9f3e9a5a17
rewrite binary edge inclusion lookup fix warnings git-svn-id: http://skia.googlecode.com/svn/trunk@6726 2bbb7eff-a529-9590-31e7-b0007b416f81
242 lines
8.0 KiB
C++
242 lines
8.0 KiB
C++
/*
|
|
* Copyright 2012 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
#include "CurveIntersection.h"
|
|
#include "Extrema.h"
|
|
#include "IntersectionUtilities.h"
|
|
#include "LineParameters.h"
|
|
|
|
static double interp_cubic_coords(const double* src, double t)
|
|
{
|
|
double ab = interp(src[0], src[2], t);
|
|
double bc = interp(src[2], src[4], t);
|
|
double cd = interp(src[4], src[6], t);
|
|
double abc = interp(ab, bc, t);
|
|
double bcd = interp(bc, cd, t);
|
|
return interp(abc, bcd, t);
|
|
}
|
|
|
|
static int coincident_line(const Cubic& cubic, Cubic& reduction) {
|
|
reduction[0] = reduction[1] = cubic[0];
|
|
return 1;
|
|
}
|
|
|
|
static int vertical_line(const Cubic& cubic, Cubic& reduction) {
|
|
double tValues[2];
|
|
reduction[0] = cubic[0];
|
|
reduction[1] = cubic[3];
|
|
int smaller = reduction[1].y > reduction[0].y;
|
|
int larger = smaller ^ 1;
|
|
int roots = findExtrema(cubic[0].y, cubic[1].y, cubic[2].y, cubic[3].y, tValues);
|
|
for (int index = 0; index < roots; ++index) {
|
|
double yExtrema = interp_cubic_coords(&cubic[0].y, tValues[index]);
|
|
if (reduction[smaller].y > yExtrema) {
|
|
reduction[smaller].y = yExtrema;
|
|
continue;
|
|
}
|
|
if (reduction[larger].y < yExtrema) {
|
|
reduction[larger].y = yExtrema;
|
|
}
|
|
}
|
|
return 2;
|
|
}
|
|
|
|
static int horizontal_line(const Cubic& cubic, Cubic& reduction) {
|
|
double tValues[2];
|
|
reduction[0] = cubic[0];
|
|
reduction[1] = cubic[3];
|
|
int smaller = reduction[1].x > reduction[0].x;
|
|
int larger = smaller ^ 1;
|
|
int roots = findExtrema(cubic[0].x, cubic[1].x, cubic[2].x, cubic[3].x, tValues);
|
|
for (int index = 0; index < roots; ++index) {
|
|
double xExtrema = interp_cubic_coords(&cubic[0].x, tValues[index]);
|
|
if (reduction[smaller].x > xExtrema) {
|
|
reduction[smaller].x = xExtrema;
|
|
continue;
|
|
}
|
|
if (reduction[larger].x < xExtrema) {
|
|
reduction[larger].x = xExtrema;
|
|
}
|
|
}
|
|
return 2;
|
|
}
|
|
|
|
// check to see if it is a quadratic or a line
|
|
static int check_quadratic(const Cubic& cubic, Cubic& reduction) {
|
|
double dx10 = cubic[1].x - cubic[0].x;
|
|
double dx23 = cubic[2].x - cubic[3].x;
|
|
double midX = cubic[0].x + dx10 * 3 / 2;
|
|
if (!approximately_equal(midX - cubic[3].x, dx23 * 3 / 2)) {
|
|
return 0;
|
|
}
|
|
double dy10 = cubic[1].y - cubic[0].y;
|
|
double dy23 = cubic[2].y - cubic[3].y;
|
|
double midY = cubic[0].y + dy10 * 3 / 2;
|
|
if (!approximately_equal(midY - cubic[3].y, dy23 * 3 / 2)) {
|
|
return 0;
|
|
}
|
|
reduction[0] = cubic[0];
|
|
reduction[1].x = midX;
|
|
reduction[1].y = midY;
|
|
reduction[2] = cubic[3];
|
|
return 3;
|
|
}
|
|
|
|
static int check_linear(const Cubic& cubic, Cubic& reduction,
|
|
int minX, int maxX, int minY, int maxY) {
|
|
int startIndex = 0;
|
|
int endIndex = 3;
|
|
while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) {
|
|
--endIndex;
|
|
if (endIndex == 0) {
|
|
printf("%s shouldn't get here if all four points are about equal", __FUNCTION__);
|
|
assert(0);
|
|
}
|
|
}
|
|
if (!isLinear(cubic, startIndex, endIndex)) {
|
|
return 0;
|
|
}
|
|
// four are colinear: return line formed by outside
|
|
reduction[0] = cubic[0];
|
|
reduction[1] = cubic[3];
|
|
int sameSide1;
|
|
int sameSide2;
|
|
bool useX = cubic[maxX].x - cubic[minX].x >= cubic[maxY].y - cubic[minY].y;
|
|
if (useX) {
|
|
sameSide1 = sign(cubic[0].x - cubic[1].x) + sign(cubic[3].x - cubic[1].x);
|
|
sameSide2 = sign(cubic[0].x - cubic[2].x) + sign(cubic[3].x - cubic[2].x);
|
|
} else {
|
|
sameSide1 = sign(cubic[0].y - cubic[1].y) + sign(cubic[3].y - cubic[1].y);
|
|
sameSide2 = sign(cubic[0].y - cubic[2].y) + sign(cubic[3].y - cubic[2].y);
|
|
}
|
|
if (sameSide1 == sameSide2 && (sameSide1 & 3) != 2) {
|
|
return 2;
|
|
}
|
|
double tValues[2];
|
|
int roots;
|
|
if (useX) {
|
|
roots = findExtrema(cubic[0].x, cubic[1].x, cubic[2].x, cubic[3].x, tValues);
|
|
} else {
|
|
roots = findExtrema(cubic[0].y, cubic[1].y, cubic[2].y, cubic[3].y, tValues);
|
|
}
|
|
for (int index = 0; index < roots; ++index) {
|
|
_Point extrema;
|
|
extrema.x = interp_cubic_coords(&cubic[0].x, tValues[index]);
|
|
extrema.y = interp_cubic_coords(&cubic[0].y, tValues[index]);
|
|
// sameSide > 0 means mid is smaller than either [0] or [3], so replace smaller
|
|
int replace;
|
|
if (useX) {
|
|
if (extrema.x < cubic[0].x ^ extrema.x < cubic[3].x) {
|
|
continue;
|
|
}
|
|
replace = (extrema.x < cubic[0].x | extrema.x < cubic[3].x)
|
|
^ (cubic[0].x < cubic[3].x);
|
|
} else {
|
|
if (extrema.y < cubic[0].y ^ extrema.y < cubic[3].y) {
|
|
continue;
|
|
}
|
|
replace = (extrema.y < cubic[0].y | extrema.y < cubic[3].y)
|
|
^ (cubic[0].y < cubic[3].y);
|
|
}
|
|
reduction[replace] = extrema;
|
|
}
|
|
return 2;
|
|
}
|
|
|
|
bool isLinear(const Cubic& cubic, int startIndex, int endIndex) {
|
|
LineParameters lineParameters;
|
|
lineParameters.cubicEndPoints(cubic, startIndex, endIndex);
|
|
double normalSquared = lineParameters.normalSquared();
|
|
double distance[2]; // distance is not normalized
|
|
int mask = other_two(startIndex, endIndex);
|
|
int inner1 = startIndex ^ mask;
|
|
int inner2 = endIndex ^ mask;
|
|
lineParameters.controlPtDistance(cubic, inner1, inner2, distance);
|
|
double limit = normalSquared;
|
|
int index;
|
|
for (index = 0; index < 2; ++index) {
|
|
double distSq = distance[index];
|
|
distSq *= distSq;
|
|
if (approximately_greater(distSq, limit)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* food for thought:
|
|
http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html
|
|
|
|
Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the
|
|
corresponding quadratic Bezier are (given in convex combinations of
|
|
points):
|
|
|
|
q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4
|
|
q2 = -c1 + (3/2)c2 + (3/2)c3 - c4
|
|
q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4
|
|
|
|
Of course, this curve does not interpolate the end-points, but it would
|
|
be interesting to see the behaviour of such a curve in an applet.
|
|
|
|
--
|
|
Kalle Rutanen
|
|
http://kaba.hilvi.org
|
|
|
|
*/
|
|
|
|
// reduce to a quadratic or smaller
|
|
// look for identical points
|
|
// look for all four points in a line
|
|
// note that three points in a line doesn't simplify a cubic
|
|
// look for approximation with single quadratic
|
|
// save approximation with multiple quadratics for later
|
|
int reduceOrder(const Cubic& cubic, Cubic& reduction, ReduceOrder_Flags allowQuadratics) {
|
|
int index, minX, maxX, minY, maxY;
|
|
int minXSet, minYSet;
|
|
minX = maxX = minY = maxY = 0;
|
|
minXSet = minYSet = 0;
|
|
for (index = 1; index < 4; ++index) {
|
|
if (cubic[minX].x > cubic[index].x) {
|
|
minX = index;
|
|
}
|
|
if (cubic[minY].y > cubic[index].y) {
|
|
minY = index;
|
|
}
|
|
if (cubic[maxX].x < cubic[index].x) {
|
|
maxX = index;
|
|
}
|
|
if (cubic[maxY].y < cubic[index].y) {
|
|
maxY = index;
|
|
}
|
|
}
|
|
for (index = 0; index < 4; ++index) {
|
|
if (approximately_equal(cubic[index].x, cubic[minX].x)) {
|
|
minXSet |= 1 << index;
|
|
}
|
|
if (approximately_equal(cubic[index].y, cubic[minY].y)) {
|
|
minYSet |= 1 << index;
|
|
}
|
|
}
|
|
if (minXSet == 0xF) { // test for vertical line
|
|
if (minYSet == 0xF) { // return 1 if all four are coincident
|
|
return coincident_line(cubic, reduction);
|
|
}
|
|
return vertical_line(cubic, reduction);
|
|
}
|
|
if (minYSet == 0xF) { // test for horizontal line
|
|
return horizontal_line(cubic, reduction);
|
|
}
|
|
int result = check_linear(cubic, reduction, minX, maxX, minY, maxY);
|
|
if (result) {
|
|
return result;
|
|
}
|
|
if (allowQuadratics && (result = check_quadratic(cubic, reduction))) {
|
|
return result;
|
|
}
|
|
memcpy(reduction, cubic, sizeof(Cubic));
|
|
return 4;
|
|
}
|