b23e6aa676
It was my goal to create benchmarks that could measure all of the use cases that we have identified. I think single subsets, translating, and scaling are the important ones. It might be a good idea to discuss the document in greater detail as well. I just wanted to share this to aid the discussion. https://docs.google.com/a/google.com/document/d/1OxW96GDMAlw6dnzNXmiNX-F9oDBBlGXzSsgd0DMIkbI/edit?usp=sharing BUG=skia: Review URL: https://codereview.chromium.org/1160953002
130 lines
5.7 KiB
C++
130 lines
5.7 KiB
C++
/*
|
|
* Copyright 2015 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "SubsetDivisorBench.h"
|
|
#include "SubsetBenchPriv.h"
|
|
#include "SkData.h"
|
|
#include "SkCodec.h"
|
|
#include "SkImageDecoder.h"
|
|
#include "SkOSFile.h"
|
|
#include "SkStream.h"
|
|
|
|
/*
|
|
*
|
|
* This benchmark is designed to test the performance of subset decoding.
|
|
* It uses a divisor to decode the entire image in a grid of divisor x divisor blocks.
|
|
*
|
|
*/
|
|
|
|
SubsetDivisorBench::SubsetDivisorBench(const SkString& path,
|
|
SkColorType colorType,
|
|
uint32_t divisor,
|
|
bool useCodec)
|
|
: fColorType(colorType)
|
|
, fDivisor(divisor)
|
|
, fUseCodec(useCodec)
|
|
{
|
|
// Parse the filename
|
|
SkString baseName = SkOSPath::Basename(path.c_str());
|
|
|
|
// Choose an informative color name
|
|
const char* colorName = get_color_name(fColorType);
|
|
|
|
fName.printf("%sSubsetDivisor_%dx%d_%s_%s", fUseCodec ? "Codec" : "Image", fDivisor, fDivisor,
|
|
baseName.c_str(), colorName);
|
|
|
|
// Perform the decode setup
|
|
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(path.c_str()));
|
|
fStream.reset(new SkMemoryStream(encoded));
|
|
}
|
|
|
|
const char* SubsetDivisorBench::onGetName() {
|
|
return fName.c_str();
|
|
}
|
|
|
|
bool SubsetDivisorBench::isSuitableFor(Backend backend) {
|
|
return kNonRendering_Backend == backend;
|
|
}
|
|
|
|
void SubsetDivisorBench::onDraw(const int n, SkCanvas* canvas) {
|
|
// When the color type is kIndex8, we will need to store the color table. If it is
|
|
// used, it will be initialized by the codec.
|
|
int colorCount;
|
|
SkPMColor colors[256];
|
|
if (fUseCodec) {
|
|
for (int count = 0; count < n; count++) {
|
|
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromStream(fStream->duplicate()));
|
|
const SkImageInfo info = codec->getInfo().makeColorType(fColorType);
|
|
SkAutoTDeleteArray<uint8_t> row(SkNEW_ARRAY(uint8_t, info.minRowBytes()));
|
|
SkScanlineDecoder* scanlineDecoder = codec->getScanlineDecoder(
|
|
info, NULL, colors, &colorCount);
|
|
|
|
const uint32_t subsetWidth = info.width() / fDivisor;
|
|
const uint32_t subsetHeight = info.height() / fDivisor;
|
|
const uint32_t maxSubsetWidth = subsetWidth + info.width() % fDivisor;
|
|
const uint32_t maxSubsetHeight = subsetHeight + info.height() % fDivisor;
|
|
SkBitmap bitmap;
|
|
// Note that we use the same bitmap for all of the subsets.
|
|
// It might be slightly larger than necessary for some of the subsets.
|
|
bitmap.allocPixels(info.makeWH(maxSubsetWidth, maxSubsetHeight));
|
|
|
|
for (uint32_t blockX = 0; blockX < fDivisor; blockX++) {
|
|
for (uint32_t blockY = 0; blockY < fDivisor; blockY++) {
|
|
scanlineDecoder->skipScanlines(blockY * subsetHeight);
|
|
const uint32_t currSubsetWidth =
|
|
(blockX == fDivisor - 1) ? maxSubsetWidth : subsetWidth;
|
|
const uint32_t currSubsetHeight =
|
|
(blockY == fDivisor - 1) ? maxSubsetHeight : subsetHeight;
|
|
const uint32_t bpp = info.bytesPerPixel();
|
|
for (uint32_t y = 0; y < currSubsetHeight; y++) {
|
|
scanlineDecoder->getScanlines(row.get(), 1, 0);
|
|
memcpy(bitmap.getAddr(0, y), row.get() + blockX * subsetWidth * bpp,
|
|
currSubsetWidth * bpp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// We create a color table here to satisfy allocPixels() when the output
|
|
// type is kIndex8. It's okay that this is uninitialized since we never
|
|
// use it.
|
|
SkColorTable* colorTable = SkNEW_ARGS(SkColorTable, (colors, 0));
|
|
for (int count = 0; count < n; count++) {
|
|
int width, height;
|
|
SkAutoTDelete<SkImageDecoder> decoder(SkImageDecoder::Factory(fStream));
|
|
decoder->buildTileIndex(fStream->duplicate(), &width, &height);
|
|
|
|
const uint32_t subsetWidth = width / fDivisor;
|
|
const uint32_t subsetHeight = height / fDivisor;
|
|
const uint32_t maxSubsetWidth = subsetWidth + width % fDivisor;
|
|
const uint32_t maxSubsetHeight = subsetHeight + height % fDivisor;
|
|
SkBitmap bitmap;
|
|
// Note that we use the same bitmap for all of the subsets.
|
|
// It might be slightly larger than necessary for some of the subsets.
|
|
// If we do not include this step, decodeSubset() would allocate space
|
|
// for the pixels automatically, but this would not allow us to reuse the
|
|
// same bitmap as the other subsets. We want to reuse the same bitmap
|
|
// because it gives a more fair comparison with SkCodec and is a common
|
|
// use case of BitmapRegionDecoder.
|
|
bitmap.allocPixels(SkImageInfo::Make(maxSubsetWidth, maxSubsetHeight,
|
|
fColorType, kOpaque_SkAlphaType), NULL, colorTable);
|
|
|
|
for (uint32_t blockX = 0; blockX < fDivisor; blockX++) {
|
|
for (uint32_t blockY = 0; blockY < fDivisor; blockY++) {
|
|
const uint32_t currSubsetWidth =
|
|
(blockX == fDivisor - 1) ? maxSubsetWidth : subsetWidth;
|
|
const uint32_t currSubsetHeight =
|
|
(blockY == fDivisor - 1) ? maxSubsetHeight : subsetHeight;
|
|
SkIRect rect = SkIRect::MakeXYWH(blockX * subsetWidth,
|
|
blockY * subsetHeight, currSubsetWidth, currSubsetHeight);
|
|
decoder->decodeSubset(&bitmap, rect, fColorType);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|