6c8422c671
ignore offscreen, srgb, and animated fiddles for now. Change-Id: I923131b684865698e6cda138b004930e11f504d5 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/263713 Commit-Queue: Hal Canary <halcanary@google.com> Reviewed-by: Ben Wagner <bungeman@google.com>
94 lines
3.7 KiB
C++
94 lines
3.7 KiB
C++
// Copyright 2020 Google LLC.
|
|
// Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
|
|
#include "tools/fiddle/examples.h"
|
|
REG_FIDDLE(SkPath_arcto_conic_parametric2, 512, 512, false, 0) {
|
|
/** Add a weighted quadratic bezier from the last point, approaching control point
|
|
(x1,y1), and ending at (x2,y2). If no moveTo() call has been made for
|
|
this contour, the first point is automatically set to (0,0).
|
|
If the starting point is (x0, y0), then this curve is defined as the
|
|
paramentric curve as `t` goes from 0 to 1:
|
|
s := 1 - t
|
|
x := ((s * s * x0) + (w * 2 * s * t * x1) + (t * t * x2)) /
|
|
((s * s) + (w * 2 * s * t) + (t * t))
|
|
y := ((s * s * y0) + (w * 2 * s * t * y1) + (t * t * y2)) /
|
|
((s * s) + (w * 2 * s * t) + (t * t))
|
|
@param x1 The x-coordinate of the control point on a quadratic curve
|
|
@param y1 The y-coordinate of the control point on a quadratic curve
|
|
@param x2 The x-coordinate of the end point on a quadratic curve
|
|
@param y2 The y-coordinate of the end point on a quadratic curve
|
|
@param w The weight of the control point (x1,y1)
|
|
*/
|
|
|
|
SkPoint conic(SkPoint p0, SkPoint p1, SkPoint p2, float w, float t) {
|
|
float s = 1 - t;
|
|
return {((s * s * p0.x()) + (2 * s * t * w * p1.x()) + (t * t * p2.x())) /
|
|
((s * s) + (w * 2 * s * t) + (t * t)),
|
|
((s * s * p0.y()) + (2 * s * t * w * p1.y()) + (t * t * p2.y())) /
|
|
((s * s) + (w * 2 * s * t) + (t * t))};
|
|
}
|
|
|
|
void draw(SkCanvas* canvas) {
|
|
canvas->clear(SkColorSetARGB(255, 255, 255, 255));
|
|
|
|
SkPaint paint;
|
|
paint.setAntiAlias(true);
|
|
paint.setStyle(SkPaint::kStroke_Style);
|
|
paint.setStrokeWidth(1);
|
|
|
|
SkPoint center = {256, 256};
|
|
float r = 192;
|
|
SkRect oval = {center.x() - r, center.y() - r, center.x() + r, center.y() + r};
|
|
canvas->drawOval(oval, paint);
|
|
float startAngle = 15;
|
|
float sweepAngle = 75;
|
|
|
|
SkPath arc;
|
|
arc.arcTo(oval, startAngle, sweepAngle, false);
|
|
|
|
SkPaint arcPaint(paint);
|
|
arcPaint.setStrokeWidth(5);
|
|
arcPaint.setColor(SkColorSetARGB(255, 0, 0, 255));
|
|
canvas->drawPath(arc, arcPaint);
|
|
|
|
SkPaint pointPaint;
|
|
pointPaint.setAntiAlias(true);
|
|
pointPaint.setStrokeWidth(8);
|
|
pointPaint.setStrokeCap(SkPaint::kRound_Cap);
|
|
pointPaint.setColor(SkColorSetARGB(255, 0, 255, 0));
|
|
|
|
float finalAngle = startAngle + sweepAngle;
|
|
float middleAngle = startAngle + 0.5f * sweepAngle;
|
|
float weight = cos(SkDegreesToRadians(sweepAngle) / 2);
|
|
SkPoint p0 = {r * SkScalarCos(SkDegreesToRadians(startAngle)),
|
|
r * SkScalarSin(SkDegreesToRadians(startAngle))};
|
|
float d = r / weight;
|
|
SkPoint p1 = {d * SkScalarCos(SkDegreesToRadians(middleAngle)),
|
|
d * SkScalarSin(SkDegreesToRadians(middleAngle))};
|
|
SkPoint p2 = {r * SkScalarCos(SkDegreesToRadians(finalAngle)),
|
|
r * SkScalarSin(SkDegreesToRadians(finalAngle))};
|
|
p0 += center;
|
|
p1 += center;
|
|
p2 += center;
|
|
|
|
canvas->drawLine(p0.x(), p0.y(), p1.x(), p1.y(), paint);
|
|
canvas->drawLine(p1.x(), p1.y(), p2.x(), p2.y(), paint);
|
|
|
|
const int N = 16;
|
|
for (int i = 0; i <= N; ++i) {
|
|
SkPoint p = conic(p0, p1, p2, weight, (float)i / N);
|
|
canvas->drawPoint(p.x(), p.y(), pointPaint);
|
|
}
|
|
pointPaint.setColor(SkColorSetARGB(255, 255, 0, 0));
|
|
canvas->drawPoint(p0.x(), p0.y(), pointPaint);
|
|
canvas->drawPoint(p1.x(), p1.y(), pointPaint);
|
|
canvas->drawPoint(p2.x(), p2.y(), pointPaint);
|
|
|
|
SkPath weightedQuadratic;
|
|
weightedQuadratic.moveTo(p0);
|
|
weightedQuadratic.conicTo(p1, p2, weight);
|
|
paint.setColor(SK_ColorYELLOW);
|
|
paint.setStrokeWidth(2.5);
|
|
canvas->drawPath(weightedQuadratic, paint);
|
|
}
|
|
} // END FIDDLE
|