skia2/include/private/SkPathRef.h
Brian Salomon b7d42e3c11 Don't deserialize pathref oval/rrect bits
Change-Id: Id891329ee789347fb269d41bef9991f85233e031
Reviewed-on: https://skia-review.googlesource.com/49771
Reviewed-by: Robert Phillips <robertphillips@google.com>
Commit-Queue: Brian Salomon <bsalomon@google.com>
2017-09-22 13:03:07 +00:00

556 lines
19 KiB
C++

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPathRef_DEFINED
#define SkPathRef_DEFINED
#include "../private/SkAtomics.h"
#include "../private/SkTDArray.h"
#include "SkMatrix.h"
#include "SkPoint.h"
#include "SkRRect.h"
#include "SkRect.h"
#include "SkRefCnt.h"
#include "SkTemplates.h"
class SkRBuffer;
class SkWBuffer;
/**
* Holds the path verbs and points. It is versioned by a generation ID. None of its public methods
* modify the contents. To modify or append to the verbs/points wrap the SkPathRef in an
* SkPathRef::Editor object. Installing the editor resets the generation ID. It also performs
* copy-on-write if the SkPathRef is shared by multiple SkPaths. The caller passes the Editor's
* constructor a pointer to a sk_sp<SkPathRef>, which may be updated to point to a new SkPathRef
* after the editor's constructor returns.
*
* The points and verbs are stored in a single allocation. The points are at the begining of the
* allocation while the verbs are stored at end of the allocation, in reverse order. Thus the points
* and verbs both grow into the middle of the allocation until the meet. To access verb i in the
* verb array use ref.verbs()[~i] (because verbs() returns a pointer just beyond the first
* logical verb or the last verb in memory).
*/
class SK_API SkPathRef final : public SkNVRefCnt<SkPathRef> {
public:
class Editor {
public:
Editor(sk_sp<SkPathRef>* pathRef,
int incReserveVerbs = 0,
int incReservePoints = 0);
~Editor() { SkDEBUGCODE(sk_atomic_dec(&fPathRef->fEditorsAttached);) }
/**
* Returns the array of points.
*/
SkPoint* points() { return fPathRef->getPoints(); }
const SkPoint* points() const { return fPathRef->points(); }
/**
* Gets the ith point. Shortcut for this->points() + i
*/
SkPoint* atPoint(int i) {
SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt);
return this->points() + i;
}
const SkPoint* atPoint(int i) const {
SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt);
return this->points() + i;
}
/**
* Adds the verb and allocates space for the number of points indicated by the verb. The
* return value is a pointer to where the points for the verb should be written.
* 'weight' is only used if 'verb' is kConic_Verb
*/
SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight = 0) {
SkDEBUGCODE(fPathRef->validate();)
return fPathRef->growForVerb(verb, weight);
}
/**
* Allocates space for multiple instances of a particular verb and the
* requisite points & weights.
* The return pointer points at the first new point (indexed normally [<i>]).
* If 'verb' is kConic_Verb, 'weights' will return a pointer to the
* space for the conic weights (indexed normally).
*/
SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb,
int numVbs,
SkScalar** weights = nullptr) {
return fPathRef->growForRepeatedVerb(verb, numVbs, weights);
}
/**
* Resets the path ref to a new verb and point count. The new verbs and points are
* uninitialized.
*/
void resetToSize(int newVerbCnt, int newPointCnt, int newConicCount) {
fPathRef->resetToSize(newVerbCnt, newPointCnt, newConicCount);
}
/**
* Gets the path ref that is wrapped in the Editor.
*/
SkPathRef* pathRef() { return fPathRef; }
void setIsOval(bool isOval, bool isCCW, unsigned start) {
fPathRef->setIsOval(isOval, isCCW, start);
}
void setIsRRect(bool isRRect, bool isCCW, unsigned start) {
fPathRef->setIsRRect(isRRect, isCCW, start);
}
void setBounds(const SkRect& rect) { fPathRef->setBounds(rect); }
private:
SkPathRef* fPathRef;
};
class SK_API Iter {
public:
Iter();
Iter(const SkPathRef&);
void setPathRef(const SkPathRef&);
/** Return the next verb in this iteration of the path. When all
segments have been visited, return kDone_Verb.
If any point in the path is non-finite, return kDone_Verb immediately.
@param pts The points representing the current verb and/or segment
This must not be NULL.
@return The verb for the current segment
*/
uint8_t next(SkPoint pts[4]);
uint8_t peek() const;
SkScalar conicWeight() const { return *fConicWeights; }
private:
const SkPoint* fPts;
const uint8_t* fVerbs;
const uint8_t* fVerbStop;
const SkScalar* fConicWeights;
};
public:
/**
* Gets a path ref with no verbs or points.
*/
static SkPathRef* CreateEmpty();
/**
* Returns true if all of the points in this path are finite, meaning there
* are no infinities and no NaNs.
*/
bool isFinite() const {
if (fBoundsIsDirty) {
this->computeBounds();
}
return SkToBool(fIsFinite);
}
/**
* Returns a mask, where each bit corresponding to a SegmentMask is
* set if the path contains 1 or more segments of that type.
* Returns 0 for an empty path (no segments).
*/
uint32_t getSegmentMasks() const { return fSegmentMask; }
/** Returns true if the path is an oval.
*
* @param rect returns the bounding rect of this oval. It's a circle
* if the height and width are the same.
* @param isCCW is the oval CCW (or CW if false).
* @param start indicates where the contour starts on the oval (see
* SkPath::addOval for intepretation of the index).
*
* @return true if this path is an oval.
* Tracking whether a path is an oval is considered an
* optimization for performance and so some paths that are in
* fact ovals can report false.
*/
bool isOval(SkRect* rect, bool* isCCW, unsigned* start) const {
if (fIsOval) {
if (rect) {
*rect = this->getBounds();
}
if (isCCW) {
*isCCW = SkToBool(fRRectOrOvalIsCCW);
}
if (start) {
*start = fRRectOrOvalStartIdx;
}
}
return SkToBool(fIsOval);
}
bool isRRect(SkRRect* rrect, bool* isCCW, unsigned* start) const {
if (fIsRRect) {
if (rrect) {
*rrect = this->getRRect();
}
if (isCCW) {
*isCCW = SkToBool(fRRectOrOvalIsCCW);
}
if (start) {
*start = fRRectOrOvalStartIdx;
}
}
return SkToBool(fIsRRect);
}
bool hasComputedBounds() const {
return !fBoundsIsDirty;
}
/** Returns the bounds of the path's points. If the path contains 0 or 1
points, the bounds is set to (0,0,0,0), and isEmpty() will return true.
Note: this bounds may be larger than the actual shape, since curves
do not extend as far as their control points.
*/
const SkRect& getBounds() const {
if (fBoundsIsDirty) {
this->computeBounds();
}
return fBounds;
}
SkRRect getRRect() const;
/**
* Transforms a path ref by a matrix, allocating a new one only if necessary.
*/
static void CreateTransformedCopy(sk_sp<SkPathRef>* dst,
const SkPathRef& src,
const SkMatrix& matrix);
static SkPathRef* CreateFromBuffer(SkRBuffer* buffer);
/**
* Rollsback a path ref to zero verbs and points with the assumption that the path ref will be
* repopulated with approximately the same number of verbs and points. A new path ref is created
* only if necessary.
*/
static void Rewind(sk_sp<SkPathRef>* pathRef);
~SkPathRef();
int countPoints() const { return fPointCnt; }
int countVerbs() const { return fVerbCnt; }
int countWeights() const { return fConicWeights.count(); }
/**
* Returns a pointer one beyond the first logical verb (last verb in memory order).
*/
const uint8_t* verbs() const { return fVerbs; }
/**
* Returns a const pointer to the first verb in memory (which is the last logical verb).
*/
const uint8_t* verbsMemBegin() const { return this->verbs() - fVerbCnt; }
/**
* Returns a const pointer to the first point.
*/
const SkPoint* points() const { return fPoints; }
/**
* Shortcut for this->points() + this->countPoints()
*/
const SkPoint* pointsEnd() const { return this->points() + this->countPoints(); }
const SkScalar* conicWeights() const { return fConicWeights.begin(); }
const SkScalar* conicWeightsEnd() const { return fConicWeights.end(); }
/**
* Convenience methods for getting to a verb or point by index.
*/
uint8_t atVerb(int index) const {
SkASSERT((unsigned) index < (unsigned) fVerbCnt);
return this->verbs()[~index];
}
const SkPoint& atPoint(int index) const {
SkASSERT((unsigned) index < (unsigned) fPointCnt);
return this->points()[index];
}
bool operator== (const SkPathRef& ref) const;
/**
* Writes the path points and verbs to a buffer.
*/
void writeToBuffer(SkWBuffer* buffer) const;
/**
* Gets the number of bytes that would be written in writeBuffer()
*/
uint32_t writeSize() const;
void interpolate(const SkPathRef& ending, SkScalar weight, SkPathRef* out) const;
/**
* Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the
* same ID then they have the same verbs and points. However, two path refs may have the same
* contents but different genIDs.
*/
uint32_t genID() const;
struct GenIDChangeListener {
virtual ~GenIDChangeListener() {}
virtual void onChange() = 0;
};
void addGenIDChangeListener(GenIDChangeListener* listener);
bool isValid() const;
SkDEBUGCODE(void validate() const { SkASSERT(this->isValid()); } )
private:
enum SerializationOffsets {
kLegacyRRectOrOvalStartIdx_SerializationShift = 28, // requires 3 bits, ignored.
kLegacyRRectOrOvalIsCCW_SerializationShift = 27, // requires 1 bit, ignored.
kLegacyIsRRect_SerializationShift = 26, // requires 1 bit, ignored.
kIsFinite_SerializationShift = 25, // requires 1 bit
kLegacyIsOval_SerializationShift = 24, // requires 1 bit, ignored.
kSegmentMask_SerializationShift = 0 // requires 4 bits
};
SkPathRef() {
fBoundsIsDirty = true; // this also invalidates fIsFinite
fPointCnt = 0;
fVerbCnt = 0;
fVerbs = nullptr;
fPoints = nullptr;
fFreeSpace = 0;
fGenerationID = kEmptyGenID;
fSegmentMask = 0;
fIsOval = false;
fIsRRect = false;
// The next two values don't matter unless fIsOval or fIsRRect are true.
fRRectOrOvalIsCCW = false;
fRRectOrOvalStartIdx = 0xAC;
SkDEBUGCODE(fEditorsAttached = 0;)
SkDEBUGCODE(this->validate();)
}
void copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints);
// Return true if the computed bounds are finite.
static bool ComputePtBounds(SkRect* bounds, const SkPathRef& ref) {
return bounds->setBoundsCheck(ref.points(), ref.countPoints());
}
// called, if dirty, by getBounds()
void computeBounds() const {
SkDEBUGCODE(this->validate();)
// TODO(mtklein): remove fBoundsIsDirty and fIsFinite,
// using an inverted rect instead of fBoundsIsDirty and always recalculating fIsFinite.
SkASSERT(fBoundsIsDirty);
fIsFinite = ComputePtBounds(&fBounds, *this);
fBoundsIsDirty = false;
}
void setBounds(const SkRect& rect) {
SkASSERT(rect.fLeft <= rect.fRight && rect.fTop <= rect.fBottom);
fBounds = rect;
fBoundsIsDirty = false;
fIsFinite = fBounds.isFinite();
}
/** Makes additional room but does not change the counts or change the genID */
void incReserve(int additionalVerbs, int additionalPoints) {
SkDEBUGCODE(this->validate();)
size_t space = additionalVerbs * sizeof(uint8_t) + additionalPoints * sizeof (SkPoint);
this->makeSpace(space);
SkDEBUGCODE(this->validate();)
}
/** Resets the path ref with verbCount verbs and pointCount points, all uninitialized. Also
* allocates space for reserveVerb additional verbs and reservePoints additional points.*/
void resetToSize(int verbCount, int pointCount, int conicCount,
int reserveVerbs = 0, int reservePoints = 0) {
SkDEBUGCODE(this->validate();)
fBoundsIsDirty = true; // this also invalidates fIsFinite
fGenerationID = 0;
fSegmentMask = 0;
fIsOval = false;
fIsRRect = false;
size_t newSize = sizeof(uint8_t) * verbCount + sizeof(SkPoint) * pointCount;
size_t newReserve = sizeof(uint8_t) * reserveVerbs + sizeof(SkPoint) * reservePoints;
size_t minSize = newSize + newReserve;
ptrdiff_t sizeDelta = this->currSize() - minSize;
if (sizeDelta < 0 || static_cast<size_t>(sizeDelta) >= 3 * minSize) {
sk_free(fPoints);
fPoints = nullptr;
fVerbs = nullptr;
fFreeSpace = 0;
fVerbCnt = 0;
fPointCnt = 0;
this->makeSpace(minSize);
fVerbCnt = verbCount;
fPointCnt = pointCount;
fFreeSpace -= newSize;
} else {
fPointCnt = pointCount;
fVerbCnt = verbCount;
fFreeSpace = this->currSize() - minSize;
}
fConicWeights.setCount(conicCount);
SkDEBUGCODE(this->validate();)
}
/**
* Increases the verb count by numVbs and point count by the required amount.
* The new points are uninitialized. All the new verbs are set to the specified
* verb. If 'verb' is kConic_Verb, 'weights' will return a pointer to the
* uninitialized conic weights.
*/
SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb, int numVbs, SkScalar** weights);
/**
* Increases the verb count 1, records the new verb, and creates room for the requisite number
* of additional points. A pointer to the first point is returned. Any new points are
* uninitialized.
*/
SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight);
/**
* Ensures that the free space available in the path ref is >= size. The verb and point counts
* are not changed.
*/
void makeSpace(size_t size) {
SkDEBUGCODE(this->validate();)
if (size <= fFreeSpace) {
return;
}
size_t growSize = size - fFreeSpace;
size_t oldSize = this->currSize();
// round to next multiple of 8 bytes
growSize = (growSize + 7) & ~static_cast<size_t>(7);
// we always at least double the allocation
if (growSize < oldSize) {
growSize = oldSize;
}
if (growSize < kMinSize) {
growSize = kMinSize;
}
constexpr size_t maxSize = std::numeric_limits<size_t>::max();
size_t newSize;
if (growSize <= maxSize - oldSize) {
newSize = oldSize + growSize;
} else {
SK_ABORT("Path too big.");
}
// Note that realloc could memcpy more than we need. It seems to be a win anyway. TODO:
// encapsulate this.
fPoints = reinterpret_cast<SkPoint*>(sk_realloc_throw(fPoints, newSize));
size_t oldVerbSize = fVerbCnt * sizeof(uint8_t);
void* newVerbsDst = SkTAddOffset<void>(fPoints, newSize - oldVerbSize);
void* oldVerbsSrc = SkTAddOffset<void>(fPoints, oldSize - oldVerbSize);
memmove(newVerbsDst, oldVerbsSrc, oldVerbSize);
fVerbs = SkTAddOffset<uint8_t>(fPoints, newSize);
fFreeSpace += growSize;
SkDEBUGCODE(this->validate();)
}
/**
* Private, non-const-ptr version of the public function verbsMemBegin().
*/
uint8_t* verbsMemWritable() {
SkDEBUGCODE(this->validate();)
return fVerbs - fVerbCnt;
}
/**
* Gets the total amount of space allocated for verbs, points, and reserve.
*/
size_t currSize() const {
return reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints);
}
/**
* Called the first time someone calls CreateEmpty to actually create the singleton.
*/
friend SkPathRef* sk_create_empty_pathref();
void setIsOval(bool isOval, bool isCCW, unsigned start) {
fIsOval = isOval;
fRRectOrOvalIsCCW = isCCW;
fRRectOrOvalStartIdx = start;
}
void setIsRRect(bool isRRect, bool isCCW, unsigned start) {
fIsRRect = isRRect;
fRRectOrOvalIsCCW = isCCW;
fRRectOrOvalStartIdx = start;
}
// called only by the editor. Note that this is not a const function.
SkPoint* getPoints() {
SkDEBUGCODE(this->validate();)
fIsOval = false;
fIsRRect = false;
return fPoints;
}
const SkPoint* getPoints() const {
SkDEBUGCODE(this->validate();)
return fPoints;
}
void callGenIDChangeListeners();
enum {
kMinSize = 256,
};
mutable SkRect fBounds;
SkPoint* fPoints; // points to begining of the allocation
uint8_t* fVerbs; // points just past the end of the allocation (verbs grow backwards)
int fVerbCnt;
int fPointCnt;
size_t fFreeSpace; // redundant but saves computation
SkTDArray<SkScalar> fConicWeights;
enum {
kEmptyGenID = 1, // GenID reserved for path ref with zero points and zero verbs.
};
mutable uint32_t fGenerationID;
SkDEBUGCODE(int32_t fEditorsAttached;) // assert that only one editor in use at any time.
SkTDArray<GenIDChangeListener*> fGenIDChangeListeners; // pointers are owned
mutable uint8_t fBoundsIsDirty;
mutable SkBool8 fIsFinite; // only meaningful if bounds are valid
SkBool8 fIsOval;
SkBool8 fIsRRect;
// Both the circle and rrect special cases have a notion of direction and starting point
// The next two variables store that information for either.
SkBool8 fRRectOrOvalIsCCW;
uint8_t fRRectOrOvalStartIdx;
uint8_t fSegmentMask;
friend class PathRefTest_Private;
friend class ForceIsRRect_Private; // unit test isRRect
};
#endif