4431e7757c
Mike K: please sanity check Test.cpp and skia_test.cpp Feel free to look at the rest, but I don't expect any in depth review of path ops innards. Path Ops first iteration used QuickSort to order segments radiating from an intersection to compute the winding rule. This revision uses a circular sort instead. Breaking out the circular sort into its own long-lived structure (SkOpAngle) allows doing less work and provides a home for caching additional sorting data. The circle sort is more stable than the former sort, has a robust ordering and fewer exceptions. It finds unsortable ordering less often. It is less reliant on the initial curve tangent, using convex hulls instead whenever it can. Additional debug validation makes sure that the computed structures are self-consistent. A new visualization tool helps verify that the angle ordering is correct. The 70+M tests pass with this change on Windows, Mac, Linux 32 and Linux 64 in debug and release. R=mtklein@google.com, reed@google.com Author: caryclark@google.com Review URL: https://codereview.chromium.org/131103009 git-svn-id: http://skia.googlecode.com/svn/trunk@14183 2bbb7eff-a529-9590-31e7-b0007b416f81
343 lines
10 KiB
C++
343 lines
10 KiB
C++
/*
|
|
* Copyright 2012 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
#include "SkIntersections.h"
|
|
#include "SkLineParameters.h"
|
|
#include "SkPathOpsCubic.h"
|
|
#include "SkPathOpsQuad.h"
|
|
#include "SkPathOpsTriangle.h"
|
|
|
|
// from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html
|
|
// (currently only used by testing)
|
|
double SkDQuad::nearestT(const SkDPoint& pt) const {
|
|
SkDVector pos = fPts[0] - pt;
|
|
// search points P of bezier curve with PM.(dP / dt) = 0
|
|
// a calculus leads to a 3d degree equation :
|
|
SkDVector A = fPts[1] - fPts[0];
|
|
SkDVector B = fPts[2] - fPts[1];
|
|
B -= A;
|
|
double a = B.dot(B);
|
|
double b = 3 * A.dot(B);
|
|
double c = 2 * A.dot(A) + pos.dot(B);
|
|
double d = pos.dot(A);
|
|
double ts[3];
|
|
int roots = SkDCubic::RootsValidT(a, b, c, d, ts);
|
|
double d0 = pt.distanceSquared(fPts[0]);
|
|
double d2 = pt.distanceSquared(fPts[2]);
|
|
double distMin = SkTMin(d0, d2);
|
|
int bestIndex = -1;
|
|
for (int index = 0; index < roots; ++index) {
|
|
SkDPoint onQuad = ptAtT(ts[index]);
|
|
double dist = pt.distanceSquared(onQuad);
|
|
if (distMin > dist) {
|
|
distMin = dist;
|
|
bestIndex = index;
|
|
}
|
|
}
|
|
if (bestIndex >= 0) {
|
|
return ts[bestIndex];
|
|
}
|
|
return d0 < d2 ? 0 : 1;
|
|
}
|
|
|
|
bool SkDQuad::pointInHull(const SkDPoint& pt) const {
|
|
return ((const SkDTriangle&) fPts).contains(pt);
|
|
}
|
|
|
|
SkDPoint SkDQuad::top(double startT, double endT) const {
|
|
SkDQuad sub = subDivide(startT, endT);
|
|
SkDPoint topPt = sub[0];
|
|
if (topPt.fY > sub[2].fY || (topPt.fY == sub[2].fY && topPt.fX > sub[2].fX)) {
|
|
topPt = sub[2];
|
|
}
|
|
if (!between(sub[0].fY, sub[1].fY, sub[2].fY)) {
|
|
double extremeT;
|
|
if (FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, &extremeT)) {
|
|
extremeT = startT + (endT - startT) * extremeT;
|
|
SkDPoint test = ptAtT(extremeT);
|
|
if (topPt.fY > test.fY || (topPt.fY == test.fY && topPt.fX > test.fX)) {
|
|
topPt = test;
|
|
}
|
|
}
|
|
}
|
|
return topPt;
|
|
}
|
|
|
|
int SkDQuad::AddValidTs(double s[], int realRoots, double* t) {
|
|
int foundRoots = 0;
|
|
for (int index = 0; index < realRoots; ++index) {
|
|
double tValue = s[index];
|
|
if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) {
|
|
if (approximately_less_than_zero(tValue)) {
|
|
tValue = 0;
|
|
} else if (approximately_greater_than_one(tValue)) {
|
|
tValue = 1;
|
|
}
|
|
for (int idx2 = 0; idx2 < foundRoots; ++idx2) {
|
|
if (approximately_equal(t[idx2], tValue)) {
|
|
goto nextRoot;
|
|
}
|
|
}
|
|
t[foundRoots++] = tValue;
|
|
}
|
|
nextRoot:
|
|
{}
|
|
}
|
|
return foundRoots;
|
|
}
|
|
|
|
// note: caller expects multiple results to be sorted smaller first
|
|
// note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting
|
|
// analysis of the quadratic equation, suggesting why the following looks at
|
|
// the sign of B -- and further suggesting that the greatest loss of precision
|
|
// is in b squared less two a c
|
|
int SkDQuad::RootsValidT(double A, double B, double C, double t[2]) {
|
|
double s[2];
|
|
int realRoots = RootsReal(A, B, C, s);
|
|
int foundRoots = AddValidTs(s, realRoots, t);
|
|
return foundRoots;
|
|
}
|
|
|
|
/*
|
|
Numeric Solutions (5.6) suggests to solve the quadratic by computing
|
|
Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C))
|
|
and using the roots
|
|
t1 = Q / A
|
|
t2 = C / Q
|
|
*/
|
|
// this does not discard real roots <= 0 or >= 1
|
|
int SkDQuad::RootsReal(const double A, const double B, const double C, double s[2]) {
|
|
const double p = B / (2 * A);
|
|
const double q = C / A;
|
|
if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) {
|
|
if (approximately_zero(B)) {
|
|
s[0] = 0;
|
|
return C == 0;
|
|
}
|
|
s[0] = -C / B;
|
|
return 1;
|
|
}
|
|
/* normal form: x^2 + px + q = 0 */
|
|
const double p2 = p * p;
|
|
if (!AlmostDequalUlps(p2, q) && p2 < q) {
|
|
return 0;
|
|
}
|
|
double sqrt_D = 0;
|
|
if (p2 > q) {
|
|
sqrt_D = sqrt(p2 - q);
|
|
}
|
|
s[0] = sqrt_D - p;
|
|
s[1] = -sqrt_D - p;
|
|
return 1 + !AlmostDequalUlps(s[0], s[1]);
|
|
}
|
|
|
|
bool SkDQuad::isLinear(int startIndex, int endIndex) const {
|
|
SkLineParameters lineParameters;
|
|
lineParameters.quadEndPoints(*this, startIndex, endIndex);
|
|
// FIXME: maybe it's possible to avoid this and compare non-normalized
|
|
lineParameters.normalize();
|
|
double distance = lineParameters.controlPtDistance(*this);
|
|
return approximately_zero(distance);
|
|
}
|
|
|
|
SkDCubic SkDQuad::toCubic() const {
|
|
SkDCubic cubic;
|
|
cubic[0] = fPts[0];
|
|
cubic[2] = fPts[1];
|
|
cubic[3] = fPts[2];
|
|
cubic[1].fX = (cubic[0].fX + cubic[2].fX * 2) / 3;
|
|
cubic[1].fY = (cubic[0].fY + cubic[2].fY * 2) / 3;
|
|
cubic[2].fX = (cubic[3].fX + cubic[2].fX * 2) / 3;
|
|
cubic[2].fY = (cubic[3].fY + cubic[2].fY * 2) / 3;
|
|
return cubic;
|
|
}
|
|
|
|
SkDVector SkDQuad::dxdyAtT(double t) const {
|
|
double a = t - 1;
|
|
double b = 1 - 2 * t;
|
|
double c = t;
|
|
SkDVector result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX,
|
|
a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY };
|
|
return result;
|
|
}
|
|
|
|
// OPTIMIZE: assert if caller passes in t == 0 / t == 1 ?
|
|
SkDPoint SkDQuad::ptAtT(double t) const {
|
|
if (0 == t) {
|
|
return fPts[0];
|
|
}
|
|
if (1 == t) {
|
|
return fPts[2];
|
|
}
|
|
double one_t = 1 - t;
|
|
double a = one_t * one_t;
|
|
double b = 2 * one_t * t;
|
|
double c = t * t;
|
|
SkDPoint result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX,
|
|
a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY };
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
Given a quadratic q, t1, and t2, find a small quadratic segment.
|
|
|
|
The new quadratic is defined by A, B, and C, where
|
|
A = c[0]*(1 - t1)*(1 - t1) + 2*c[1]*t1*(1 - t1) + c[2]*t1*t1
|
|
C = c[3]*(1 - t1)*(1 - t1) + 2*c[2]*t1*(1 - t1) + c[1]*t1*t1
|
|
|
|
To find B, compute the point halfway between t1 and t2:
|
|
|
|
q(at (t1 + t2)/2) == D
|
|
|
|
Next, compute where D must be if we know the value of B:
|
|
|
|
_12 = A/2 + B/2
|
|
12_ = B/2 + C/2
|
|
123 = A/4 + B/2 + C/4
|
|
= D
|
|
|
|
Group the known values on one side:
|
|
|
|
B = D*2 - A/2 - C/2
|
|
*/
|
|
|
|
static double interp_quad_coords(const double* src, double t) {
|
|
double ab = SkDInterp(src[0], src[2], t);
|
|
double bc = SkDInterp(src[2], src[4], t);
|
|
double abc = SkDInterp(ab, bc, t);
|
|
return abc;
|
|
}
|
|
|
|
bool SkDQuad::monotonicInY() const {
|
|
return between(fPts[0].fY, fPts[1].fY, fPts[2].fY);
|
|
}
|
|
|
|
SkDQuad SkDQuad::subDivide(double t1, double t2) const {
|
|
SkDQuad dst;
|
|
double ax = dst[0].fX = interp_quad_coords(&fPts[0].fX, t1);
|
|
double ay = dst[0].fY = interp_quad_coords(&fPts[0].fY, t1);
|
|
double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2);
|
|
double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2);
|
|
double cx = dst[2].fX = interp_quad_coords(&fPts[0].fX, t2);
|
|
double cy = dst[2].fY = interp_quad_coords(&fPts[0].fY, t2);
|
|
/* bx = */ dst[1].fX = 2*dx - (ax + cx)/2;
|
|
/* by = */ dst[1].fY = 2*dy - (ay + cy)/2;
|
|
return dst;
|
|
}
|
|
|
|
void SkDQuad::align(int endIndex, SkDPoint* dstPt) const {
|
|
if (fPts[endIndex].fX == fPts[1].fX) {
|
|
dstPt->fX = fPts[endIndex].fX;
|
|
}
|
|
if (fPts[endIndex].fY == fPts[1].fY) {
|
|
dstPt->fY = fPts[endIndex].fY;
|
|
}
|
|
}
|
|
|
|
SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const {
|
|
SkASSERT(t1 != t2);
|
|
SkDPoint b;
|
|
#if 0
|
|
// this approach assumes that the control point computed directly is accurate enough
|
|
double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2);
|
|
double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2);
|
|
b.fX = 2 * dx - (a.fX + c.fX) / 2;
|
|
b.fY = 2 * dy - (a.fY + c.fY) / 2;
|
|
#else
|
|
SkDQuad sub = subDivide(t1, t2);
|
|
SkDLine b0 = {{a, sub[1] + (a - sub[0])}};
|
|
SkDLine b1 = {{c, sub[1] + (c - sub[2])}};
|
|
SkIntersections i;
|
|
i.intersectRay(b0, b1);
|
|
if (i.used() == 1 && i[0][0] >= 0 && i[1][0] >= 0) {
|
|
b = i.pt(0);
|
|
} else {
|
|
SkASSERT(i.used() <= 2);
|
|
b = SkDPoint::Mid(b0[1], b1[1]);
|
|
}
|
|
#endif
|
|
if (t1 == 0 || t2 == 0) {
|
|
align(0, &b);
|
|
}
|
|
if (t1 == 1 || t2 == 1) {
|
|
align(2, &b);
|
|
}
|
|
if (AlmostBequalUlps(b.fX, a.fX)) {
|
|
b.fX = a.fX;
|
|
} else if (AlmostBequalUlps(b.fX, c.fX)) {
|
|
b.fX = c.fX;
|
|
}
|
|
if (AlmostBequalUlps(b.fY, a.fY)) {
|
|
b.fY = a.fY;
|
|
} else if (AlmostBequalUlps(b.fY, c.fY)) {
|
|
b.fY = c.fY;
|
|
}
|
|
return b;
|
|
}
|
|
|
|
/* classic one t subdivision */
|
|
static void interp_quad_coords(const double* src, double* dst, double t) {
|
|
double ab = SkDInterp(src[0], src[2], t);
|
|
double bc = SkDInterp(src[2], src[4], t);
|
|
dst[0] = src[0];
|
|
dst[2] = ab;
|
|
dst[4] = SkDInterp(ab, bc, t);
|
|
dst[6] = bc;
|
|
dst[8] = src[4];
|
|
}
|
|
|
|
SkDQuadPair SkDQuad::chopAt(double t) const
|
|
{
|
|
SkDQuadPair dst;
|
|
interp_quad_coords(&fPts[0].fX, &dst.pts[0].fX, t);
|
|
interp_quad_coords(&fPts[0].fY, &dst.pts[0].fY, t);
|
|
return dst;
|
|
}
|
|
|
|
static int valid_unit_divide(double numer, double denom, double* ratio)
|
|
{
|
|
if (numer < 0) {
|
|
numer = -numer;
|
|
denom = -denom;
|
|
}
|
|
if (denom == 0 || numer == 0 || numer >= denom) {
|
|
return 0;
|
|
}
|
|
double r = numer / denom;
|
|
if (r == 0) { // catch underflow if numer <<<< denom
|
|
return 0;
|
|
}
|
|
*ratio = r;
|
|
return 1;
|
|
}
|
|
|
|
/** Quad'(t) = At + B, where
|
|
A = 2(a - 2b + c)
|
|
B = 2(b - a)
|
|
Solve for t, only if it fits between 0 < t < 1
|
|
*/
|
|
int SkDQuad::FindExtrema(double a, double b, double c, double tValue[1]) {
|
|
/* At + B == 0
|
|
t = -B / A
|
|
*/
|
|
return valid_unit_divide(a - b, a - b - b + c, tValue);
|
|
}
|
|
|
|
/* Parameterization form, given A*t*t + 2*B*t*(1-t) + C*(1-t)*(1-t)
|
|
*
|
|
* a = A - 2*B + C
|
|
* b = 2*B - 2*C
|
|
* c = C
|
|
*/
|
|
void SkDQuad::SetABC(const double* quad, double* a, double* b, double* c) {
|
|
*a = quad[0]; // a = A
|
|
*b = 2 * quad[2]; // b = 2*B
|
|
*c = quad[4]; // c = C
|
|
*b -= *c; // b = 2*B - C
|
|
*a -= *b; // a = A - 2*B + C
|
|
*b -= *c; // b = 2*B - 2*C
|
|
}
|