skia2/gm/samplelocations.cpp
Chris Dalton 0dffbab55a Add MSAA and non-aa modes to GrFillRRect Op
Adds a non-aa mode and an MSAA mode that uses the sample mask. Also
adds a new cap to decide whether we prefer this new sample mask Op for
large round rects, or whether it's faster to just continue drawing
them as paths like before.

Bug: skia:
Change-Id: Ic344ace26e7889c312c3040ad345b4d9a717f96d
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/204135
Reviewed-by: Brian Salomon <bsalomon@google.com>
Commit-Queue: Chris Dalton <csmartdalton@google.com>
2019-03-27 21:25:20 +00:00

279 lines
11 KiB
C++

/*
* Copyright 2019 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm.h"
#if SK_SUPPORT_GPU
#include "GrClip.h"
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrMemoryPool.h"
#include "GrOpFlushState.h"
#include "GrRecordingContext.h"
#include "GrRecordingContextPriv.h"
#include "GrRenderTargetContext.h"
#include "GrRenderTargetContextPriv.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLProgramBuilder.h"
#include "glsl/GrGLSLVarying.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
namespace skiagm {
enum class GradType : bool {
kHW,
kSW
};
/**
* This test ensures that the shaderBuilder's sample offsets and sample mask are correlated with
* actual HW sample locations. It does so by drawing pseudo-random subpixel boxes, and only turning
* off the samples whose locations fall inside the boxes.
*/
class SampleLocationsGM : public GpuGM {
public:
SampleLocationsGM(GradType gradType, GrSurfaceOrigin origin)
: fGradType(gradType)
, fOrigin(origin) {}
private:
SkString onShortName() override;
SkISize onISize() override { return SkISize::Make(200, 200); }
DrawResult onDraw(GrContext*, GrRenderTargetContext*, SkCanvas*, SkString* errorMsg) override;
const GradType fGradType;
const GrSurfaceOrigin fOrigin;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// SkSL code.
class SampleLocationsTestProcessor : public GrGeometryProcessor {
public:
SampleLocationsTestProcessor(GradType gradType)
: GrGeometryProcessor(kSampleLocationsTestProcessor_ClassID)
, fGradType(gradType) {
this->setWillUseCustomFeature(CustomFeatures::kSampleLocations);
}
const char* name() const override { return "SampleLocationsTestProcessor"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const final {
b->add32((uint32_t)fGradType);
}
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const final;
private:
const GradType fGradType;
class Impl;
};
class SampleLocationsTestProcessor::Impl : public GrGLSLGeometryProcessor {
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const auto& proc = args.fGP.cast<SampleLocationsTestProcessor>();
auto* v = args.fVertBuilder;
auto* f = args.fFragBuilder;
GrGLSLVarying coord(kFloat2_GrSLType);
GrGLSLVarying grad(kFloat2_GrSLType);
args.fVaryingHandler->addVarying("coord", &coord);
if (GradType::kSW == proc.fGradType) {
args.fVaryingHandler->addVarying("grad", &grad);
}
// Pixel grid.
v->codeAppendf("int x = sk_InstanceID %% 200;");
v->codeAppendf("int y = sk_InstanceID / 200;");
// Create pseudo-random rectangles inside a 16x16 subpixel grid. This works out nicely
// because there are 17 positions on the grid (including both edges), and 17 is a great
// prime number for generating pseudo-random numbers.
v->codeAppendf("int ileft = (sk_InstanceID*929) %% 17;");
v->codeAppendf("int iright = ileft + 1 + ((sk_InstanceID*1637) %% (17 - ileft));");
v->codeAppendf("int itop = (sk_InstanceID*313) %% 17;");
v->codeAppendf("int ibot = itop + 1 + ((sk_InstanceID*1901) %% (17 - itop));");
// Outset (or inset) the rectangle, for the very likely scenario that samples fall on exact
// 16ths of a pixel. GL_SUBPIXEL_BITS is allowed to be as low as 4, so try not to let the
// outset value to get too small.
v->codeAppendf("float outset = 1/32.0;");
v->codeAppendf("outset = (0 == (x + y) %% 2) ? -outset : +outset;");
v->codeAppendf("float l = ileft/16.0 - outset;");
v->codeAppendf("float r = iright/16.0 + outset;");
v->codeAppendf("float t = itop/16.0 - outset;");
v->codeAppendf("float b = ibot/16.0 + outset;");
v->codeAppendf("float2 vertexpos;");
v->codeAppendf("vertexpos.x = float(x) + ((0 == (sk_VertexID %% 2)) ? l : r);");
v->codeAppendf("vertexpos.y = float(y) + ((0 == (sk_VertexID / 2)) ? t : b);");
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertexpos");
v->codeAppendf("%s.x = (0 == (sk_VertexID %% 2)) ? -1 : +1;", coord.vsOut());
v->codeAppendf("%s.y = (0 == (sk_VertexID / 2)) ? -1 : +1;", coord.vsOut());
if (GradType::kSW == proc.fGradType) {
v->codeAppendf("%s = 2/float2(r - l, b - t);", grad.vsOut());
}
// Fragment shader: Output RED.
f->codeAppendf("%s = half4(1,0,0,1);", args.fOutputColor);
f->codeAppendf("%s = half4(1);", args.fOutputCoverage);
// Now turn off all the samples inside our sub-rectangle. As long as the shaderBuilder's
// sample offsets and sample mask are correlated with actual HW sample locations, no red
// will bleed through.
f->codeAppendf("for (int i = 0; i < %i; ++i) {",
f->getProgramBuilder()->effectiveSampleCnt());
if (GradType::kHW == proc.fGradType) {
f->codeAppendf("float2x2 grad = float2x2(dFdx(%s), dFdy(%s));",
coord.fsIn(), coord.fsIn());
} else {
f->codeAppendf("float2x2 grad = float2x2(%s.x, 0, 0, %s.y);", grad.fsIn(), grad.fsIn());
}
f->codeAppendf( "float2 samplecoord = %s[i] * grad + %s;",
f->sampleOffsets(), coord.fsIn());
f->codeAppendf( "if (all(lessThanEqual(abs(samplecoord), float2(1)))) {");
f->maskOffMultisampleCoverage(
"~(1 << i)", GrGLSLFPFragmentBuilder::ScopeFlags::kInsideLoop);
f->codeAppendf( "}");
f->codeAppendf("}");
}
void setData(const GrGLSLProgramDataManager&, const GrPrimitiveProcessor&,
FPCoordTransformIter&&) override {}
};
GrGLSLPrimitiveProcessor* SampleLocationsTestProcessor::createGLSLInstance(
const GrShaderCaps&) const {
return new Impl();
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Draw Op.
class SampleLocationsTestOp : public GrDrawOp {
public:
DEFINE_OP_CLASS_ID
static std::unique_ptr<GrDrawOp> Make(
GrRecordingContext* ctx, const SkMatrix& viewMatrix, GradType gradType) {
GrOpMemoryPool* pool = ctx->priv().opMemoryPool();
return pool->allocate<SampleLocationsTestOp>(gradType);
}
private:
SampleLocationsTestOp(GradType gradType) : GrDrawOp(ClassID()), fGradType(gradType) {
this->setBounds(SkRect::MakeIWH(200, 200), HasAABloat::kNo, IsZeroArea::kNo);
}
const char* name() const override { return "SampleLocationsTestOp"; }
FixedFunctionFlags fixedFunctionFlags() const override {
return FixedFunctionFlags::kUsesHWAA | FixedFunctionFlags::kUsesStencil;
}
GrProcessorSet::Analysis finalize(
const GrCaps&, const GrAppliedClip*, GrFSAAType, GrClampType) override {
return GrProcessorSet::EmptySetAnalysis();
}
void onPrepare(GrOpFlushState*) override {}
void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override {
static constexpr GrUserStencilSettings kStencilWrite(
GrUserStencilSettings::StaticInit<
0x0001,
GrUserStencilTest::kAlways,
0xffff,
GrUserStencilOp::kReplace,
GrUserStencilOp::kKeep,
0xffff>()
);
GrPipeline pipeline(GrScissorTest::kDisabled, SkBlendMode::kSrcOver,
GrPipeline::Flags::kHWAntialias_Flag, &kStencilWrite);
GrMesh mesh(GrPrimitiveType::kTriangleStrip);
mesh.setInstanced(nullptr, 200*200, 0, 4);
flushState->rtCommandBuffer()->draw(
SampleLocationsTestProcessor(fGradType), pipeline, nullptr, nullptr, &mesh, 1,
SkRect::MakeIWH(200, 200));
}
const GradType fGradType;
friend class ::GrOpMemoryPool; // for ctor
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Test.
SkString SampleLocationsGM::onShortName() {
SkString name("samplelocations");
name.append((GradType::kHW == fGradType) ? "_hwgrad" : "_swgrad");
name.append((kTopLeft_GrSurfaceOrigin == fOrigin) ? "_topleft" : "_botleft");
return name;
}
DrawResult SampleLocationsGM::onDraw(
GrContext* ctx, GrRenderTargetContext* rtc, SkCanvas* canvas, SkString* errorMsg) {
if (rtc->numStencilSamples() <= 1) {
*errorMsg = "MSAA only.";
return DrawResult::kSkip;
}
if (!ctx->priv().caps()->sampleLocationsSupport()) {
*errorMsg = "Requires support for sample locations.";
return DrawResult::kSkip;
}
if (!ctx->priv().caps()->shaderCaps()->sampleVariablesSupport()) {
*errorMsg = "Requires support for sample variables.";
return DrawResult::kSkip;
}
static constexpr GrUserStencilSettings kStencilCover(
GrUserStencilSettings::StaticInit<
0x0000,
GrUserStencilTest::kNotEqual,
0xffff,
GrUserStencilOp::kZero,
GrUserStencilOp::kKeep,
0xffff>()
);
if (auto offscreenRTC = ctx->priv().makeDeferredRenderTargetContext(
rtc->asSurfaceProxy()->backendFormat(), SkBackingFit::kExact, 200, 200,
rtc->asSurfaceProxy()->config(), nullptr, rtc->numStencilSamples(), GrMipMapped::kNo,
fOrigin)) {
offscreenRTC->clear(nullptr, {0,1,0,1}, GrRenderTargetContext::CanClearFullscreen::kYes);
// Stencil.
offscreenRTC->priv().testingOnly_addDrawOp(
SampleLocationsTestOp::Make(ctx, canvas->getTotalMatrix(), fGradType));
// Cover.
GrPaint coverPaint;
coverPaint.setColor4f({1,0,0,1});
coverPaint.setXPFactory(GrPorterDuffXPFactory::Get(SkBlendMode::kSrcOver));
rtc->priv().drawFilledRect(
GrNoClip(), std::move(coverPaint), GrAA::kNo, SkMatrix::I(),
SkRect::MakeWH(200, 200), &kStencilCover);
// Copy offscreen texture to canvas.
rtc->drawTexture(
GrNoClip(), sk_ref_sp(offscreenRTC->asTextureProxy()),
GrSamplerState::Filter::kNearest, SkBlendMode::kSrc, SK_PMColor4fWHITE,
{0,0,200,200}, {0,0,200,200}, GrAA::kNo, GrQuadAAFlags::kNone,
SkCanvas::SrcRectConstraint::kStrict_SrcRectConstraint, SkMatrix::I(), nullptr);
}
return skiagm::DrawResult::kOk;
}
DEF_GM( return new SampleLocationsGM(GradType::kHW, kTopLeft_GrSurfaceOrigin); )
DEF_GM( return new SampleLocationsGM(GradType::kHW, kBottomLeft_GrSurfaceOrigin); )
DEF_GM( return new SampleLocationsGM(GradType::kSW, kTopLeft_GrSurfaceOrigin); )
DEF_GM( return new SampleLocationsGM(GradType::kSW, kBottomLeft_GrSurfaceOrigin); )
}
#endif // SK_SUPPORT_GPU