85dcf6bf80
When two outer boundary edges are collinear, they are part of an
overlap region. As of 77169c8fd6
, we (correctly) leave these edges
connected, but we must also adjust the winding to magnitude 1 to
keep the winding rules correct.
Note: this adds a new test case to the concavepaths GM, affecting all platforms.
Bug: 863389
Change-Id: I7e3a06df537cd189101e7ad39a4815a78be8fbdd
Reviewed-on: https://skia-review.googlesource.com/141952
Reviewed-by: Robert Phillips <robertphillips@google.com>
Commit-Queue: Stephen White <senorblanco@chromium.org>
481 lines
16 KiB
C++
481 lines
16 KiB
C++
/*
|
|
* Copyright 2015 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "gm.h"
|
|
#include "SkCanvas.h"
|
|
#include "SkPath.h"
|
|
|
|
namespace {
|
|
// Concave test
|
|
void test_concave(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->translate(0, 0);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(30), SkIntToScalar(30));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
}
|
|
|
|
// Reverse concave test
|
|
void test_reverse_concave(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(100, 0);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(30), SkIntToScalar(30));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Bowtie (intersection)
|
|
void test_bowtie(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(200, 0);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// "fake" bowtie (concave, but no intersection)
|
|
void test_fake_bowtie(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(300, 0);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(40));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(60));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Bowtie with a smaller right hand lobe. The outer vertex of the left hand
|
|
// lobe intrudes into the interior of the right hand lobe.
|
|
void test_intruding_vertex(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(400, 0);
|
|
path.setIsVolatile(true);
|
|
path.moveTo(20, 20);
|
|
path.lineTo(50, 50);
|
|
path.lineTo(68, 20);
|
|
path.lineTo(68, 80);
|
|
path.lineTo(50, 50);
|
|
path.lineTo(20, 80);
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// A shape with an edge that becomes inverted on AA stroking and that also contains
|
|
// a repeated start/end vertex.
|
|
void test_inversion_repeat_vertex(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(400, 100);
|
|
path.setIsVolatile(true);
|
|
path.moveTo(80, 50);
|
|
path.lineTo(40, 80);
|
|
path.lineTo(60, 20);
|
|
path.lineTo(20, 20);
|
|
path.lineTo(39.99f, 80);
|
|
path.lineTo(80, 50);
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Fish test (intersection/concave)
|
|
void test_fish(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(0, 100);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(70), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(0), SkIntToScalar(50));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Overlapping "Fast-forward" icon: tests coincidence of inner and outer
|
|
// vertices generated by intersection.
|
|
void test_fast_forward(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(100, 100);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(60), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.moveTo(SkIntToScalar(40), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(40), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(50));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Square polygon with a square hole.
|
|
void test_hole(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(200, 100);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.moveTo(SkIntToScalar(30), SkIntToScalar(30));
|
|
path.lineTo(SkIntToScalar(30), SkIntToScalar(70));
|
|
path.lineTo(SkIntToScalar(70), SkIntToScalar(70));
|
|
path.lineTo(SkIntToScalar(70), SkIntToScalar(30));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Star test (self-intersecting)
|
|
void test_star(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(300, 100);
|
|
path.moveTo(30, 20);
|
|
path.lineTo(50, 80);
|
|
path.lineTo(70, 20);
|
|
path.lineTo(20, 57);
|
|
path.lineTo(80, 57);
|
|
path.close();
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Exercise a case where the intersection is below a bottom edge.
|
|
void test_twist(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
path.moveTo( 0.5, 6);
|
|
path.lineTo(5.8070392608642578125, 6.4612660408020019531);
|
|
path.lineTo(-2.9186885356903076172, 2.811046600341796875);
|
|
path.lineTo(0.49999994039535522461, -1.4124038219451904297);
|
|
canvas->translate(420, 220);
|
|
canvas->scale(10, 10);
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Stairstep with repeated vert (intersection)
|
|
void test_stairstep(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(0, 200);
|
|
path.moveTo(SkIntToScalar(50), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
void test_stairstep2(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(100, 200);
|
|
path.moveTo(20, 60);
|
|
path.lineTo(35, 80);
|
|
path.lineTo(50, 60);
|
|
path.lineTo(65, 80);
|
|
path.lineTo(80, 60);
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Overlapping segments
|
|
void test_overlapping(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(200, 200);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(30));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Two "island" triangles inside a containing rect.
|
|
// This exercises the partnering code in the tessellator.
|
|
void test_partners(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(300, 200);
|
|
path.moveTo(20, 80);
|
|
path.lineTo(80, 80);
|
|
path.lineTo(80, 20);
|
|
path.lineTo(20, 20);
|
|
path.moveTo(30, 30);
|
|
path.lineTo(45, 50);
|
|
path.lineTo(30, 70);
|
|
path.moveTo(70, 30);
|
|
path.lineTo(70, 70);
|
|
path.lineTo(55, 50);
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// A split edge causes one half to be merged to zero winding (destroyed).
|
|
// Test that the other half of the split doesn't also get zero winding.
|
|
void test_winding_merged_to_zero(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(400, 350);
|
|
path.moveTo(20, 80);
|
|
path.moveTo(70, -0.000001f);
|
|
path.lineTo(70, 0.0);
|
|
path.lineTo(60, -30.0);
|
|
path.lineTo(40, 20.0);
|
|
path.moveTo(50, 50.0);
|
|
path.lineTo(50, -50.0);
|
|
path.lineTo(10, 50.0);
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Monotone test 1 (point in the middle)
|
|
void test_monotone_1(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(0, 300);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.quadTo(SkIntToScalar(20), SkIntToScalar(50),
|
|
SkIntToScalar(80), SkIntToScalar(50));
|
|
path.quadTo(SkIntToScalar(20), SkIntToScalar(50),
|
|
SkIntToScalar(20), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Monotone test 2 (point at the top)
|
|
void test_monotone_2(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(100, 300);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(30));
|
|
path.quadTo(SkIntToScalar(20), SkIntToScalar(20),
|
|
SkIntToScalar(20), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Monotone test 3 (point at the bottom)
|
|
void test_monotone_3(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(200, 300);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(70));
|
|
path.quadTo(SkIntToScalar(20), SkIntToScalar(80),
|
|
SkIntToScalar(20), SkIntToScalar(20));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Monotone test 4 (merging of two monotones)
|
|
void test_monotone_4(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(300, 300);
|
|
path.moveTo(80, 25);
|
|
path.lineTo(50, 39);
|
|
path.lineTo(20, 25);
|
|
path.lineTo(40, 45);
|
|
path.lineTo(70, 50);
|
|
path.lineTo(80, 80);
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Monotone test 5 (aborted merging of two monotones)
|
|
void test_monotone_5(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(0, 400);
|
|
path.moveTo(50, 20);
|
|
path.lineTo(80, 80);
|
|
path.lineTo(50, 50);
|
|
path.lineTo(20, 80);
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
// Degenerate intersection test
|
|
void test_degenerate(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(100, 400);
|
|
path.moveTo(50, 20);
|
|
path.lineTo(70, 30);
|
|
path.lineTo(20, 50);
|
|
path.moveTo(50, 20);
|
|
path.lineTo(80, 80);
|
|
path.lineTo(50, 80);
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
// Two triangles with a coincident edge.
|
|
void test_coincident_edge(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(200, 400);
|
|
|
|
path.moveTo(80, 20);
|
|
path.lineTo(80, 80);
|
|
path.lineTo(20, 80);
|
|
|
|
path.moveTo(20, 20);
|
|
path.lineTo(80, 80);
|
|
path.lineTo(20, 80);
|
|
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
// Bowtie with a coincident triangle (one triangle vertex coincident with the
|
|
// bowtie's intersection).
|
|
void test_bowtie_coincident_triangle(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(300, 400);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.moveTo(SkIntToScalar(50), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Collinear outer boundary edges. In the edge-AA codepath, this creates an overlap region
|
|
// which contains a boundary edge. It can't be removed, but it must have the correct winding.
|
|
void test_collinear_outer_boundary_edge(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(400, 400);
|
|
path.moveTo(20, 20);
|
|
path.lineTo(20, 50);
|
|
path.lineTo(50, 50);
|
|
path.moveTo(80, 50);
|
|
path.lineTo(50, 50);
|
|
path.lineTo(80, 20);
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Coincident edges (big ones first, coincident vert on top).
|
|
void test_coincident_edges_1(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(0, 500);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(50));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
// Coincident edges (small ones first, coincident vert on top).
|
|
void test_coincident_edges_2(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(100, 500);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(50));
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
// Coincident edges (small ones first, coincident vert on bottom).
|
|
void test_coincident_edges_3(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(200, 500);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(50));
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
// Coincident edges (big ones first, coincident vert on bottom).
|
|
void test_coincident_edges_4(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(300, 500);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(50));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
};
|
|
|
|
DEF_SIMPLE_GM(concavepaths, canvas, 500, 600) {
|
|
SkPaint paint;
|
|
|
|
paint.setAntiAlias(true);
|
|
paint.setStyle(SkPaint::kFill_Style);
|
|
|
|
test_concave(canvas, paint);
|
|
test_reverse_concave(canvas, paint);
|
|
test_bowtie(canvas, paint);
|
|
test_fake_bowtie(canvas, paint);
|
|
test_intruding_vertex(canvas, paint);
|
|
test_fish(canvas, paint);
|
|
test_fast_forward(canvas, paint);
|
|
test_hole(canvas, paint);
|
|
test_star(canvas, paint);
|
|
test_twist(canvas, paint);
|
|
test_inversion_repeat_vertex(canvas, paint);
|
|
test_stairstep(canvas, paint);
|
|
test_stairstep2(canvas, paint);
|
|
test_overlapping(canvas, paint);
|
|
test_partners(canvas, paint);
|
|
test_winding_merged_to_zero(canvas, paint);
|
|
test_monotone_1(canvas, paint);
|
|
test_monotone_2(canvas, paint);
|
|
test_monotone_3(canvas, paint);
|
|
test_monotone_4(canvas, paint);
|
|
test_monotone_5(canvas, paint);
|
|
test_degenerate(canvas, paint);
|
|
test_coincident_edge(canvas, paint);
|
|
test_bowtie_coincident_triangle(canvas, paint);
|
|
test_collinear_outer_boundary_edge(canvas, paint);
|
|
test_coincident_edges_1(canvas, paint);
|
|
test_coincident_edges_2(canvas, paint);
|
|
test_coincident_edges_3(canvas, paint);
|
|
test_coincident_edges_4(canvas, paint);
|
|
}
|