skia2/tests/YUVTest.cpp
Brian Salomon be0e42cb8f New helpers for SkYUVAInfo when used with pixmaps.
SkYUVAPixmapInfo is a SkYUVAInfo with per-plane color types and row
bytes. It describes a set of pixmaps that make up a planar image.
Consolidates validity checks of the SkYUVAInfo with the color types
and row bytes. It can provide SkImageInfos for each plane and also
assist with configuring planes to share a common allocation.

SkYUVAPixmaps is a collection of SkPixmaps that are valid for a
SkYUVAInfo. It can either wrap existing SkPixmaps or allocate and
own the memory. It consolidates validity checking of SkPixmaps with
the SkYUVAInfo. Replaces sk_gpu_test::YUVAPixmaps.

Minor tweaks to SkYUVAInfo naming, parameter order consistency, adds a
hasAlpha() method.

Bug: skia:10632
Change-Id: Ib0f48b8448fff22805fd0c04e07887d0b7338b76
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/312886
Commit-Queue: Brian Salomon <bsalomon@google.com>
Reviewed-by: Robert Phillips <robertphillips@google.com>
Reviewed-by: Leon Scroggins <scroggo@google.com>
2020-08-27 15:39:56 +00:00

159 lines
5.7 KiB
C++

/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/codec/SkCodec.h"
#include "include/core/SkPixmap.h"
#include "include/core/SkStream.h"
#include "include/core/SkYUVASizeInfo.h"
#include "include/private/SkTemplates.h"
#include "src/core/SkAutoMalloc.h"
#include "tests/Test.h"
#include "tools/Resources.h"
static void codec_yuv(skiatest::Reporter* reporter,
const char path[],
const SkYUVAInfo* expectedInfo) {
std::unique_ptr<SkStream> stream(GetResourceAsStream(path));
if (!stream) {
return;
}
std::unique_ptr<SkCodec> codec(SkCodec::MakeFromStream(std::move(stream)));
REPORTER_ASSERT(reporter, codec);
if (!codec) {
return;
}
// Test queryYUBAInfo()
SkYUVAPixmapInfo yuvaPixmapInfo;
// Param is required to be non-null.
bool success = codec->queryYUVAInfo(nullptr);
REPORTER_ASSERT(reporter, !success);
success = codec->queryYUVAInfo(&yuvaPixmapInfo);
REPORTER_ASSERT(reporter, SkToBool(expectedInfo) == success);
if (!success) {
return;
}
REPORTER_ASSERT(reporter, *expectedInfo == yuvaPixmapInfo.yuvaInfo());
int numPlanes = yuvaPixmapInfo.numPlanes();
REPORTER_ASSERT(reporter, numPlanes <= SkYUVAInfo::kMaxPlanes);
size_t totalBytes = 0;
for (int i = 0; i < numPlanes; ++i) {
const SkImageInfo& planeInfo = yuvaPixmapInfo.planeInfo(i);
REPORTER_ASSERT(reporter, !planeInfo.isEmpty());
REPORTER_ASSERT(reporter, planeInfo.colorType() != kUnknown_SkColorType);
REPORTER_ASSERT(reporter, planeInfo.validRowBytes(yuvaPixmapInfo.rowBytes(i)));
totalBytes += planeInfo.height()*yuvaPixmapInfo.rowBytes(i);
}
for (int i = numPlanes; i < SkYUVAInfo::kMaxPlanes; ++i) {
const SkImageInfo& planeInfo = yuvaPixmapInfo.planeInfo(i);
REPORTER_ASSERT(reporter, planeInfo.dimensions().isEmpty());
REPORTER_ASSERT(reporter, planeInfo.colorType() == kUnknown_SkColorType);
REPORTER_ASSERT(reporter, yuvaPixmapInfo.rowBytes(i) == 0);
}
// Allocate the memory for the YUV decode.
auto pixmaps = SkYUVAPixmaps::Allocate(yuvaPixmapInfo);
REPORTER_ASSERT(reporter, pixmaps.isValid());
for (int i = 0; i < SkYUVAPixmaps::kMaxPlanes; ++i) {
REPORTER_ASSERT(reporter, pixmaps.plane(i).info() == yuvaPixmapInfo.planeInfo(i));
}
for (int i = numPlanes; i < SkYUVAInfo::kMaxPlanes; ++i) {
REPORTER_ASSERT(reporter, pixmaps.plane(i).rowBytes() == 0);
}
// Test getYUVAPlanes()
REPORTER_ASSERT(reporter, SkCodec::kSuccess == codec->getYUVAPlanes(pixmaps));
}
DEF_TEST(Jpeg_YUV_Codec, r) {
auto setExpectations = [](SkISize dims, SkYUVAInfo::PlanarConfig planarConfig) {
return SkYUVAInfo(dims,
planarConfig,
kJPEG_Full_SkYUVColorSpace,
kTopLeft_SkEncodedOrigin,
SkYUVAInfo::Siting::kCentered,
SkYUVAInfo::Siting::kCentered);
};
SkYUVAInfo expectations = setExpectations({128, 128}, SkYUVAInfo::PlanarConfig::kY_U_V_420);
codec_yuv(r, "images/color_wheel.jpg", &expectations);
// H2V2
expectations = setExpectations({512, 512}, SkYUVAInfo::PlanarConfig::kY_U_V_420);
codec_yuv(r, "images/mandrill_512_q075.jpg", &expectations);
// H1V1
expectations = setExpectations({512, 512}, SkYUVAInfo::PlanarConfig::kY_U_V_444);
codec_yuv(r, "images/mandrill_h1v1.jpg", &expectations);
// H2V1
expectations = setExpectations({512, 512}, SkYUVAInfo::PlanarConfig::kY_U_V_422);
codec_yuv(r, "images/mandrill_h2v1.jpg", &expectations);
// Non-power of two dimensions
expectations = setExpectations({439, 154}, SkYUVAInfo::PlanarConfig::kY_U_V_420);
codec_yuv(r, "images/cropped_mandrill.jpg", &expectations);
expectations = setExpectations({8, 8}, SkYUVAInfo::PlanarConfig::kY_U_V_420);
codec_yuv(r, "images/randPixels.jpg", &expectations);
// Progressive images
expectations = setExpectations({512, 512}, SkYUVAInfo::PlanarConfig::kY_U_V_444);
codec_yuv(r, "images/brickwork-texture.jpg", &expectations);
codec_yuv(r, "images/brickwork_normal-map.jpg", &expectations);
// A CMYK encoded image should fail.
codec_yuv(r, "images/CMYK.jpg", nullptr);
// A grayscale encoded image should fail.
codec_yuv(r, "images/grayscale.jpg", nullptr);
// A PNG should fail.
codec_yuv(r, "images/arrow.png", nullptr);
}
#include "include/effects/SkColorMatrix.h"
#include "src/core/SkYUVMath.h"
// Be sure that the two matrices are inverses of each other
// (i.e. rgb2yuv and yuv2rgb
DEF_TEST(YUVMath, reporter) {
const SkYUVColorSpace spaces[] = {
kJPEG_SkYUVColorSpace,
kRec601_SkYUVColorSpace,
kRec709_SkYUVColorSpace,
kBT2020_SkYUVColorSpace,
kIdentity_SkYUVColorSpace,
};
// Not sure what the theoretical precision we can hope for is, so pick a big value that
// passes (when I think we're correct).
const float tolerance = 1.0f/(1 << 18);
for (auto cs : spaces) {
float r2y[20], y2r[20];
SkColorMatrix_RGB2YUV(cs, r2y);
SkColorMatrix_YUV2RGB(cs, y2r);
SkColorMatrix r2ym, y2rm;
r2ym.setRowMajor(r2y);
y2rm.setRowMajor(y2r);
r2ym.postConcat(y2rm);
float tmp[20];
r2ym.getRowMajor(tmp);
for (int i = 0; i < 20; ++i) {
float expected = 0;
if (i % 6 == 0) { // diagonal
expected = 1;
}
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(tmp[i], expected, tolerance));
}
}
}