e20fcad156
This reverts commita4f207eb67
. Reason for revert: Landing with fix Original change's description: > Revert "Move makeDeferredRenderTargetContext calls to factory on RTC." > > This reverts commit1c16b43033
. > > Reason for revert: Red on tree > Original change's description: > > Move makeDeferredRenderTargetContext calls to factory on RTC. > > > > Change-Id: Iaa8f5829d9f8650ff27a60f75fb2216f016ab85e > > Reviewed-on: https://skia-review.googlesource.com/c/skia/+/262058 > > Commit-Queue: Greg Daniel <egdaniel@google.com> > > Reviewed-by: Brian Salomon <bsalomon@google.com> > > TBR=egdaniel@google.com,bsalomon@google.com > > Change-Id: I9e3c9d13c66b5437c87ad7136d283fa4ac81df1f > No-Presubmit: true > No-Tree-Checks: true > No-Try: true > Reviewed-on: https://skia-review.googlesource.com/c/skia/+/263019 > Reviewed-by: Jim Van Verth <jvanverth@google.com> > Commit-Queue: Jim Van Verth <jvanverth@google.com> TBR=egdaniel@google.com,jvanverth@google.com,bsalomon@google.com Change-Id: If4ec8316a952fb482471c22273f4724f9b30a998 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/263022 Reviewed-by: Greg Daniel <egdaniel@google.com> Commit-Queue: Greg Daniel <egdaniel@google.com>
485 lines
20 KiB
C++
485 lines
20 KiB
C++
/*
|
|
* Copyright 2017 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "tests/Test.h"
|
|
|
|
#include <array>
|
|
#include <vector>
|
|
#include "include/core/SkBitmap.h"
|
|
#include "include/gpu/GrContext.h"
|
|
#include "include/private/GrResourceKey.h"
|
|
#include "src/gpu/GrCaps.h"
|
|
#include "src/gpu/GrContextPriv.h"
|
|
#include "src/gpu/GrGeometryProcessor.h"
|
|
#include "src/gpu/GrImageInfo.h"
|
|
#include "src/gpu/GrMemoryPool.h"
|
|
#include "src/gpu/GrOpFlushState.h"
|
|
#include "src/gpu/GrOpsRenderPass.h"
|
|
#include "src/gpu/GrProgramInfo.h"
|
|
#include "src/gpu/GrRenderTargetContext.h"
|
|
#include "src/gpu/GrRenderTargetContextPriv.h"
|
|
#include "src/gpu/GrResourceProvider.h"
|
|
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
|
|
#include "src/gpu/glsl/GrGLSLGeometryProcessor.h"
|
|
#include "src/gpu/glsl/GrGLSLVarying.h"
|
|
#include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
|
|
#include "src/gpu/ops/GrSimpleMeshDrawOpHelper.h"
|
|
|
|
GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey);
|
|
|
|
static constexpr int kBoxSize = 2;
|
|
static constexpr int kBoxCountY = 8;
|
|
static constexpr int kBoxCountX = 8;
|
|
static constexpr int kBoxCount = kBoxCountY * kBoxCountX;
|
|
|
|
static constexpr int kImageWidth = kBoxCountY * kBoxSize;
|
|
static constexpr int kImageHeight = kBoxCountX * kBoxSize;
|
|
|
|
static constexpr int kIndexPatternRepeatCount = 3;
|
|
constexpr uint16_t kIndexPattern[6] = {0, 1, 2, 1, 2, 3};
|
|
|
|
|
|
class DrawMeshHelper {
|
|
public:
|
|
DrawMeshHelper(GrOpFlushState* state) : fState(state) {}
|
|
|
|
sk_sp<const GrBuffer> getIndexBuffer();
|
|
|
|
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const SkTArray<T>& data) {
|
|
return this->makeVertexBuffer(data.begin(), data.count());
|
|
}
|
|
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const std::vector<T>& data) {
|
|
return this->makeVertexBuffer(data.data(), data.size());
|
|
}
|
|
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const T* data, int count);
|
|
|
|
sk_sp<const GrBuffer> fVertBuffer;
|
|
sk_sp<const GrBuffer> fVertBuffer2;
|
|
sk_sp<const GrBuffer> fIndexBuffer;
|
|
sk_sp<const GrBuffer> fInstBuffer;
|
|
|
|
void drawMesh(const GrMesh& mesh, GrPrimitiveType);
|
|
|
|
private:
|
|
GrOpFlushState* fState;
|
|
};
|
|
|
|
struct Box {
|
|
float fX, fY;
|
|
GrColor fColor;
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/**
|
|
* This is a GPU-backend specific test. It tries to test all possible usecases of GrMesh. The test
|
|
* works by drawing checkerboards of colored boxes, reading back the pixels, and comparing with
|
|
* expected results. The boxes are drawn on integer boundaries and the (opaque) colors are chosen
|
|
* from the set (r,g,b) = (0,255)^3, so the GPU renderings ought to produce exact matches.
|
|
*/
|
|
|
|
static void run_test(GrContext* context, const char* testName, skiatest::Reporter*,
|
|
const std::unique_ptr<GrRenderTargetContext>&, const SkBitmap& gold,
|
|
std::function<void(DrawMeshHelper*)> prepareFn,
|
|
std::function<void(DrawMeshHelper*)> executeFn);
|
|
|
|
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(GrMeshTest, reporter, ctxInfo) {
|
|
GrContext* context = ctxInfo.grContext();
|
|
|
|
auto rtc = GrRenderTargetContext::Make(
|
|
context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
|
|
{kImageWidth, kImageHeight});
|
|
if (!rtc) {
|
|
ERRORF(reporter, "could not create render target context.");
|
|
return;
|
|
}
|
|
|
|
SkTArray<Box> boxes;
|
|
SkTArray<std::array<Box, 4>> vertexData;
|
|
SkBitmap gold;
|
|
|
|
// ---- setup ----------
|
|
|
|
SkPaint paint;
|
|
paint.setBlendMode(SkBlendMode::kSrc);
|
|
gold.allocN32Pixels(kImageWidth, kImageHeight);
|
|
|
|
SkCanvas goldCanvas(gold);
|
|
|
|
for (int y = 0; y < kBoxCountY; ++y) {
|
|
for (int x = 0; x < kBoxCountX; ++x) {
|
|
int c = y + x;
|
|
int rgb[3] = {-(c & 1) & 0xff, -((c >> 1) & 1) & 0xff, -((c >> 2) & 1) & 0xff};
|
|
|
|
const Box box = boxes.push_back() = {
|
|
float(x * kBoxSize),
|
|
float(y * kBoxSize),
|
|
GrColorPackRGBA(rgb[0], rgb[1], rgb[2], 255)
|
|
};
|
|
|
|
std::array<Box, 4>& boxVertices = vertexData.push_back();
|
|
for (int i = 0; i < 4; ++i) {
|
|
boxVertices[i] = {
|
|
box.fX + (i / 2) * kBoxSize,
|
|
box.fY + (i % 2) * kBoxSize,
|
|
box.fColor
|
|
};
|
|
}
|
|
|
|
paint.setARGB(255, rgb[0], rgb[1], rgb[2]);
|
|
goldCanvas.drawRect(SkRect::MakeXYWH(box.fX, box.fY, kBoxSize, kBoxSize), paint);
|
|
}
|
|
}
|
|
|
|
// ---- tests ----------
|
|
|
|
#define VALIDATE(buff) \
|
|
do { \
|
|
if (!buff) { \
|
|
ERRORF(reporter, #buff " is null."); \
|
|
return; \
|
|
} \
|
|
} while (0)
|
|
|
|
run_test(context, "setNonIndexedNonInstanced", reporter, rtc, gold,
|
|
[&](DrawMeshHelper* helper) {
|
|
SkTArray<Box> expandedVertexData;
|
|
for (int i = 0; i < kBoxCount; ++i) {
|
|
for (int j = 0; j < 6; ++j) {
|
|
expandedVertexData.push_back(vertexData[i][kIndexPattern[j]]);
|
|
}
|
|
}
|
|
|
|
// Draw boxes one line at a time to exercise base vertex.
|
|
helper->fVertBuffer = helper->makeVertexBuffer(expandedVertexData);
|
|
VALIDATE(helper->fVertBuffer);
|
|
},
|
|
[&](DrawMeshHelper* helper) {
|
|
for (int y = 0; y < kBoxCountY; ++y) {
|
|
GrMesh mesh(GrPrimitiveType::kTriangles);
|
|
mesh.setNonIndexedNonInstanced(kBoxCountX * 6);
|
|
mesh.setVertexData(helper->fVertBuffer, y * kBoxCountX * 6);
|
|
helper->drawMesh(mesh, GrPrimitiveType::kTriangles);
|
|
}
|
|
});
|
|
|
|
run_test(context, "setIndexed", reporter, rtc, gold,
|
|
[&](DrawMeshHelper* helper) {
|
|
helper->fIndexBuffer = helper->getIndexBuffer();
|
|
VALIDATE(helper->fIndexBuffer);
|
|
helper->fVertBuffer = helper->makeVertexBuffer(vertexData);
|
|
VALIDATE(helper->fVertBuffer);
|
|
},
|
|
[&](DrawMeshHelper* helper) {
|
|
int baseRepetition = 0;
|
|
int i = 0;
|
|
// Start at various repetitions within the patterned index buffer to exercise base
|
|
// index.
|
|
while (i < kBoxCount) {
|
|
static_assert(kIndexPatternRepeatCount >= 3);
|
|
int repetitionCount = SkTMin(3 - baseRepetition, kBoxCount - i);
|
|
|
|
GrMesh mesh(GrPrimitiveType::kTriangles);
|
|
mesh.setIndexed(helper->fIndexBuffer, repetitionCount * 6, baseRepetition * 6,
|
|
baseRepetition * 4, (baseRepetition + repetitionCount) * 4 - 1,
|
|
GrPrimitiveRestart::kNo);
|
|
mesh.setVertexData(helper->fVertBuffer, (i - baseRepetition) * 4);
|
|
helper->drawMesh(mesh, GrPrimitiveType::kTriangles);
|
|
|
|
baseRepetition = (baseRepetition + 1) % 3;
|
|
i += repetitionCount;
|
|
}
|
|
});
|
|
|
|
run_test(context, "setIndexedPatterned", reporter, rtc, gold,
|
|
[&](DrawMeshHelper* helper) {
|
|
helper->fIndexBuffer = helper->getIndexBuffer();
|
|
VALIDATE(helper->fIndexBuffer);
|
|
helper->fVertBuffer = helper->makeVertexBuffer(vertexData);
|
|
VALIDATE(helper->fVertBuffer);
|
|
},
|
|
[&](DrawMeshHelper* helper) {
|
|
// Draw boxes one line at a time to exercise base vertex. setIndexedPatterned does
|
|
// not support a base index.
|
|
for (int y = 0; y < kBoxCountY; ++y) {
|
|
GrMesh mesh(GrPrimitiveType::kTriangles);
|
|
mesh.setIndexedPatterned(helper->fIndexBuffer, 6, 4, kBoxCountX,
|
|
kIndexPatternRepeatCount);
|
|
mesh.setVertexData(helper->fVertBuffer, y * kBoxCountX * 4);
|
|
helper->drawMesh(mesh, GrPrimitiveType::kTriangles);
|
|
}
|
|
});
|
|
|
|
for (bool indexed : {false, true}) {
|
|
if (!context->priv().caps()->instanceAttribSupport()) {
|
|
break;
|
|
}
|
|
|
|
run_test(context, indexed ? "setIndexedInstanced" : "setInstanced",
|
|
reporter, rtc, gold,
|
|
[&](DrawMeshHelper* helper) {
|
|
helper->fIndexBuffer = indexed ? helper->getIndexBuffer() : nullptr;
|
|
helper->fInstBuffer = helper->makeVertexBuffer(boxes);
|
|
VALIDATE(helper->fInstBuffer);
|
|
helper->fVertBuffer =
|
|
helper->makeVertexBuffer(std::vector<float>{0,0, 0,1, 1,0, 1,1});
|
|
VALIDATE(helper->fVertBuffer);
|
|
helper->fVertBuffer2 = helper->makeVertexBuffer( // for testing base vertex.
|
|
std::vector<float>{-1,-1, -1,-1, 0,0, 0,1, 1,0, 1,1});
|
|
VALIDATE(helper->fVertBuffer2);
|
|
},
|
|
[&](DrawMeshHelper* helper) {
|
|
// Draw boxes one line at a time to exercise base instance, base vertex, and
|
|
// null vertex buffer. setIndexedInstanced intentionally does not support a
|
|
// base index.
|
|
for (int y = 0; y < kBoxCountY; ++y) {
|
|
|
|
GrPrimitiveType primitiveType = indexed ? GrPrimitiveType::kTriangles
|
|
: GrPrimitiveType::kTriangleStrip;
|
|
GrMesh mesh(primitiveType);
|
|
if (indexed) {
|
|
VALIDATE(helper->fIndexBuffer);
|
|
mesh.setIndexedInstanced(helper->fIndexBuffer, 6, helper->fInstBuffer,
|
|
kBoxCountX, y * kBoxCountX,
|
|
GrPrimitiveRestart::kNo);
|
|
} else {
|
|
mesh.setInstanced(helper->fInstBuffer, kBoxCountX, y * kBoxCountX, 4);
|
|
}
|
|
switch (y % 3) {
|
|
case 0:
|
|
if (context->priv().caps()->shaderCaps()->vertexIDSupport()) {
|
|
if (y % 2) {
|
|
// We don't need this call because it's the initial state
|
|
// of GrMesh.
|
|
mesh.setVertexData(nullptr);
|
|
}
|
|
break;
|
|
}
|
|
// Fallthru.
|
|
case 1:
|
|
mesh.setVertexData(helper->fVertBuffer);
|
|
break;
|
|
case 2:
|
|
mesh.setVertexData(helper->fVertBuffer2, 2);
|
|
break;
|
|
}
|
|
helper->drawMesh(mesh, primitiveType);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
class GrMeshTestOp : public GrDrawOp {
|
|
public:
|
|
DEFINE_OP_CLASS_ID
|
|
|
|
static std::unique_ptr<GrDrawOp> Make(GrContext* context,
|
|
std::function<void(DrawMeshHelper*)> prepareFn,
|
|
std::function<void(DrawMeshHelper*)> executeFn) {
|
|
GrOpMemoryPool* pool = context->priv().opMemoryPool();
|
|
|
|
return pool->allocate<GrMeshTestOp>(prepareFn, executeFn);
|
|
}
|
|
|
|
private:
|
|
friend class GrOpMemoryPool; // for ctor
|
|
|
|
GrMeshTestOp(std::function<void(DrawMeshHelper*)> prepareFn,
|
|
std::function<void(DrawMeshHelper*)> executeFn)
|
|
: INHERITED(ClassID())
|
|
, fPrepareFn(prepareFn)
|
|
, fExecuteFn(executeFn){
|
|
this->setBounds(SkRect::MakeIWH(kImageWidth, kImageHeight),
|
|
HasAABloat::kNo, IsHairline::kNo);
|
|
}
|
|
|
|
const char* name() const override { return "GrMeshTestOp"; }
|
|
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
|
|
GrProcessorSet::Analysis finalize(const GrCaps&, const GrAppliedClip*,
|
|
bool hasMixedSampledCoverage, GrClampType) override {
|
|
return GrProcessorSet::EmptySetAnalysis();
|
|
}
|
|
void onPrepare(GrOpFlushState* state) override {
|
|
fHelper.reset(new DrawMeshHelper(state));
|
|
fPrepareFn(fHelper.get());
|
|
}
|
|
void onExecute(GrOpFlushState* state, const SkRect& chainBounds) override {
|
|
fExecuteFn(fHelper.get());
|
|
}
|
|
|
|
std::unique_ptr<DrawMeshHelper> fHelper;
|
|
std::function<void(DrawMeshHelper*)> fPrepareFn;
|
|
std::function<void(DrawMeshHelper*)> fExecuteFn;
|
|
|
|
typedef GrDrawOp INHERITED;
|
|
};
|
|
|
|
class GrMeshTestProcessor : public GrGeometryProcessor {
|
|
public:
|
|
static GrGeometryProcessor* Make(SkArenaAlloc* arena, bool instanced, bool hasVertexBuffer) {
|
|
return arena->make<GrMeshTestProcessor>(instanced, hasVertexBuffer);
|
|
}
|
|
|
|
const char* name() const override { return "GrMeshTestProcessor"; }
|
|
|
|
const Attribute& inColor() const {
|
|
return fVertexColor.isInitialized() ? fVertexColor : fInstanceColor;
|
|
}
|
|
|
|
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const final {
|
|
b->add32(fInstanceLocation.isInitialized());
|
|
b->add32(fVertexPosition.isInitialized());
|
|
}
|
|
|
|
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const final;
|
|
|
|
private:
|
|
friend class GLSLMeshTestProcessor;
|
|
friend class ::SkArenaAlloc; // for access to ctor
|
|
|
|
GrMeshTestProcessor(bool instanced, bool hasVertexBuffer)
|
|
: INHERITED(kGrMeshTestProcessor_ClassID) {
|
|
if (instanced) {
|
|
fInstanceLocation = {"location", kFloat2_GrVertexAttribType, kHalf2_GrSLType};
|
|
fInstanceColor = {"color", kUByte4_norm_GrVertexAttribType, kHalf4_GrSLType};
|
|
this->setInstanceAttributes(&fInstanceLocation, 2);
|
|
if (hasVertexBuffer) {
|
|
fVertexPosition = {"vertex", kFloat2_GrVertexAttribType, kHalf2_GrSLType};
|
|
this->setVertexAttributes(&fVertexPosition, 1);
|
|
}
|
|
} else {
|
|
fVertexPosition = {"vertex", kFloat2_GrVertexAttribType, kHalf2_GrSLType};
|
|
fVertexColor = {"color", kUByte4_norm_GrVertexAttribType, kHalf4_GrSLType};
|
|
this->setVertexAttributes(&fVertexPosition, 2);
|
|
}
|
|
}
|
|
|
|
Attribute fVertexPosition;
|
|
Attribute fVertexColor;
|
|
|
|
Attribute fInstanceLocation;
|
|
Attribute fInstanceColor;
|
|
|
|
typedef GrGeometryProcessor INHERITED;
|
|
};
|
|
|
|
class GLSLMeshTestProcessor : public GrGLSLGeometryProcessor {
|
|
void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor&,
|
|
const CoordTransformRange& transformIter) final {}
|
|
|
|
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final {
|
|
const GrMeshTestProcessor& mp = args.fGP.cast<GrMeshTestProcessor>();
|
|
|
|
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
|
|
varyingHandler->emitAttributes(mp);
|
|
varyingHandler->addPassThroughAttribute(mp.inColor(), args.fOutputColor);
|
|
|
|
GrGLSLVertexBuilder* v = args.fVertBuilder;
|
|
if (!mp.fInstanceLocation.isInitialized()) {
|
|
v->codeAppendf("float2 vertex = %s;", mp.fVertexPosition.name());
|
|
} else {
|
|
if (mp.fVertexPosition.isInitialized()) {
|
|
v->codeAppendf("float2 offset = %s;", mp.fVertexPosition.name());
|
|
} else {
|
|
v->codeAppend ("float2 offset = float2(sk_VertexID / 2, sk_VertexID % 2);");
|
|
}
|
|
v->codeAppendf("float2 vertex = %s + offset * %i;", mp.fInstanceLocation.name(),
|
|
kBoxSize);
|
|
}
|
|
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex");
|
|
|
|
GrGLSLFPFragmentBuilder* f = args.fFragBuilder;
|
|
f->codeAppendf("%s = half4(1);", args.fOutputCoverage);
|
|
}
|
|
};
|
|
|
|
GrGLSLPrimitiveProcessor* GrMeshTestProcessor::createGLSLInstance(const GrShaderCaps&) const {
|
|
return new GLSLMeshTestProcessor;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<typename T>
|
|
sk_sp<const GrBuffer> DrawMeshHelper::makeVertexBuffer(const T* data, int count) {
|
|
return sk_sp<const GrBuffer>(fState->resourceProvider()->createBuffer(
|
|
count * sizeof(T), GrGpuBufferType::kVertex, kDynamic_GrAccessPattern, data));
|
|
}
|
|
|
|
sk_sp<const GrBuffer> DrawMeshHelper::getIndexBuffer() {
|
|
GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey);
|
|
return fState->resourceProvider()->findOrCreatePatternedIndexBuffer(
|
|
kIndexPattern, 6, kIndexPatternRepeatCount, 4, gIndexBufferKey);
|
|
}
|
|
|
|
void DrawMeshHelper::drawMesh(const GrMesh& mesh, GrPrimitiveType primitiveType) {
|
|
GrProcessorSet processorSet(SkBlendMode::kSrc);
|
|
|
|
// TODO: add a GrProcessorSet testing helper to make this easier
|
|
SkPMColor4f overrideColor;
|
|
processorSet.finalize(GrProcessorAnalysisColor(),
|
|
GrProcessorAnalysisCoverage::kNone,
|
|
fState->appliedClip(),
|
|
nullptr,
|
|
false,
|
|
fState->caps(),
|
|
GrClampType::kAuto,
|
|
&overrideColor);
|
|
|
|
auto pipeline = GrSimpleMeshDrawOpHelper::CreatePipeline(fState,
|
|
std::move(processorSet),
|
|
GrPipeline::InputFlags::kNone);
|
|
|
|
GrGeometryProcessor* mtp = GrMeshTestProcessor::Make(
|
|
fState->allocator(), mesh.isInstanced(), SkToBool(mesh.vertexBuffer()));
|
|
|
|
GrProgramInfo programInfo(fState->proxy()->numSamples(),
|
|
fState->proxy()->numStencilSamples(),
|
|
fState->proxy()->backendFormat(),
|
|
fState->view()->origin(),
|
|
pipeline,
|
|
mtp,
|
|
nullptr, nullptr, 0, primitiveType);
|
|
|
|
fState->opsRenderPass()->draw(programInfo, &mesh, 1,
|
|
SkRect::MakeIWH(kImageWidth, kImageHeight));
|
|
}
|
|
|
|
static void run_test(GrContext* context, const char* testName, skiatest::Reporter* reporter,
|
|
const std::unique_ptr<GrRenderTargetContext>& rtc, const SkBitmap& gold,
|
|
std::function<void(DrawMeshHelper*)> prepareFn,
|
|
std::function<void(DrawMeshHelper*)> executeFn) {
|
|
const int w = gold.width(), h = gold.height(), rowBytes = gold.rowBytes();
|
|
const uint32_t* goldPx = reinterpret_cast<const uint32_t*>(gold.getPixels());
|
|
if (h != rtc->height() || w != rtc->width()) {
|
|
ERRORF(reporter, "[%s] expectation and rtc not compatible (?).", testName);
|
|
return;
|
|
}
|
|
if (sizeof(uint32_t) * kImageWidth != gold.rowBytes()) {
|
|
ERRORF(reporter, "unexpected row bytes in gold image.", testName);
|
|
return;
|
|
}
|
|
|
|
SkAutoSTMalloc<kImageHeight * kImageWidth, uint32_t> resultPx(h * rowBytes);
|
|
rtc->clear(nullptr, SkPMColor4f::FromBytes_RGBA(0xbaaaaaad),
|
|
GrRenderTargetContext::CanClearFullscreen::kYes);
|
|
rtc->priv().testingOnly_addDrawOp(GrMeshTestOp::Make(context, prepareFn, executeFn));
|
|
rtc->readPixels(gold.info(), resultPx, rowBytes, {0, 0});
|
|
for (int y = 0; y < h; ++y) {
|
|
for (int x = 0; x < w; ++x) {
|
|
uint32_t expected = goldPx[y * kImageWidth + x];
|
|
uint32_t actual = resultPx[y * kImageWidth + x];
|
|
if (expected != actual) {
|
|
ERRORF(reporter, "[%s] pixel (%i,%i): got 0x%x expected 0x%x",
|
|
testName, x, y, actual, expected);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|