
int& endIndex, double& bestHit, SkScalar& bestDx, bool& tryAgain, double& mid, bool opp) {
|
|
SkPoint basePt;
|
|
double tAtMid = current->tAtMid(index, endIndex, mid);
|
|
current->xyAtT(tAtMid, basePt);
|
|
int contourCount = contourList.count();
|
|
SkScalar bestY = SK_ScalarMin;
|
|
Segment* bestSeg = NULL;
|
|
int bestTIndex;
|
|
bool bestOpp;
|
|
bool hitSomething = false;
|
|
for (int cTest = 0; cTest < contourCount; ++cTest) {
|
|
Contour* contour = contourList[cTest];
|
|
bool testOpp = contour->operand() ^ current->operand() ^ opp;
|
|
if (basePt.fY < contour->bounds().fTop) {
|
|
continue;
|
|
}
|
|
if (bestY > contour->bounds().fBottom) {
|
|
continue;
|
|
}
|
|
int segmentCount = contour->segments().count();
|
|
for (int test = 0; test < segmentCount; ++test) {
|
|
Segment* testSeg = &contour->segments()[test];
|
|
SkScalar testY = bestY;
|
|
double testHit;
|
|
int testTIndex = testSeg->crossedSpanY(basePt, testY, testHit, hitSomething, tAtMid,
|
|
testOpp, testSeg == current);
|
|
if (testTIndex < 0) {
|
|
if (testTIndex == SK_MinS32) {
|
|
hitSomething = true;
|
|
bestSeg = NULL;
|
|
goto abortContours; // vertical encountered, return and try different point
|
|
}
|
|
continue;
|
|
}
|
|
if (testSeg == current && current->betweenTs(index, testHit, endIndex)) {
|
|
double baseT = current->t(index);
|
|
double endT = current->t(endIndex);
|
|
double newMid = (testHit - baseT) / (endT - baseT);
|
|
#if DEBUG_WINDING
|
|
SkPoint midXY, newXY;
|
|
double midT = current->tAtMid(index, endIndex, mid);
|
|
current->xyAtT(midT, midXY);
|
|
double newMidT = current->tAtMid(index, endIndex, newMid);
|
|
current->xyAtT(newMidT, newXY);
|
|
SkDebugf("%s [%d] mid=%1.9g->%1.9g s=%1.9g (%1.9g,%1.9g) m=%1.9g (%1.9g,%1.9g)"
|
|
" n=%1.9g (%1.9g,%1.9g) e=%1.9g (%1.9g,%1.9g)\n", __FUNCTION__,
|
|
current->debugID(), mid, newMid,
|
|
baseT, current->xAtT(index), current->yAtT(index),
|
|
baseT + mid * (endT - baseT), midXY.fX, midXY.fY,
|
|
baseT + newMid * (endT - baseT), newXY.fX, newXY.fY,
|
|
endT, current->xAtT(endIndex), current->yAtT(endIndex));
|
|
#endif
|
|
mid = newMid * 2; // calling loop with divide by 2 before continuing
|
|
return SK_MinS32;
|
|
}
|
|
bestSeg = testSeg;
|
|
bestHit = testHit;
|
|
bestOpp = testOpp;
|
|
bestTIndex = testTIndex;
|
|
bestY = testY;
|
|
}
|
|
}
|
|
abortContours:
|
|
int result;
|
|
if (!bestSeg) {
|
|
result = hitSomething ? SK_MinS32 : 0;
|
|
} else {
|
|
if (bestSeg->windSum(bestTIndex) == SK_MinS32) {
|
|
current = bestSeg;
|
|
index = bestTIndex;
|
|
endIndex = bestSeg->nextSpan(bestTIndex, 1);
|
|
SkASSERT(index != endIndex && index >= 0 && endIndex >= 0);
|
|
tryAgain = true;
|
|
return 0;
|
|
}
|
|
result = bestSeg->windingAtT(bestHit, bestTIndex, bestOpp, bestDx);
|
|
SkASSERT(bestDx);
|
|
}
|
|
double baseT = current->t(index);
|
|
double endT = current->t(endIndex);
|
|
bestHit = baseT + mid * (endT - baseT);
|
|
return result;
|
|
}
|
|
|
|
static Segment* findUndone(SkTDArray<Contour*>& contourList, int& start, int& end) {
|
|
int contourCount = contourList.count();
|
|
Segment* result;
|
|
for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
|
|
Contour* contour = contourList[cIndex];
|
|
result = contour->undoneSegment(start, end);
|
|
if (result) {
|
|
return result;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#define OLD_FIND_CHASE 1
|
|
|
|
static Segment* findChase(SkTDArray<Span*>& chase, int& tIndex, int& endIndex) {
|
|
while (chase.count()) {
|
|
Span* span;
|
|
chase.pop(&span);
|
|
const Span& backPtr = span->fOther->span(span->fOtherIndex);
|
|
Segment* segment = backPtr.fOther;
|
|
tIndex = backPtr.fOtherIndex;
|
|
SkTDArray<Angle> angles;
|
|
int done = 0;
|
|
if (segment->activeAngle(tIndex, done, angles)) {
|
|
Angle* last = angles.end() - 1;
|
|
tIndex = last->start();
|
|
endIndex = last->end();
|
|
#if TRY_ROTATE
|
|
*chase.insert(0) = span;
|
|
#else
|
|
*chase.append() = span;
|
|
#endif
|
|
return last->segment();
|
|
}
|
|
if (done == angles.count()) {
|
|
continue;
|
|
}
|
|
SkTDArray<Angle*> sorted;
|
|
bool sortable = Segment::SortAngles(angles, sorted);
|
|
int angleCount = sorted.count();
|
|
#if DEBUG_SORT
|
|
sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0);
|
|
#endif
|
|
if (!sortable) {
|
|
continue;
|
|
}
|
|
// find first angle, initialize winding to computed fWindSum
|
|
int firstIndex = -1;
|
|
const Angle* angle;
|
|
#if OLD_FIND_CHASE
|
|
int winding;
|
|
do {
|
|
angle = sorted[++firstIndex];
|
|
segment = angle->segment();
|
|
winding = segment->windSum(angle);
|
|
} while (winding == SK_MinS32);
|
|
int spanWinding = segment->spanSign(angle->start(), angle->end());
|
|
#if DEBUG_WINDING
|
|
SkDebugf("%s winding=%d spanWinding=%d\n",
|
|
__FUNCTION__, winding, spanWinding);
|
|
#endif
|
|
// turn span winding into contour winding
|
|
if (spanWinding * winding < 0) {
|
|
winding += spanWinding;
|
|
}
|
|
#if DEBUG_SORT
|
|
segment->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, 0);
|
|
#endif
|
|
// we care about first sign and whether wind sum indicates this
|
|
// edge is inside or outside. Maybe need to pass span winding
|
|
// or first winding or something into this function?
|
|
// advance to first undone angle, then return it and winding
|
|
// (to set whether edges are active or not)
|
|
int nextIndex = firstIndex + 1;
|
|
int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
|
|
angle = sorted[firstIndex];
|
|
winding -= angle->segment()->spanSign(angle);
|
|
#else
|
|
do {
|
|
angle = sorted[++firstIndex];
|
|
segment = angle->segment();
|
|
} while (segment->windSum(angle) == SK_MinS32);
|
|
#if DEBUG_SORT
|
|
segment->debugShowSort(__FUNCTION__, sorted, firstIndex);
|
|
#endif
|
|
int sumWinding = segment->updateWindingReverse(angle);
|
|
int nextIndex = firstIndex + 1;
|
|
int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
|
|
Segment* first = NULL;
|
|
#endif
|
|
do {
|
|
SkASSERT(nextIndex != firstIndex);
|
|
if (nextIndex == angleCount) {
|
|
nextIndex = 0;
|
|
}
|
|
angle = sorted[nextIndex];
|
|
segment = angle->segment();
|
|
#if OLD_FIND_CHASE
|
|
int maxWinding = winding;
|
|
winding -= segment->spanSign(angle);
|
|
#if DEBUG_SORT
|
|
SkDebugf("%s id=%d maxWinding=%d winding=%d sign=%d\n", __FUNCTION__,
|
|
segment->debugID(), maxWinding, winding, angle->sign());
|
|
#endif
|
|
tIndex = angle->start();
|
|
endIndex = angle->end();
|
|
int lesser = SkMin32(tIndex, endIndex);
|
|
const Span& nextSpan = segment->span(lesser);
|
|
if (!nextSpan.fDone) {
|
|
#if 1
|
|
// FIXME: this be wrong? assign startWinding if edge is in
|
|
// same direction. If the direction is opposite, winding to
|
|
// assign is flipped sign or +/- 1?
|
|
if (useInnerWinding(maxWinding, winding)) {
|
|
maxWinding = winding;
|
|
}
|
|
segment->markAndChaseWinding(angle, maxWinding, 0);
|
|
#endif
|
|
break;
|
|
}
|
|
#else
|
|
int start = angle->start();
|
|
int end = angle->end();
|
|
int maxWinding;
|
|
segment->setUpWinding(start, end, maxWinding, sumWinding);
|
|
if (!segment->done(angle)) {
|
|
if (!first) {
|
|
first = segment;
|
|
tIndex = start;
|
|
endIndex = end;
|
|
}
|
|
(void) segment->markAngle(maxWinding, sumWinding, true, angle);
|
|
}
|
|
#endif
|
|
} while (++nextIndex != lastIndex);
|
|
#if TRY_ROTATE
|
|
*chase.insert(0) = span;
|
|
#else
|
|
*chase.append() = span;
|
|
#endif
|
|
return segment;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#if DEBUG_ACTIVE_SPANS
|
|
static void debugShowActiveSpans(SkTDArray<Contour*>& contourList) {
|
|
int index;
|
|
for (index = 0; index < contourList.count(); ++ index) {
|
|
contourList[index]->debugShowActiveSpans();
|
|
}
|
|
for (index = 0; index < contourList.count(); ++ index) {
|
|
contourList[index]->validateActiveSpans();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static Segment* findSortableTop(SkTDArray<Contour*>& contourList, int& index,
|
|
int& endIndex, SkPoint& topLeft, bool& unsortable, bool& done, bool onlySortable) {
|
|
Segment* result;
|
|
do {
|
|
SkPoint bestXY = {SK_ScalarMax, SK_ScalarMax};
|
|
int contourCount = contourList.count();
|
|
Segment* topStart = NULL;
|
|
done = true;
|
|
for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
|
|
Contour* contour = contourList[cIndex];
|
|
if (contour->done()) {
|
|
continue;
|
|
}
|
|
const Bounds& bounds = contour->bounds();
|
|
if (bounds.fBottom < topLeft.fY) {
|
|
done = false;
|
|
continue;
|
|
}
|
|
if (bounds.fBottom == topLeft.fY && bounds.fRight < topLeft.fX) {
|
|
done = false;
|
|
continue;
|
|
}
|
|
contour->topSortableSegment(topLeft, bestXY, topStart);
|
|
if (!contour->done()) {
|
|
done = false;
|
|
}
|
|
}
|
|
if (!topStart) {
|
|
return NULL;
|
|
}
|
|
topLeft = bestXY;
|
|
result = topStart->findTop(index, endIndex, unsortable, onlySortable);
|
|
} while (!result);
|
|
return result;
|
|
}
|
|
|
|
static int rightAngleWinding(SkTDArray<Contour*>& contourList,
|
|
Segment*& current, int& index, int& endIndex, double& tHit, SkScalar& hitDx, bool& tryAgain,
|
|
bool opp) {
|
|
double test = 0.9;
|
|
int contourWinding;
|
|
do {
|
|
contourWinding = contourRangeCheckY(contourList, current, index, endIndex, tHit, hitDx,
|
|
tryAgain, test, opp);
|
|
if (contourWinding != SK_MinS32 || tryAgain) {
|
|
return contourWinding;
|
|
}
|
|
test /= 2;
|
|
} while (!approximately_negative(test));
|
|
SkASSERT(0); // should be OK to comment out, but interested when this hits
|
|
return contourWinding;
|
|
}
|
|
|
|
static void skipVertical(SkTDArray<Contour*>& contourList,
|
|
Segment*& current, int& index, int& endIndex) {
|
|
if (!current->isVertical(index, endIndex)) {
|
|
return;
|
|
}
|
|
int contourCount = contourList.count();
|
|
for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
|
|
Contour* contour = contourList[cIndex];
|
|
if (contour->done()) {
|
|
continue;
|
|
}
|
|
current = contour->nonVerticalSegment(index, endIndex);
|
|
if (current) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static Segment* findSortableTop(SkTDArray<Contour*>& contourList, bool& firstContour, int& index,
|
|
int& endIndex, SkPoint& topLeft, bool& unsortable, bool& done, bool binary) {
|
|
Segment* current = findSortableTop(contourList, index, endIndex, topLeft, unsortable, done,
|
|
true);
|
|
if (!current) {
|
|
return NULL;
|
|
}
|
|
if (firstContour) {
|
|
current->initWinding(index, endIndex);
|
|
firstContour = false;
|
|
return current;
|
|
}
|
|
int minIndex = SkMin32(index, endIndex);
|
|
int sumWinding = current->windSum(minIndex);
|
|
if (sumWinding != SK_MinS32) {
|
|
return current;
|
|
}
|
|
sumWinding = current->computeSum(index, endIndex, binary);
|
|
if (sumWinding != SK_MinS32) {
|
|
return current;
|
|
}
|
|
int contourWinding;
|
|
int oppContourWinding = 0;
|
|
// the simple upward projection of the unresolved points hit unsortable angles
|
|
// shoot rays at right angles to the segment to find its winding, ignoring angle cases
|
|
bool tryAgain;
|
|
double tHit;
|
|
SkScalar hitDx = 0;
|
|
SkScalar hitOppDx = 0;
|
|
do {
|
|
// if current is vertical, find another candidate which is not
|
|
// if only remaining candidates are vertical, then they can be marked done
|
|
SkASSERT(index != endIndex && index >= 0 && endIndex >= 0);
|
|
skipVertical(contourList, current, index, endIndex);
|
|
SkASSERT(index != endIndex && index >= 0 && endIndex >= 0);
|
|
tryAgain = false;
|
|
contourWinding = rightAngleWinding(contourList, current, index, endIndex, tHit, hitDx,
|
|
tryAgain, false);
|
|
if (tryAgain) {
|
|
continue;
|
|
}
|
|
if (!binary) {
|
|
break;
|
|
}
|
|
oppContourWinding = rightAngleWinding(contourList, current, index, endIndex, tHit, hitOppDx,
|
|
tryAgain, true);
|
|
} while (tryAgain);
|
|
|
|
current->initWinding(index, endIndex, tHit, contourWinding, hitDx, oppContourWinding, hitOppDx);
|
|
return current;
|
|
}
|
|
|
|
// rewrite that abandons keeping local track of winding
|
|
static bool bridgeWinding(SkTDArray<Contour*>& contourList, PathWrapper& simple) {
|
|
bool firstContour = true;
|
|
bool unsortable = false;
|
|
bool topUnsortable = false;
|
|
SkPoint topLeft = {SK_ScalarMin, SK_ScalarMin};
|
|
do {
|
|
int index, endIndex;
|
|
bool topDone;
|
|
Segment* current = findSortableTop(contourList, firstContour, index, endIndex, topLeft,
|
|
topUnsortable, topDone, false);
|
|
if (!current) {
|
|
if (topUnsortable || !topDone) {
|
|
topUnsortable = false;
|
|
SkASSERT(topLeft.fX != SK_ScalarMin && topLeft.fY != SK_ScalarMin);
|
|
topLeft.fX = topLeft.fY = SK_ScalarMin;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
SkTDArray<Span*> chaseArray;
|
|
do {
|
|
if (current->activeWinding(index, endIndex)) {
|
|
do {
|
|
#if DEBUG_ACTIVE_SPANS
|
|
if (!unsortable && current->done()) {
|
|
debugShowActiveSpans(contourList);
|
|
}
|
|
#endif
|
|
SkASSERT(unsortable || !current->done());
|
|
int nextStart = index;
|
|
int nextEnd = endIndex;
|
|
Segment* next = current->findNextWinding(chaseArray, nextStart, nextEnd,
|
|
unsortable);
|
|
if (!next) {
|
|
if (!unsortable && simple.hasMove()
|
|
&& current->verb() != SkPath::kLine_Verb
|
|
&& !simple.isClosed()) {
|
|
current->addCurveTo(index, endIndex, simple, true);
|
|
SkASSERT(simple.isClosed());
|
|
}
|
|
break;
|
|
}
|
|
#if DEBUG_FLOW
|
|
SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__,
|
|
current->debugID(), current->xyAtT(index).fX, current->xyAtT(index).fY,
|
|
current->xyAtT(endIndex).fX, current->xyAtT(endIndex).fY);
|
|
#endif
|
|
current->addCurveTo(index, endIndex, simple, true);
|
|
current = next;
|
|
index = nextStart;
|
|
endIndex = nextEnd;
|
|
} while (!simple.isClosed() && (!unsortable
|
|
|| !current->done(SkMin32(index, endIndex))));
|
|
if (current->activeWinding(index, endIndex) && !simple.isClosed()) {
|
|
SkASSERT(unsortable);
|
|
int min = SkMin32(index, endIndex);
|
|
if (!current->done(min)) {
|
|
current->addCurveTo(index, endIndex, simple, true);
|
|
current->markDoneUnary(min);
|
|
}
|
|
}
|
|
simple.close();
|
|
} else {
|
|
Span* last = current->markAndChaseDoneUnary(index, endIndex);
|
|
if (last) {
|
|
*chaseArray.append() = last;
|
|
}
|
|
}
|
|
current = findChase(chaseArray, index, endIndex);
|
|
#if DEBUG_ACTIVE_SPANS
|
|
debugShowActiveSpans(contourList);
|
|
#endif
|
|
if (!current) {
|
|
break;
|
|
}
|
|
} while (true);
|
|
} while (true);
|
|
return simple.someAssemblyRequired();
|
|
}
|
|
|
|
// returns true if all edges were processed
|
|
static bool bridgeXor(SkTDArray<Contour*>& contourList, PathWrapper& simple) {
|
|
Segment* current;
|
|
int start, end;
|
|
bool unsortable = false;
|
|
bool closable = true;
|
|
while ((current = findUndone(contourList, start, end))) {
|
|
do {
|
|
#if DEBUG_ACTIVE_SPANS
|
|
if (!unsortable && current->done()) {
|
|
debugShowActiveSpans(contourList);
|
|
}
|
|
#endif
|
|
SkASSERT(unsortable || !current->done());
|
|
int nextStart = start;
|
|
int nextEnd = end;
|
|
Segment* next = current->findNextXor(nextStart, nextEnd, unsortable);
|
|
if (!next) {
|
|
if (!unsortable && simple.hasMove()
|
|
&& current->verb() != SkPath::kLine_Verb
|
|
&& !simple.isClosed()) {
|
|
current->addCurveTo(start, end, simple, true);
|
|
SkASSERT(simple.isClosed());
|
|
}
|
|
break;
|
|
}
|
|
#if DEBUG_FLOW
|
|
SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__,
|
|
current->debugID(), current->xyAtT(start).fX, current->xyAtT(start).fY,
|
|
current->xyAtT(end).fX, current->xyAtT(end).fY);
|
|
#endif
|
|
current->addCurveTo(start, end, simple, true);
|
|
current = next;
|
|
start = nextStart;
|
|
end = nextEnd;
|
|
} while (!simple.isClosed() && (!unsortable || !current->done(SkMin32(start, end))));
|
|
if (!simple.isClosed()) {
|
|
SkASSERT(unsortable);
|
|
int min = SkMin32(start, end);
|
|
if (!current->done(min)) {
|
|
current->addCurveTo(start, end, simple, true);
|
|
current->markDone(min, 1);
|
|
}
|
|
closable = false;
|
|
}
|
|
simple.close();
|
|
#if DEBUG_ACTIVE_SPANS
|
|
debugShowActiveSpans(contourList);
|
|
#endif
|
|
}
|
|
return closable;
|
|
}
|
|
|
|
static void fixOtherTIndex(SkTDArray<Contour*>& contourList) {
|
|
int contourCount = contourList.count();
|
|
for (int cTest = 0; cTest < contourCount; ++cTest) {
|
|
Contour* contour = contourList[cTest];
|
|
contour->fixOtherTIndex();
|
|
}
|
|
}
|
|
|
|
static void sortSegments(SkTDArray<Contour*>& contourList) {
|
|
int contourCount = contourList.count();
|
|
for (int cTest = 0; cTest < contourCount; ++cTest) {
|
|
Contour* contour = contourList[cTest];
|
|
contour->sortSegments();
|
|
}
|
|
}
|
|
|
|
static void makeContourList(SkTArray<Contour>& contours, SkTDArray<Contour*>& list,
|
|
bool evenOdd, bool oppEvenOdd) {
|
|
int count = contours.count();
|
|
if (count == 0) {
|
|
return;
|
|
}
|
|
for (int index = 0; index < count; ++index) {
|
|
Contour& contour = contours[index];
|
|
contour.setOppXor(contour.operand() ? evenOdd : oppEvenOdd);
|
|
*list.append() = &contour;
|
|
}
|
|
QSort<Contour>(list.begin(), list.end() - 1);
|
|
}
|
|
|
|
static bool approximatelyEqual(const SkPoint& a, const SkPoint& b) {
|
|
return AlmostEqualUlps(a.fX, b.fX) && AlmostEqualUlps(a.fY, b.fY);
|
|
}
|
|
|
|
static bool lessThan(SkTDArray<double>& distances, const int one, const int two) {
|
|
return distances[one] < distances[two];
|
|
}
|
|
/*
|
|
check start and end of each contour
|
|
if not the same, record them
|
|
match them up
|
|
connect closest
|
|
reassemble contour pieces into new path
|
|
*/
|
|
static void assemble(const PathWrapper& path, PathWrapper& simple) {
|
|
#if DEBUG_PATH_CONSTRUCTION
|
|
SkDebugf("%s\n", __FUNCTION__);
|
|
#endif
|
|
SkTArray<Contour> contours;
|
|
EdgeBuilder builder(path, contours);
|
|
builder.finish();
|
|
int count = contours.count();
|
|
int outer;
|
|
SkTDArray<int> runs; // indices of partial contours
|
|
for (outer = 0; outer < count; ++outer) {
|
|
const Contour& eContour = contours[outer];
|
|
const SkPoint& eStart = eContour.start();
|
|
const SkPoint& eEnd = eContour.end();
|
|
#if DEBUG_ASSEMBLE
|
|
SkDebugf("%s contour", __FUNCTION__);
|
|
if (!approximatelyEqual(eStart, eEnd)) {
|
|
SkDebugf("[%d]", runs.count());
|
|
} else {
|
|
SkDebugf(" ");
|
|
}
|
|
SkDebugf(" start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n",
|
|
eStart.fX, eStart.fY, eEnd.fX, eEnd.fY);
|
|
#endif
|
|
if (approximatelyEqual(eStart, eEnd)) {
|
|
eContour.toPath(simple);
|
|
continue;
|
|
}
|
|
*runs.append() = outer;
|
|
}
|
|
count = runs.count();
|
|
if (count == 0) {
|
|
return;
|
|
}
|
|
SkTDArray<int> sLink, eLink;
|
|
sLink.setCount(count);
|
|
eLink.setCount(count);
|
|
int rIndex, iIndex;
|
|
for (rIndex = 0; rIndex < count; ++rIndex) {
|
|
sLink[rIndex] = eLink[rIndex] = INT_MAX;
|
|
}
|
|
SkTDArray<double> distances;
|
|
const int ends = count * 2; // all starts and ends
|
|
const int entries = (ends - 1) * count; // folded triangle : n * (n - 1) / 2
|
|
distances.setCount(entries);
|
|
for (rIndex = 0; rIndex < ends - 1; ++rIndex) {
|
|
outer = runs[rIndex >> 1];
|
|
const Contour& oContour = contours[outer];
|
|
const SkPoint& oPt = rIndex & 1 ? oContour.end() : oContour.start();
|
|
const int row = rIndex < count - 1 ? rIndex * ends : (ends - rIndex - 2)
|
|
* ends - rIndex - 1;
|
|
for (iIndex = rIndex + 1; iIndex < ends; ++iIndex) {
|
|
int inner = runs[iIndex >> 1];
|
|
const Contour& iContour = contours[inner];
|
|
const SkPoint& iPt = iIndex & 1 ? iContour.end() : iContour.start();
|
|
double dx = iPt.fX - oPt.fX;
|
|
double dy = iPt.fY - oPt.fY;
|
|
double dist = dx * dx + dy * dy;
|
|
distances[row + iIndex] = dist; // oStart distance from iStart
|
|
}
|
|
}
|
|
SkTDArray<int> sortedDist;
|
|
sortedDist.setCount(entries);
|
|
for (rIndex = 0; rIndex < entries; ++rIndex) {
|
|
sortedDist[rIndex] = rIndex;
|
|
}
|
|
QSort<SkTDArray<double>, int>(distances, sortedDist.begin(), sortedDist.end() - 1, lessThan);
|
|
int remaining = count; // number of start/end pairs
|
|
for (rIndex = 0; rIndex < entries; ++rIndex) {
|
|
int pair = sortedDist[rIndex];
|
|
int row = pair / ends;
|
|
int col = pair - row * ends;
|
|
int thingOne = row < col ? row : ends - row - 2;
|
|
int ndxOne = thingOne >> 1;
|
|
bool endOne = thingOne & 1;
|
|
int* linkOne = endOne ? eLink.begin() : sLink.begin();
|
|
if (linkOne[ndxOne] != INT_MAX) {
|
|
continue;
|
|
}
|
|
int thingTwo = row < col ? col : ends - row + col - 1;
|
|
int ndxTwo = thingTwo >> 1;
|
|
bool endTwo = thingTwo & 1;
|
|
int* linkTwo = endTwo ? eLink.begin() : sLink.begin();
|
|
if (linkTwo[ndxTwo] != INT_MAX) {
|
|
continue;
|
|
}
|
|
SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]);
|
|
bool flip = endOne == endTwo;
|
|
linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo;
|
|
linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne;
|
|
if (!--remaining) {
|
|
break;
|
|
}
|
|
}
|
|
SkASSERT(!remaining);
|
|
#if DEBUG_ASSEMBLE
|
|
for (rIndex = 0; rIndex < count; ++rIndex) {
|
|
int s = sLink[rIndex];
|
|
int e = eLink[rIndex];
|
|
SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e',
|
|
s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e);
|
|
}
|
|
#endif
|
|
rIndex = 0;
|
|
do {
|
|
bool forward = true;
|
|
bool first = true;
|
|
int sIndex = sLink[rIndex];
|
|
SkASSERT(sIndex != INT_MAX);
|
|
sLink[rIndex] = INT_MAX;
|
|
int eIndex;
|
|
if (sIndex < 0) {
|
|
eIndex = sLink[~sIndex];
|
|
sLink[~sIndex] = INT_MAX;
|
|
} else {
|
|
eIndex = eLink[sIndex];
|
|
eLink[sIndex] = INT_MAX;
|
|
}
|
|
SkASSERT(eIndex != INT_MAX);
|
|
#if DEBUG_ASSEMBLE
|
|
SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e',
|
|
sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e',
|
|
eIndex < 0 ? ~eIndex : eIndex);
|
|
#endif
|
|
do {
|
|
outer = runs[rIndex];
|
|
const Contour& contour = contours[outer];
|
|
if (first) {
|
|
first = false;
|
|
const SkPoint* startPtr = &contour.start();
|
|
simple.deferredMove(startPtr[0]);
|
|
}
|
|
if (forward) {
|
|
contour.toPartialForward(simple);
|
|
} else {
|
|
contour.toPartialBackward(simple);
|
|
}
|
|
#if DEBUG_ASSEMBLE
|
|
SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex,
|
|
eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex,
|
|
sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex));
|
|
#endif
|
|
if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) {
|
|
simple.close();
|
|
break;
|
|
}
|
|
if (forward) {
|
|
eIndex = eLink[rIndex];
|
|
SkASSERT(eIndex != INT_MAX);
|
|
eLink[rIndex] = INT_MAX;
|
|
if (eIndex >= 0) {
|
|
SkASSERT(sLink[eIndex] == rIndex);
|
|
sLink[eIndex] = INT_MAX;
|
|
} else {
|
|
SkASSERT(eLink[~eIndex] == ~rIndex);
|
|
eLink[~eIndex] = INT_MAX;
|
|
}
|
|
} else {
|
|
eIndex = sLink[rIndex];
|
|
SkASSERT(eIndex != INT_MAX);
|
|
sLink[rIndex] = INT_MAX;
|
|
if (eIndex >= 0) {
|
|
SkASSERT(eLink[eIndex] == rIndex);
|
|
eLink[eIndex] = INT_MAX;
|
|
} else {
|
|
SkASSERT(sLink[~eIndex] == ~rIndex);
|
|
sLink[~eIndex] = INT_MAX;
|
|
}
|
|
}
|
|
rIndex = eIndex;
|
|
if (rIndex < 0) {
|
|
forward ^= 1;
|
|
rIndex = ~rIndex;
|
|
}
|
|
} while (true);
|
|
for (rIndex = 0; rIndex < count; ++rIndex) {
|
|
if (sLink[rIndex] != INT_MAX) {
|
|
break;
|
|
}
|
|
}
|
|
} while (rIndex < count);
|
|
#if DEBUG_ASSEMBLE
|
|
for (rIndex = 0; rIndex < count; ++rIndex) {
|
|
SkASSERT(sLink[rIndex] == INT_MAX);
|
|
SkASSERT(eLink[rIndex] == INT_MAX);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void simplifyx(const SkPath& path, SkPath& result) {
|
|
// returns 1 for evenodd, -1 for winding, regardless of inverse-ness
|
|
result.reset();
|
|
result.setFillType(SkPath::kEvenOdd_FillType);
|
|
PathWrapper simple(result);
|
|
|
|
// turn path into list of segments
|
|
SkTArray<Contour> contours;
|
|
// FIXME: add self-intersecting cubics' T values to segment
|
|
EdgeBuilder builder(path, contours);
|
|
builder.finish();
|
|
SkTDArray<Contour*> contourList;
|
|
makeContourList(contours, contourList, false, false);
|
|
Contour** currentPtr = contourList.begin();
|
|
if (!currentPtr) {
|
|
return;
|
|
}
|
|
Contour** listEnd = contourList.end();
|
|
// find all intersections between segments
|
|
do {
|
|
Contour** nextPtr = currentPtr;
|
|
Contour* current = *currentPtr++;
|
|
Contour* next;
|
|
do {
|
|
next = *nextPtr++;
|
|
} while (addIntersectTs(current, next) && nextPtr != listEnd);
|
|
} while (currentPtr != listEnd);
|
|
// eat through coincident edges
|
|
coincidenceCheck(contourList, 0);
|
|
fixOtherTIndex(contourList);
|
|
sortSegments(contourList);
|
|
#if DEBUG_ACTIVE_SPANS
|
|
debugShowActiveSpans(contourList);
|
|
#endif
|
|
// construct closed contours
|
|
if (builder.xorMask() == kWinding_Mask ? bridgeWinding(contourList, simple)
|
|
: !bridgeXor(contourList, simple))
|
|
{ // if some edges could not be resolved, assemble remaining fragments
|
|
SkPath temp;
|
|
temp.setFillType(SkPath::kEvenOdd_FillType);
|
|
PathWrapper assembled(temp);
|
|
assemble(simple, assembled);
|
|
result = *assembled.nativePath();
|
|
}
|
|
}
|