skia2/tests/PathOpsExtendedTest.cpp
commit-bot@chromium.org 4431e7757c Mike R: please sanity check SkPostConfig.h
Mike K: please sanity check Test.cpp and skia_test.cpp

Feel free to look at the rest, but I don't expect any in depth review of path ops innards.

Path Ops first iteration used QuickSort to order segments radiating from an intersection to compute the winding rule.

This revision uses a circular sort instead. Breaking out the circular sort into its own long-lived structure (SkOpAngle) allows doing less work and provides a home for caching additional sorting data.

The circle sort is more stable than the former sort, has a robust ordering and fewer exceptions. It finds unsortable ordering less often. It is less reliant on the initial curve  tangent, using convex hulls instead whenever it can.

Additional debug validation makes sure that the computed structures are self-consistent. A new visualization tool helps verify that the angle ordering is correct.

The 70+M tests pass with this change on Windows, Mac, Linux 32 and Linux 64 in debug and release.

R=mtklein@google.com, reed@google.com

Author: caryclark@google.com

Review URL: https://codereview.chromium.org/131103009

git-svn-id: http://skia.googlecode.com/svn/trunk@14183 2bbb7eff-a529-9590-31e7-b0007b416f81
2014-04-14 17:08:59 +00:00

749 lines
24 KiB
C++

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "PathOpsExtendedTest.h"
#include "PathOpsThreadedCommon.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkForceLinking.h"
#include "SkMatrix.h"
#include "SkPaint.h"
#include "SkRTConf.h"
#include "SkStream.h"
#include "SkThread.h"
#include "SkThreadPool.h"
#ifdef SK_BUILD_FOR_MAC
#include <sys/sysctl.h>
#endif
__SK_FORCE_IMAGE_DECODER_LINKING;
static const char marker[] =
"</div>\n"
"\n"
"<script type=\"text/javascript\">\n"
"\n"
"var testDivs = [\n";
static const char* opStrs[] = {
"kDifference_PathOp",
"kIntersect_PathOp",
"kUnion_PathOp",
"kXor_PathOp",
"kReverseDifference_PathOp",
};
static const char* opSuffixes[] = {
"d",
"i",
"u",
"o",
};
static bool gShowPath = false;
static bool gComparePathsAssert = true;
static bool gPathStrAssert = true;
static const char* gFillTypeStr[] = {
"kWinding_FillType",
"kEvenOdd_FillType",
"kInverseWinding_FillType",
"kInverseEvenOdd_FillType"
};
static void output_scalar(SkScalar num) {
if (num == (int) num) {
SkDebugf("%d", (int) num);
} else {
SkString str;
str.printf("%1.9g", num);
int width = (int) str.size();
const char* cStr = str.c_str();
while (cStr[width - 1] == '0') {
--width;
}
str.resize(width);
SkDebugf("%sf", str.c_str());
}
}
static void output_points(const SkPoint* pts, int count) {
for (int index = 0; index < count; ++index) {
output_scalar(pts[index].fX);
SkDebugf(", ");
output_scalar(pts[index].fY);
if (index + 1 < count) {
SkDebugf(", ");
}
}
SkDebugf(");\n");
}
static void showPathContours(SkPath::RawIter& iter, const char* pathName) {
uint8_t verb;
SkPoint pts[4];
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
SkDebugf(" %s.moveTo(", pathName);
output_points(&pts[0], 1);
continue;
case SkPath::kLine_Verb:
SkDebugf(" %s.lineTo(", pathName);
output_points(&pts[1], 1);
break;
case SkPath::kQuad_Verb:
SkDebugf(" %s.quadTo(", pathName);
output_points(&pts[1], 2);
break;
case SkPath::kCubic_Verb:
SkDebugf(" %s.cubicTo(", pathName);
output_points(&pts[1], 3);
break;
case SkPath::kClose_Verb:
SkDebugf(" %s.close();\n", pathName);
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
}
static void showPath(const SkPath& path, const char* pathName, bool includeDeclaration) {
SkPath::RawIter iter(path);
#define SUPPORT_RECT_CONTOUR_DETECTION 0
#if SUPPORT_RECT_CONTOUR_DETECTION
int rectCount = path.isRectContours() ? path.rectContours(NULL, NULL) : 0;
if (rectCount > 0) {
SkTDArray<SkRect> rects;
SkTDArray<SkPath::Direction> directions;
rects.setCount(rectCount);
directions.setCount(rectCount);
path.rectContours(rects.begin(), directions.begin());
for (int contour = 0; contour < rectCount; ++contour) {
const SkRect& rect = rects[contour];
SkDebugf("path.addRect(%1.9g, %1.9g, %1.9g, %1.9g, %s);\n", rect.fLeft, rect.fTop,
rect.fRight, rect.fBottom, directions[contour] == SkPath::kCCW_Direction
? "SkPath::kCCW_Direction" : "SkPath::kCW_Direction");
}
return;
}
#endif
SkPath::FillType fillType = path.getFillType();
SkASSERT(fillType >= SkPath::kWinding_FillType && fillType <= SkPath::kInverseEvenOdd_FillType);
if (includeDeclaration) {
SkDebugf(" SkPath %s;\n", pathName);
}
SkDebugf(" %s.setFillType(SkPath::%s);\n", pathName, gFillTypeStr[fillType]);
iter.setPath(path);
showPathContours(iter, pathName);
}
#if DEBUG_SHOW_TEST_NAME
static void showPathData(const SkPath& path) {
SkPath::RawIter iter(path);
uint8_t verb;
SkPoint pts[4];
SkPoint firstPt = {0, 0}, lastPt = {0, 0};
bool firstPtSet = false;
bool lastPtSet = true;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
firstPt = pts[0];
firstPtSet = true;
continue;
case SkPath::kLine_Verb:
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", pts[0].fX, pts[0].fY,
pts[1].fX, pts[1].fY);
lastPt = pts[1];
lastPtSet = true;
break;
case SkPath::kQuad_Verb:
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
lastPt = pts[2];
lastPtSet = true;
break;
case SkPath::kCubic_Verb:
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY,
pts[3].fX, pts[3].fY);
lastPt = pts[3];
lastPtSet = true;
break;
case SkPath::kClose_Verb:
if (firstPtSet && lastPtSet && firstPt != lastPt) {
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", lastPt.fX, lastPt.fY,
firstPt.fX, firstPt.fY);
}
firstPtSet = lastPtSet = false;
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
}
#endif
void showOp(const SkPathOp op) {
switch (op) {
case kDifference_PathOp:
SkDebugf("op difference\n");
break;
case kIntersect_PathOp:
SkDebugf("op intersect\n");
break;
case kUnion_PathOp:
SkDebugf("op union\n");
break;
case kXOR_PathOp:
SkDebugf("op xor\n");
break;
case kReverseDifference_PathOp:
SkDebugf("op reverse difference\n");
break;
default:
SkASSERT(0);
}
}
#if DEBUG_SHOW_TEST_NAME
void ShowFunctionHeader(const char* functionName) {
SkDebugf("\nstatic void %s(skiatest::Reporter* reporter, const char* filename) {\n", functionName);
if (strcmp("skphealth_com76", functionName) == 0) {
SkDebugf("found it\n");
}
}
static const char* gOpStrs[] = {
"kDifference_PathOp",
"kIntersect_PathOp",
"kUnion_PathOp",
"kXor_PathOp",
"kReverseDifference_PathOp",
};
void ShowOp(SkPathOp op, const char* pathOne, const char* pathTwo) {
SkDebugf(" testPathOp(reporter, %s, %s, %s, filename);\n", pathOne, pathTwo, gOpStrs[op]);
SkDebugf("}\n");
}
#endif
#if DEBUG_SHOW_TEST_NAME
static char hexorator(int x) {
if (x < 10) {
return x + '0';
}
x -= 10;
SkASSERT(x < 26);
return x + 'A';
}
#endif
void ShowTestName(PathOpsThreadState* state, int a, int b, int c, int d) {
#if DEBUG_SHOW_TEST_NAME
state->fSerialNo[0] = hexorator(state->fA);
state->fSerialNo[1] = hexorator(state->fB);
state->fSerialNo[2] = hexorator(state->fC);
state->fSerialNo[3] = hexorator(state->fD);
state->fSerialNo[4] = hexorator(a);
state->fSerialNo[5] = hexorator(b);
state->fSerialNo[6] = hexorator(c);
state->fSerialNo[7] = hexorator(d);
state->fSerialNo[8] = '\0';
SkDebugf("%s\n", state->fSerialNo);
if (strcmp(state->fSerialNo, state->fKey) == 0) {
SkDebugf("%s\n", state->fPathStr);
}
#endif
}
const int bitWidth = 64;
const int bitHeight = 64;
static void scaleMatrix(const SkPath& one, const SkPath& two, SkMatrix& scale) {
SkRect larger = one.getBounds();
larger.join(two.getBounds());
SkScalar largerWidth = larger.width();
if (largerWidth < 4) {
largerWidth = 4;
}
SkScalar largerHeight = larger.height();
if (largerHeight < 4) {
largerHeight = 4;
}
SkScalar hScale = (bitWidth - 2) / largerWidth;
SkScalar vScale = (bitHeight - 2) / largerHeight;
scale.reset();
scale.preScale(hScale, vScale);
}
static int pathsDrawTheSame(SkBitmap& bits, const SkPath& scaledOne, const SkPath& scaledTwo,
int& error2x2) {
if (bits.width() == 0) {
bits.allocN32Pixels(bitWidth * 2, bitHeight);
}
SkCanvas canvas(bits);
canvas.drawColor(SK_ColorWHITE);
SkPaint paint;
canvas.save();
const SkRect& bounds1 = scaledOne.getBounds();
canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1);
canvas.drawPath(scaledOne, paint);
canvas.restore();
canvas.save();
canvas.translate(-bounds1.fLeft + 1 + bitWidth, -bounds1.fTop + 1);
canvas.drawPath(scaledTwo, paint);
canvas.restore();
int errors2 = 0;
int errors = 0;
for (int y = 0; y < bitHeight - 1; ++y) {
uint32_t* addr1 = bits.getAddr32(0, y);
uint32_t* addr2 = bits.getAddr32(0, y + 1);
uint32_t* addr3 = bits.getAddr32(bitWidth, y);
uint32_t* addr4 = bits.getAddr32(bitWidth, y + 1);
for (int x = 0; x < bitWidth - 1; ++x) {
// count 2x2 blocks
bool err = addr1[x] != addr3[x];
if (err) {
errors2 += addr1[x + 1] != addr3[x + 1]
&& addr2[x] != addr4[x] && addr2[x + 1] != addr4[x + 1];
errors++;
}
}
}
error2x2 = errors2;
return errors;
}
static int pathsDrawTheSame(const SkPath& one, const SkPath& two, SkBitmap& bits, SkPath& scaledOne,
SkPath& scaledTwo, int& error2x2) {
SkMatrix scale;
scaleMatrix(one, two, scale);
one.transform(scale, &scaledOne);
two.transform(scale, &scaledTwo);
return pathsDrawTheSame(bits, scaledOne, scaledTwo, error2x2);
}
bool drawAsciiPaths(const SkPath& one, const SkPath& two, bool drawPaths) {
if (!drawPaths) {
return true;
}
const SkRect& bounds1 = one.getBounds();
const SkRect& bounds2 = two.getBounds();
SkRect larger = bounds1;
larger.join(bounds2);
SkBitmap bits;
char out[256];
int bitWidth = SkScalarCeilToInt(larger.width()) + 2;
if (bitWidth * 2 + 1 >= (int) sizeof(out)) {
return false;
}
int bitHeight = SkScalarCeilToInt(larger.height()) + 2;
if (bitHeight >= (int) sizeof(out)) {
return false;
}
bits.allocN32Pixels(bitWidth * 2, bitHeight);
SkCanvas canvas(bits);
canvas.drawColor(SK_ColorWHITE);
SkPaint paint;
canvas.save();
canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1);
canvas.drawPath(one, paint);
canvas.restore();
canvas.save();
canvas.translate(-bounds1.fLeft + 1 + bitWidth, -bounds1.fTop + 1);
canvas.drawPath(two, paint);
canvas.restore();
for (int y = 0; y < bitHeight; ++y) {
uint32_t* addr1 = bits.getAddr32(0, y);
int x;
char* outPtr = out;
for (x = 0; x < bitWidth; ++x) {
*outPtr++ = addr1[x] == (uint32_t) -1 ? '_' : 'x';
}
*outPtr++ = '|';
for (x = bitWidth; x < bitWidth * 2; ++x) {
*outPtr++ = addr1[x] == (uint32_t) -1 ? '_' : 'x';
}
*outPtr++ = '\0';
SkDebugf("%s\n", out);
}
return true;
}
static int comparePaths(skiatest::Reporter* reporter, const char* filename, const SkPath& one,
const SkPath& two, SkBitmap& bitmap) {
int errors2x2;
SkPath scaledOne, scaledTwo;
(void) pathsDrawTheSame(one, two, bitmap, scaledOne, scaledTwo, errors2x2);
if (errors2x2 == 0) {
return 0;
}
const int MAX_ERRORS = 9;
REPORTER_ASSERT(reporter, errors2x2 <= MAX_ERRORS || !gComparePathsAssert);
return errors2x2 > MAX_ERRORS ? errors2x2 : 0;
}
const int gTestFirst = 4;
static int gTestNo = gTestFirst;
static SkTDArray<SkPathOp> gTestOp;
static void showPathOpPath(const char* testName, const SkPath& one, const SkPath& two,
const SkPath& a, const SkPath& b, const SkPath& scaledOne, const SkPath& scaledTwo,
const SkPathOp shapeOp, const SkMatrix& scale) {
SkASSERT((unsigned) shapeOp < SK_ARRAY_COUNT(opStrs));
SkString defaultTestName;
if (!testName) {
defaultTestName.printf("xOp%d%s", gTestNo, opSuffixes[shapeOp]);
testName = defaultTestName.c_str();
}
SkDebugf("static void %s(skiatest::Reporter* reporter, const char* filename) {\n", testName);
*gTestOp.append() = shapeOp;
++gTestNo;
SkDebugf(" SkPath path, pathB;\n");
showPath(a, "path", false);
showPath(b, "pathB", false);
SkDebugf(" testPathOp(reporter, path, pathB, %s, filename);\n", opStrs[shapeOp]);
SkDebugf("}\n");
drawAsciiPaths(scaledOne, scaledTwo, false);
}
void ShowTestArray() {
for (int x = gTestFirst; x < gTestNo; ++x) {
SkDebugf(" TEST(xOp%d%s),\n", x, opSuffixes[gTestOp[x - gTestFirst]]);
}
}
static int comparePaths(skiatest::Reporter* reporter, const char* testName, const SkPath& one,
const SkPath& scaledOne, const SkPath& two, const SkPath& scaledTwo, SkBitmap& bitmap,
const SkPath& a, const SkPath& b, const SkPathOp shapeOp, const SkMatrix& scale) {
int errors2x2;
(void) pathsDrawTheSame(bitmap, scaledOne, scaledTwo, errors2x2);
if (errors2x2 == 0) {
if (gShowPath) {
showPathOpPath(testName, one, two, a, b, scaledOne, scaledTwo, shapeOp, scale);
}
return 0;
}
const int MAX_ERRORS = 8;
if (errors2x2 > MAX_ERRORS && gComparePathsAssert) {
SK_DECLARE_STATIC_MUTEX(compareDebugOut3);
SkAutoMutexAcquire autoM(compareDebugOut3);
showPathOpPath(testName, one, two, a, b, scaledOne, scaledTwo, shapeOp, scale);
REPORTER_ASSERT(reporter, 0);
} else if (gShowPath || errors2x2 == MAX_ERRORS || errors2x2 == MAX_ERRORS - 1) {
SK_DECLARE_STATIC_MUTEX(compareDebugOut4);
SkAutoMutexAcquire autoM(compareDebugOut4);
showPathOpPath(testName, one, two, a, b, scaledOne, scaledTwo, shapeOp, scale);
}
return errors2x2 > MAX_ERRORS ? errors2x2 : 0;
}
// Default values for when reporter->verbose() is false.
static int testNumber = 55;
static const char* testName = "pathOpTest";
static void writeTestName(const char* nameSuffix, SkMemoryWStream& outFile) {
outFile.writeText(testName);
outFile.writeDecAsText(testNumber);
++testNumber;
if (nameSuffix) {
outFile.writeText(nameSuffix);
}
}
static void outputToStream(const char* pathStr, const char* pathPrefix, const char* nameSuffix,
const char* testFunction, bool twoPaths, SkMemoryWStream& outFile) {
#if 0
outFile.writeText("<div id=\"");
writeTestName(nameSuffix, outFile);
outFile.writeText("\">\n");
if (pathPrefix) {
outFile.writeText(pathPrefix);
}
outFile.writeText(pathStr);
outFile.writeText("</div>\n\n");
outFile.writeText(marker);
outFile.writeText(" ");
writeTestName(nameSuffix, outFile);
outFile.writeText(",\n\n\n");
#endif
outFile.writeText("static void ");
writeTestName(nameSuffix, outFile);
outFile.writeText("(skiatest::Reporter* reporter) {\n SkPath path");
if (twoPaths) {
outFile.writeText(", pathB");
}
outFile.writeText(";\n");
if (pathPrefix) {
outFile.writeText(pathPrefix);
}
outFile.writeText(pathStr);
outFile.writeText(" ");
outFile.writeText(testFunction);
outFile.writeText("\n}\n\n");
#if 0
outFile.writeText("static void (*firstTest)() = ");
writeTestName(nameSuffix, outFile);
outFile.writeText(";\n\n");
outFile.writeText("static struct {\n");
outFile.writeText(" void (*fun)();\n");
outFile.writeText(" const char* str;\n");
outFile.writeText("} tests[] = {\n");
outFile.writeText(" TEST(");
writeTestName(nameSuffix, outFile);
outFile.writeText("),\n");
#endif
outFile.flush();
}
bool testSimplify(SkPath& path, bool useXor, SkPath& out, PathOpsThreadState& state,
const char* pathStr) {
SkPath::FillType fillType = useXor ? SkPath::kEvenOdd_FillType : SkPath::kWinding_FillType;
path.setFillType(fillType);
if (gShowPath) {
showPath(path, "path", false);
}
if (!Simplify(path, &out)) {
SkDebugf("%s did not expect failure\n", __FUNCTION__);
REPORTER_ASSERT(state.fReporter, 0);
return false;
}
if (!state.fReporter->verbose()) {
return true;
}
int result = comparePaths(state.fReporter, NULL, path, out, *state.fBitmap);
if (result && gPathStrAssert) {
SK_DECLARE_STATIC_MUTEX(simplifyDebugOut);
SkAutoMutexAcquire autoM(simplifyDebugOut);
char temp[8192];
sk_bzero(temp, sizeof(temp));
SkMemoryWStream stream(temp, sizeof(temp));
const char* pathPrefix = NULL;
const char* nameSuffix = NULL;
if (fillType == SkPath::kEvenOdd_FillType) {
pathPrefix = " path.setFillType(SkPath::kEvenOdd_FillType);\n";
nameSuffix = "x";
}
const char testFunction[] = "testSimplify(reporter, path);";
outputToStream(pathStr, pathPrefix, nameSuffix, testFunction, false, stream);
SkDebugf(temp);
REPORTER_ASSERT(state.fReporter, 0);
}
state.fReporter->bumpTestCount();
return result == 0;
}
bool testSimplify(skiatest::Reporter* reporter, const SkPath& path, const char* filename) {
#if DEBUG_SHOW_TEST_NAME
showPathData(path);
#endif
SkPath out;
if (!Simplify(path, &out)) {
SkDebugf("%s did not expect failure\n", __FUNCTION__);
REPORTER_ASSERT(reporter, 0);
return false;
}
SkBitmap bitmap;
int result = comparePaths(reporter, filename, path, out, bitmap);
if (result && gPathStrAssert) {
REPORTER_ASSERT(reporter, 0);
}
reporter->bumpTestCount();
return result == 0;
}
#if DEBUG_SHOW_TEST_NAME
void SkPathOpsDebug::ShowPath(const SkPath& a, const SkPath& b, SkPathOp shapeOp,
const char* testName) {
ShowFunctionHeader(testName);
showPath(a, "path", true);
showPath(b, "pathB", true);
ShowOp(shapeOp, "path", "pathB");
}
#endif
#if DEBUG_SHOW_TEST_NAME
static void showName(const SkPath& a, const SkPath& b, const SkPathOp shapeOp) {
SkDebugf("\n");
showPathData(a);
showOp(shapeOp);
showPathData(b);
}
#endif
static bool innerPathOp(skiatest::Reporter* reporter, const SkPath& a, const SkPath& b,
const SkPathOp shapeOp, const char* testName, bool threaded) {
#if DEBUG_SHOW_TEST_NAME
showName(a, b, shapeOp);
#endif
SkPath out;
if (!Op(a, b, shapeOp, &out) ) {
SkDebugf("%s did not expect failure\n", __FUNCTION__);
REPORTER_ASSERT(reporter, 0);
return false;
}
if (threaded && !reporter->verbose()) {
return true;
}
SkPath pathOut, scaledPathOut;
SkRegion rgnA, rgnB, openClip, rgnOut;
openClip.setRect(-16000, -16000, 16000, 16000);
rgnA.setPath(a, openClip);
rgnB.setPath(b, openClip);
rgnOut.op(rgnA, rgnB, (SkRegion::Op) shapeOp);
rgnOut.getBoundaryPath(&pathOut);
SkMatrix scale;
scaleMatrix(a, b, scale);
SkRegion scaledRgnA, scaledRgnB, scaledRgnOut;
SkPath scaledA, scaledB;
scaledA.addPath(a, scale);
scaledA.setFillType(a.getFillType());
scaledB.addPath(b, scale);
scaledB.setFillType(b.getFillType());
scaledRgnA.setPath(scaledA, openClip);
scaledRgnB.setPath(scaledB, openClip);
scaledRgnOut.op(scaledRgnA, scaledRgnB, (SkRegion::Op) shapeOp);
scaledRgnOut.getBoundaryPath(&scaledPathOut);
SkBitmap bitmap;
SkPath scaledOut;
scaledOut.addPath(out, scale);
scaledOut.setFillType(out.getFillType());
int result = comparePaths(reporter, testName, pathOut, scaledPathOut, out, scaledOut, bitmap,
a, b, shapeOp, scale);
if (result && gPathStrAssert) {
REPORTER_ASSERT(reporter, 0);
}
reporter->bumpTestCount();
return result == 0;
}
bool testPathOp(skiatest::Reporter* reporter, const SkPath& a, const SkPath& b,
const SkPathOp shapeOp, const char* testName) {
return innerPathOp(reporter, a, b, shapeOp, testName, false);
}
bool testPathFailOp(skiatest::Reporter* reporter, const SkPath& a, const SkPath& b,
const SkPathOp shapeOp, const char* testName) {
#if DEBUG_SHOW_TEST_NAME
showName(a, b, shapeOp);
#endif
SkPath out;
if (Op(a, b, shapeOp, &out) ) {
SkDebugf("%s test is expected to fail\n", __FUNCTION__);
REPORTER_ASSERT(reporter, 0);
return false;
}
return true;
}
bool testThreadedPathOp(skiatest::Reporter* reporter, const SkPath& a, const SkPath& b,
const SkPathOp shapeOp, const char* testName) {
return innerPathOp(reporter, a, b, shapeOp, testName, true);
}
SK_DECLARE_STATIC_MUTEX(gMutex);
int initializeTests(skiatest::Reporter* reporter, const char* test) {
#if 0 // doesn't work yet
SK_CONF_SET("images.jpeg.suppressDecoderWarnings", true);
SK_CONF_SET("images.png.suppressDecoderWarnings", true);
#endif
#ifdef SK_DEBUG
SkPathOpsDebug::gMaxWindSum = 4;
SkPathOpsDebug::gMaxWindValue = 4;
#endif
if (reporter->verbose()) {
SkAutoMutexAcquire lock(gMutex);
testName = test;
size_t testNameSize = strlen(test);
SkFILEStream inFile("../../experimental/Intersection/op.htm");
if (inFile.isValid()) {
SkTDArray<char> inData;
inData.setCount((int) inFile.getLength());
size_t inLen = inData.count();
inFile.read(inData.begin(), inLen);
inFile.setPath(NULL);
char* insert = strstr(inData.begin(), marker);
if (insert) {
insert += sizeof(marker) - 1;
const char* numLoc = insert + 4 /* indent spaces */ + testNameSize - 1;
testNumber = atoi(numLoc) + 1;
}
}
}
return reporter->allowThreaded() ? SkThreadPool::kThreadPerCore : 1;
}
void outputProgress(char* ramStr, const char* pathStr, SkPath::FillType pathFillType) {
const char testFunction[] = "testSimplify(path);";
const char* pathPrefix = NULL;
const char* nameSuffix = NULL;
if (pathFillType == SkPath::kEvenOdd_FillType) {
pathPrefix = " path.setFillType(SkPath::kEvenOdd_FillType);\n";
nameSuffix = "x";
}
SkMemoryWStream rRamStream(ramStr, PATH_STR_SIZE);
outputToStream(pathStr, pathPrefix, nameSuffix, testFunction, false, rRamStream);
}
void outputProgress(char* ramStr, const char* pathStr, SkPathOp op) {
const char testFunction[] = "testOp(path);";
SkASSERT((size_t) op < SK_ARRAY_COUNT(opSuffixes));
const char* nameSuffix = opSuffixes[op];
SkMemoryWStream rRamStream(ramStr, PATH_STR_SIZE);
outputToStream(pathStr, NULL, nameSuffix, testFunction, true, rRamStream);
}
void RunTestSet(skiatest::Reporter* reporter, TestDesc tests[], size_t count,
void (*firstTest)(skiatest::Reporter* , const char* filename),
void (*stopTest)(skiatest::Reporter* , const char* filename), bool reverse) {
size_t index;
if (firstTest) {
index = count - 1;
while (index > 0 && tests[index].fun != firstTest) {
--index;
}
#if DEBUG_SHOW_TEST_NAME
SkDebugf("<div id=\"%s\">\n", tests[index].str);
SkDebugf(" %s [%s]\n", __FUNCTION__, tests[index].str);
#endif
(*tests[index].fun)(reporter, tests[index].str);
if (tests[index].fun == stopTest) {
return;
}
}
index = reverse ? count - 1 : 0;
size_t last = reverse ? 0 : count - 1;
do {
if (tests[index].fun != firstTest) {
#if DEBUG_SHOW_TEST_NAME
SkDebugf("<div id=\"%s\">\n", tests[index].str);
SkDebugf(" %s [%s]\n", __FUNCTION__, tests[index].str);
#endif
(*tests[index].fun)(reporter, tests[index].str);
}
if (tests[index].fun == stopTest) {
SkDebugf("lastTest\n");
break;
}
if (index == last) {
break;
}
index += reverse ? -1 : 1;
} while (true);
}