63fd760a37
Also adds a presubmit to prevent adding trailing whitespace to source code in the future. Change-Id: I41a4df81487f6f00aa19b188f0cac6a3377efde6 Reviewed-on: https://skia-review.googlesource.com/57380 Reviewed-by: Ravi Mistry <rmistry@google.com> Reviewed-by: Mike Reed <reed@google.com> Commit-Queue: Ben Wagner <bungeman@google.com>
557 lines
16 KiB
C
557 lines
16 KiB
C
/*
|
|
* Copyright 2006 The Android Open Source Project
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#ifndef SkPoint_DEFINED
|
|
#define SkPoint_DEFINED
|
|
|
|
#include "SkMath.h"
|
|
#include "SkScalar.h"
|
|
|
|
/** \struct SkIPoint16
|
|
|
|
SkIPoint holds two 16 bit integer coordinates
|
|
*/
|
|
struct SkIPoint16 {
|
|
int16_t fX, fY;
|
|
|
|
static SkIPoint16 Make(int x, int y) {
|
|
SkIPoint16 pt;
|
|
pt.set(x, y);
|
|
return pt;
|
|
}
|
|
|
|
int16_t x() const { return fX; }
|
|
int16_t y() const { return fY; }
|
|
|
|
void set(int x, int y) {
|
|
fX = SkToS16(x);
|
|
fY = SkToS16(y);
|
|
}
|
|
};
|
|
|
|
/** \struct SkIPoint
|
|
|
|
SkIPoint holds two 32 bit integer coordinates
|
|
*/
|
|
struct SkIPoint {
|
|
int32_t fX, fY;
|
|
|
|
static SkIPoint Make(int32_t x, int32_t y) {
|
|
SkIPoint pt;
|
|
pt.set(x, y);
|
|
return pt;
|
|
}
|
|
|
|
int32_t x() const { return fX; }
|
|
int32_t y() const { return fY; }
|
|
void setX(int32_t x) { fX = x; }
|
|
void setY(int32_t y) { fY = y; }
|
|
|
|
/**
|
|
* Returns true iff fX and fY are both zero.
|
|
*/
|
|
bool isZero() const { return (fX | fY) == 0; }
|
|
|
|
/**
|
|
* Set both fX and fY to zero. Same as set(0, 0)
|
|
*/
|
|
void setZero() { fX = fY = 0; }
|
|
|
|
/** Set the x and y values of the point. */
|
|
void set(int32_t x, int32_t y) { fX = x; fY = y; }
|
|
|
|
/** Rotate the point clockwise, writing the new point into dst
|
|
It is legal for dst == this
|
|
*/
|
|
void rotateCW(SkIPoint* dst) const;
|
|
|
|
/** Rotate the point clockwise, writing the new point back into the point
|
|
*/
|
|
|
|
void rotateCW() { this->rotateCW(this); }
|
|
|
|
/** Rotate the point counter-clockwise, writing the new point into dst.
|
|
It is legal for dst == this
|
|
*/
|
|
void rotateCCW(SkIPoint* dst) const;
|
|
|
|
/** Rotate the point counter-clockwise, writing the new point back into
|
|
the point
|
|
*/
|
|
void rotateCCW() { this->rotateCCW(this); }
|
|
|
|
/** Negate the X and Y coordinates of the point.
|
|
*/
|
|
void negate() { fX = -fX; fY = -fY; }
|
|
|
|
/** Return a new point whose X and Y coordinates are the negative of the
|
|
original point's
|
|
*/
|
|
SkIPoint operator-() const {
|
|
SkIPoint neg;
|
|
neg.fX = -fX;
|
|
neg.fY = -fY;
|
|
return neg;
|
|
}
|
|
|
|
/** Add v's coordinates to this point's */
|
|
void operator+=(const SkIPoint& v) {
|
|
fX += v.fX;
|
|
fY += v.fY;
|
|
}
|
|
|
|
/** Subtract v's coordinates from this point's */
|
|
void operator-=(const SkIPoint& v) {
|
|
fX -= v.fX;
|
|
fY -= v.fY;
|
|
}
|
|
|
|
/** Returns true if the point's coordinates equal (x,y) */
|
|
bool equals(int32_t x, int32_t y) const {
|
|
return fX == x && fY == y;
|
|
}
|
|
|
|
friend bool operator==(const SkIPoint& a, const SkIPoint& b) {
|
|
return a.fX == b.fX && a.fY == b.fY;
|
|
}
|
|
|
|
friend bool operator!=(const SkIPoint& a, const SkIPoint& b) {
|
|
return a.fX != b.fX || a.fY != b.fY;
|
|
}
|
|
|
|
/** Returns a new point whose coordinates are the difference between
|
|
a and b (i.e. a - b)
|
|
*/
|
|
friend SkIPoint operator-(const SkIPoint& a, const SkIPoint& b) {
|
|
SkIPoint v;
|
|
v.set(a.fX - b.fX, a.fY - b.fY);
|
|
return v;
|
|
}
|
|
|
|
/** Returns a new point whose coordinates are the sum of a and b (a + b)
|
|
*/
|
|
friend SkIPoint operator+(const SkIPoint& a, const SkIPoint& b) {
|
|
SkIPoint v;
|
|
v.set(a.fX + b.fX, a.fY + b.fY);
|
|
return v;
|
|
}
|
|
|
|
/** Returns the dot product of a and b, treating them as 2D vectors
|
|
*/
|
|
static int32_t DotProduct(const SkIPoint& a, const SkIPoint& b) {
|
|
return a.fX * b.fX + a.fY * b.fY;
|
|
}
|
|
|
|
/** Returns the cross product of a and b, treating them as 2D vectors
|
|
*/
|
|
static int32_t CrossProduct(const SkIPoint& a, const SkIPoint& b) {
|
|
return a.fX * b.fY - a.fY * b.fX;
|
|
}
|
|
};
|
|
|
|
struct SK_API SkPoint {
|
|
SkScalar fX, fY;
|
|
|
|
static SkPoint Make(SkScalar x, SkScalar y) {
|
|
SkPoint pt;
|
|
pt.set(x, y);
|
|
return pt;
|
|
}
|
|
|
|
SkScalar x() const { return fX; }
|
|
SkScalar y() const { return fY; }
|
|
|
|
/**
|
|
* Returns true iff fX and fY are both zero.
|
|
*/
|
|
bool isZero() const { return (0 == fX) & (0 == fY); }
|
|
|
|
/** Set the point's X and Y coordinates */
|
|
void set(SkScalar x, SkScalar y) { fX = x; fY = y; }
|
|
|
|
/** Set the point's X and Y coordinates by automatically promoting (x,y) to
|
|
SkScalar values.
|
|
*/
|
|
void iset(int32_t x, int32_t y) {
|
|
fX = SkIntToScalar(x);
|
|
fY = SkIntToScalar(y);
|
|
}
|
|
|
|
/** Set the point's X and Y coordinates by automatically promoting p's
|
|
coordinates to SkScalar values.
|
|
*/
|
|
void iset(const SkIPoint& p) {
|
|
fX = SkIntToScalar(p.fX);
|
|
fY = SkIntToScalar(p.fY);
|
|
}
|
|
|
|
void setAbs(const SkPoint& pt) {
|
|
fX = SkScalarAbs(pt.fX);
|
|
fY = SkScalarAbs(pt.fY);
|
|
}
|
|
|
|
// counter-clockwise fan
|
|
void setIRectFan(int l, int t, int r, int b) {
|
|
SkPoint* v = this;
|
|
v[0].set(SkIntToScalar(l), SkIntToScalar(t));
|
|
v[1].set(SkIntToScalar(l), SkIntToScalar(b));
|
|
v[2].set(SkIntToScalar(r), SkIntToScalar(b));
|
|
v[3].set(SkIntToScalar(r), SkIntToScalar(t));
|
|
}
|
|
void setIRectFan(int l, int t, int r, int b, size_t stride);
|
|
|
|
// counter-clockwise fan
|
|
void setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b) {
|
|
SkPoint* v = this;
|
|
v[0].set(l, t);
|
|
v[1].set(l, b);
|
|
v[2].set(r, b);
|
|
v[3].set(r, t);
|
|
}
|
|
|
|
void setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b, size_t stride) {
|
|
SkASSERT(stride >= sizeof(SkPoint));
|
|
|
|
((SkPoint*)((intptr_t)this + 0 * stride))->set(l, t);
|
|
((SkPoint*)((intptr_t)this + 1 * stride))->set(l, b);
|
|
((SkPoint*)((intptr_t)this + 2 * stride))->set(r, b);
|
|
((SkPoint*)((intptr_t)this + 3 * stride))->set(r, t);
|
|
}
|
|
|
|
|
|
static void Offset(SkPoint points[], int count, const SkPoint& offset) {
|
|
Offset(points, count, offset.fX, offset.fY);
|
|
}
|
|
|
|
static void Offset(SkPoint points[], int count, SkScalar dx, SkScalar dy) {
|
|
for (int i = 0; i < count; ++i) {
|
|
points[i].offset(dx, dy);
|
|
}
|
|
}
|
|
|
|
void offset(SkScalar dx, SkScalar dy) {
|
|
fX += dx;
|
|
fY += dy;
|
|
}
|
|
|
|
/** Return the euclidian distance from (0,0) to the point
|
|
*/
|
|
SkScalar length() const { return SkPoint::Length(fX, fY); }
|
|
SkScalar distanceToOrigin() const { return this->length(); }
|
|
|
|
/**
|
|
* Return true if the computed length of the vector is >= the internal
|
|
* tolerance (used to avoid dividing by tiny values).
|
|
*/
|
|
static bool CanNormalize(SkScalar dx, SkScalar dy) {
|
|
// Simple enough (and performance critical sometimes) so we inline it.
|
|
return (dx*dx + dy*dy) > (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
|
|
}
|
|
|
|
bool canNormalize() const {
|
|
return CanNormalize(fX, fY);
|
|
}
|
|
|
|
/** Set the point (vector) to be unit-length in the same direction as it
|
|
already points. If the point has a degenerate length (i.e. nearly 0)
|
|
then set it to (0,0) and return false; otherwise return true.
|
|
*/
|
|
bool normalize();
|
|
|
|
/** Set the point (vector) to be unit-length in the same direction as the
|
|
x,y params. If the vector (x,y) has a degenerate length (i.e. nearly 0)
|
|
then set it to (0,0) and return false, otherwise return true.
|
|
*/
|
|
bool setNormalize(SkScalar x, SkScalar y);
|
|
|
|
/** Scale the point (vector) to have the specified length, and return that
|
|
length. If the original length is degenerately small (nearly zero),
|
|
set it to (0,0) and return false, otherwise return true.
|
|
*/
|
|
bool setLength(SkScalar length);
|
|
|
|
/** Set the point (vector) to have the specified length in the same
|
|
direction as (x,y). If the vector (x,y) has a degenerate length
|
|
(i.e. nearly 0) then set it to (0,0) and return false, otherwise return true.
|
|
*/
|
|
bool setLength(SkScalar x, SkScalar y, SkScalar length);
|
|
|
|
/** Same as setLength, but favoring speed over accuracy.
|
|
*/
|
|
bool setLengthFast(SkScalar length);
|
|
|
|
/** Same as setLength, but favoring speed over accuracy.
|
|
*/
|
|
bool setLengthFast(SkScalar x, SkScalar y, SkScalar length);
|
|
|
|
/** Scale the point's coordinates by scale, writing the answer into dst.
|
|
It is legal for dst == this.
|
|
*/
|
|
void scale(SkScalar scale, SkPoint* dst) const;
|
|
|
|
/** Scale the point's coordinates by scale, writing the answer back into
|
|
the point.
|
|
*/
|
|
void scale(SkScalar value) { this->scale(value, this); }
|
|
|
|
/** Rotate the point clockwise by 90 degrees, writing the answer into dst.
|
|
It is legal for dst == this.
|
|
*/
|
|
void rotateCW(SkPoint* dst) const;
|
|
|
|
/** Rotate the point clockwise by 90 degrees, writing the answer back into
|
|
the point.
|
|
*/
|
|
void rotateCW() { this->rotateCW(this); }
|
|
|
|
/** Rotate the point counter-clockwise by 90 degrees, writing the answer
|
|
into dst. It is legal for dst == this.
|
|
*/
|
|
void rotateCCW(SkPoint* dst) const;
|
|
|
|
/** Rotate the point counter-clockwise by 90 degrees, writing the answer
|
|
back into the point.
|
|
*/
|
|
void rotateCCW() { this->rotateCCW(this); }
|
|
|
|
/** Negate the point's coordinates
|
|
*/
|
|
void negate() {
|
|
fX = -fX;
|
|
fY = -fY;
|
|
}
|
|
|
|
/** Returns a new point whose coordinates are the negative of the point's
|
|
*/
|
|
SkPoint operator-() const {
|
|
SkPoint neg;
|
|
neg.fX = -fX;
|
|
neg.fY = -fY;
|
|
return neg;
|
|
}
|
|
|
|
/** Add v's coordinates to the point's
|
|
*/
|
|
void operator+=(const SkPoint& v) {
|
|
fX += v.fX;
|
|
fY += v.fY;
|
|
}
|
|
|
|
/** Subtract v's coordinates from the point's
|
|
*/
|
|
void operator-=(const SkPoint& v) {
|
|
fX -= v.fX;
|
|
fY -= v.fY;
|
|
}
|
|
|
|
SkPoint operator*(SkScalar scale) const {
|
|
return Make(fX * scale, fY * scale);
|
|
}
|
|
|
|
SkPoint& operator*=(SkScalar scale) {
|
|
fX *= scale;
|
|
fY *= scale;
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
* Returns true if both X and Y are finite (not infinity or NaN)
|
|
*/
|
|
bool isFinite() const {
|
|
SkScalar accum = 0;
|
|
accum *= fX;
|
|
accum *= fY;
|
|
|
|
// accum is either NaN or it is finite (zero).
|
|
SkASSERT(0 == accum || SkScalarIsNaN(accum));
|
|
|
|
// value==value will be true iff value is not NaN
|
|
// TODO: is it faster to say !accum or accum==accum?
|
|
return !SkScalarIsNaN(accum);
|
|
}
|
|
|
|
/**
|
|
* Returns true if the point's coordinates equal (x,y)
|
|
*/
|
|
bool equals(SkScalar x, SkScalar y) const {
|
|
return fX == x && fY == y;
|
|
}
|
|
|
|
friend bool operator==(const SkPoint& a, const SkPoint& b) {
|
|
return a.fX == b.fX && a.fY == b.fY;
|
|
}
|
|
|
|
friend bool operator!=(const SkPoint& a, const SkPoint& b) {
|
|
return a.fX != b.fX || a.fY != b.fY;
|
|
}
|
|
|
|
/** Return true if this point and the given point are far enough apart
|
|
such that a vector between them would be non-degenerate.
|
|
|
|
WARNING: Unlike the explicit tolerance version,
|
|
this method does not use componentwise comparison. Instead, it
|
|
uses a comparison designed to match judgments elsewhere regarding
|
|
degeneracy ("points A and B are so close that the vector between them
|
|
is essentially zero").
|
|
*/
|
|
bool equalsWithinTolerance(const SkPoint& p) const {
|
|
return !CanNormalize(fX - p.fX, fY - p.fY);
|
|
}
|
|
|
|
/** WARNING: There is no guarantee that the result will reflect judgments
|
|
elsewhere regarding degeneracy ("points A and B are so close that the
|
|
vector between them is essentially zero").
|
|
*/
|
|
bool equalsWithinTolerance(const SkPoint& p, SkScalar tol) const {
|
|
return SkScalarNearlyZero(fX - p.fX, tol)
|
|
&& SkScalarNearlyZero(fY - p.fY, tol);
|
|
}
|
|
|
|
/** Returns a new point whose coordinates are the difference between
|
|
a's and b's (a - b)
|
|
*/
|
|
friend SkPoint operator-(const SkPoint& a, const SkPoint& b) {
|
|
SkPoint v;
|
|
v.set(a.fX - b.fX, a.fY - b.fY);
|
|
return v;
|
|
}
|
|
|
|
/** Returns a new point whose coordinates are the sum of a's and b's (a + b)
|
|
*/
|
|
friend SkPoint operator+(const SkPoint& a, const SkPoint& b) {
|
|
SkPoint v;
|
|
v.set(a.fX + b.fX, a.fY + b.fY);
|
|
return v;
|
|
}
|
|
|
|
/** Returns the euclidian distance from (0,0) to (x,y)
|
|
*/
|
|
static SkScalar Length(SkScalar x, SkScalar y);
|
|
|
|
/** Normalize pt, returning its previous length. If the prev length is too
|
|
small (degenerate), set pt to (0,0) and return 0. This uses the same
|
|
tolerance as CanNormalize.
|
|
|
|
Note that this method may be significantly more expensive than
|
|
the non-static normalize(), because it has to return the previous length
|
|
of the point. If you don't need the previous length, call the
|
|
non-static normalize() method instead.
|
|
*/
|
|
static SkScalar Normalize(SkPoint* pt);
|
|
|
|
/** Returns the euclidian distance between a and b
|
|
*/
|
|
static SkScalar Distance(const SkPoint& a, const SkPoint& b) {
|
|
return Length(a.fX - b.fX, a.fY - b.fY);
|
|
}
|
|
|
|
/** Returns the dot product of a and b, treating them as 2D vectors
|
|
*/
|
|
static SkScalar DotProduct(const SkPoint& a, const SkPoint& b) {
|
|
return a.fX * b.fX + a.fY * b.fY;
|
|
}
|
|
|
|
/** Returns the cross product of a and b, treating them as 2D vectors
|
|
*/
|
|
static SkScalar CrossProduct(const SkPoint& a, const SkPoint& b) {
|
|
return a.fX * b.fY - a.fY * b.fX;
|
|
}
|
|
|
|
SkScalar cross(const SkPoint& vec) const {
|
|
return CrossProduct(*this, vec);
|
|
}
|
|
|
|
SkScalar dot(const SkPoint& vec) const {
|
|
return DotProduct(*this, vec);
|
|
}
|
|
|
|
SkScalar lengthSqd() const {
|
|
return DotProduct(*this, *this);
|
|
}
|
|
|
|
SkScalar distanceToSqd(const SkPoint& pt) const {
|
|
SkScalar dx = fX - pt.fX;
|
|
SkScalar dy = fY - pt.fY;
|
|
return dx * dx + dy * dy;
|
|
}
|
|
|
|
/**
|
|
* The side of a point relative to a line. If the line is from a to b then
|
|
* the values are consistent with the sign of (b-a) cross (pt-a)
|
|
*/
|
|
enum Side {
|
|
kLeft_Side = -1,
|
|
kOn_Side = 0,
|
|
kRight_Side = 1
|
|
};
|
|
|
|
/**
|
|
* Returns the squared distance to the infinite line between two pts. Also
|
|
* optionally returns the side of the line that the pt falls on (looking
|
|
* along line from a to b)
|
|
*/
|
|
SkScalar distanceToLineBetweenSqd(const SkPoint& a,
|
|
const SkPoint& b,
|
|
Side* side = nullptr) const;
|
|
|
|
/**
|
|
* Returns the distance to the infinite line between two pts. Also
|
|
* optionally returns the side of the line that the pt falls on (looking
|
|
* along the line from a to b)
|
|
*/
|
|
SkScalar distanceToLineBetween(const SkPoint& a,
|
|
const SkPoint& b,
|
|
Side* side = nullptr) const {
|
|
return SkScalarSqrt(this->distanceToLineBetweenSqd(a, b, side));
|
|
}
|
|
|
|
/**
|
|
* Returns the squared distance to the line segment between pts a and b
|
|
*/
|
|
SkScalar distanceToLineSegmentBetweenSqd(const SkPoint& a,
|
|
const SkPoint& b) const;
|
|
|
|
/**
|
|
* Returns the distance to the line segment between pts a and b.
|
|
*/
|
|
SkScalar distanceToLineSegmentBetween(const SkPoint& a,
|
|
const SkPoint& b) const {
|
|
return SkScalarSqrt(this->distanceToLineSegmentBetweenSqd(a, b));
|
|
}
|
|
|
|
/**
|
|
* Make this vector be orthogonal to vec. Looking down vec the
|
|
* new vector will point in direction indicated by side (which
|
|
* must be kLeft_Side or kRight_Side).
|
|
*/
|
|
void setOrthog(const SkPoint& vec, Side side = kLeft_Side) {
|
|
// vec could be this
|
|
SkScalar tmp = vec.fX;
|
|
if (kRight_Side == side) {
|
|
fX = -vec.fY;
|
|
fY = tmp;
|
|
} else {
|
|
SkASSERT(kLeft_Side == side);
|
|
fX = vec.fY;
|
|
fY = -tmp;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cast-safe way to treat the point as an array of (2) SkScalars.
|
|
*/
|
|
const SkScalar* asScalars() const { return &fX; }
|
|
};
|
|
|
|
typedef SkPoint SkVector;
|
|
|
|
static inline bool SkPointsAreFinite(const SkPoint array[], int count) {
|
|
return SkScalarsAreFinite(&array[0].fX, count << 1);
|
|
}
|
|
|
|
#endif
|