2ad7b3f65e
For usages of constants in classes outside of skgpu::tess (e.g. when using tessellation in skgpu::v1 or skgpu::graphite), the constants are accessed with tess::. This is just to help with clarity since it scopes the constant name. However, functions and types are still referred to without that, and using namespace skgpu::tess is used to keep those references simpler. In headers, tess:: is added when there are only a few usages of the types, or it's brought in as an alias. Change-Id: I12af595659fe791de419db0393482dae6cd238e3 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/534668 Reviewed-by: Jim Van Verth <jvanverth@google.com> Commit-Queue: Michael Ludwig <michaelludwig@google.com>
126 lines
5.2 KiB
C++
126 lines
5.2 KiB
C++
/*
|
|
* Copyright 2020 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "include/utils/SkRandom.h"
|
|
#include "src/core/SkGeometry.h"
|
|
#include "src/gpu/tessellate/Tessellation.h"
|
|
#include "tests/Test.h"
|
|
|
|
namespace skgpu::tess {
|
|
|
|
static bool is_linear(SkPoint p0, SkPoint p1, SkPoint p2) {
|
|
return SkScalarNearlyZero((p0 - p1).cross(p2 - p1));
|
|
}
|
|
|
|
static bool is_linear(const SkPoint p[4]) {
|
|
return is_linear(p[0],p[1],p[2]) && is_linear(p[0],p[2],p[3]) && is_linear(p[1],p[2],p[3]);
|
|
}
|
|
|
|
static void check_cubic_convex_180(skiatest::Reporter* r, const SkPoint p[4]) {
|
|
bool areCusps = false;
|
|
float inflectT[2], convex180T[2];
|
|
if (int inflectN = SkFindCubicInflections(p, inflectT)) {
|
|
// The curve has inflections. FindCubicConvex180Chops should return the inflection
|
|
// points.
|
|
int convex180N = FindCubicConvex180Chops(p, convex180T, &areCusps);
|
|
REPORTER_ASSERT(r, inflectN == convex180N);
|
|
if (!areCusps) {
|
|
REPORTER_ASSERT(r, inflectN == 1 ||
|
|
fabsf(inflectT[0] - inflectT[1]) >= SK_ScalarNearlyZero);
|
|
}
|
|
for (int i = 0; i < convex180N; ++i) {
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(inflectT[i], convex180T[i]));
|
|
}
|
|
} else {
|
|
float totalRotation = SkMeasureNonInflectCubicRotation(p);
|
|
int convex180N = FindCubicConvex180Chops(p, convex180T, &areCusps);
|
|
SkPoint chops[10];
|
|
SkChopCubicAt(p, chops, convex180T, convex180N);
|
|
float radsSum = 0;
|
|
for (int i = 0; i <= convex180N; ++i) {
|
|
float rads = SkMeasureNonInflectCubicRotation(chops + i*3);
|
|
SkASSERT(rads < SK_ScalarPI + SK_ScalarNearlyZero);
|
|
radsSum += rads;
|
|
}
|
|
if (totalRotation < SK_ScalarPI - SK_ScalarNearlyZero) {
|
|
// The curve should never chop if rotation is <180 degrees.
|
|
REPORTER_ASSERT(r, convex180N == 0);
|
|
} else if (!is_linear(p)) {
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(radsSum, totalRotation));
|
|
if (totalRotation > SK_ScalarPI + SK_ScalarNearlyZero) {
|
|
REPORTER_ASSERT(r, convex180N == 1);
|
|
// This works because cusps take the "inflection" path above, so we don't get
|
|
// non-lilnear curves that lose rotation when chopped.
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(
|
|
SkMeasureNonInflectCubicRotation(chops), SK_ScalarPI));
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(
|
|
SkMeasureNonInflectCubicRotation(chops + 3), totalRotation - SK_ScalarPI));
|
|
}
|
|
REPORTER_ASSERT(r, !areCusps);
|
|
} else {
|
|
REPORTER_ASSERT(r, areCusps);
|
|
}
|
|
}
|
|
}
|
|
|
|
DEF_TEST(FindCubicConvex180Chops, r) {
|
|
// Test all combinations of corners from the square [0,0,1,1]. This covers every cubic type as
|
|
// well as a wide variety of special cases for cusps, lines, loops, and inflections.
|
|
for (int i = 0; i < (1 << 8); ++i) {
|
|
SkPoint p[4] = {SkPoint::Make((i>>0)&1, (i>>1)&1),
|
|
SkPoint::Make((i>>2)&1, (i>>3)&1),
|
|
SkPoint::Make((i>>4)&1, (i>>5)&1),
|
|
SkPoint::Make((i>>6)&1, (i>>7)&1)};
|
|
check_cubic_convex_180(r, p);
|
|
}
|
|
|
|
{
|
|
// This cubic has a convex-180 chop at T=1-"epsilon"
|
|
static const uint32_t hexPts[] = {0x3ee0ac74, 0x3f1e061a, 0x3e0fc408, 0x3f457230,
|
|
0x3f42ac7c, 0x3f70d76c, 0x3f4e6520, 0x3f6acafa};
|
|
SkPoint p[4];
|
|
memcpy(p, hexPts, sizeof(p));
|
|
check_cubic_convex_180(r, p);
|
|
}
|
|
|
|
// Now test an exact quadratic.
|
|
SkPoint quad[4] = {{0,0}, {2,2}, {4,2}, {6,0}};
|
|
float T[2];
|
|
bool areCusps;
|
|
REPORTER_ASSERT(r, FindCubicConvex180Chops(quad, T, &areCusps) == 0);
|
|
|
|
// Now test that cusps and near-cusps get flagged as cusps.
|
|
SkPoint cusp[4] = {{0,0}, {1,1}, {1,0}, {0,1}};
|
|
REPORTER_ASSERT(r, FindCubicConvex180Chops(cusp, T, &areCusps) == 1);
|
|
REPORTER_ASSERT(r, areCusps == true);
|
|
|
|
// Find the height of the right side of "cusp" at which the distance between its inflection
|
|
// points is kEpsilon (in parametric space).
|
|
constexpr static double kEpsilon = 1.0 / (1 << 11);
|
|
constexpr static double kEpsilonSquared = kEpsilon * kEpsilon;
|
|
double h = (1 - kEpsilonSquared) / (3 * kEpsilonSquared + 1);
|
|
double dy = (1 - h) / 2;
|
|
cusp[1].fY = (float)(1 - dy);
|
|
cusp[2].fY = (float)(0 + dy);
|
|
REPORTER_ASSERT(r, SkFindCubicInflections(cusp, T) == 2);
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(T[1] - T[0], (float)kEpsilon, (float)kEpsilonSquared));
|
|
|
|
// Ensure two inflection points barely more than kEpsilon apart do not get flagged as cusps.
|
|
cusp[1].fY = (float)(1 - 1.1 * dy);
|
|
cusp[2].fY = (float)(0 + 1.1 * dy);
|
|
REPORTER_ASSERT(r, FindCubicConvex180Chops(cusp, T, &areCusps) == 2);
|
|
REPORTER_ASSERT(r, areCusps == false);
|
|
|
|
// Ensure two inflection points barely less than kEpsilon apart do get flagged as cusps.
|
|
cusp[1].fY = (float)(1 - .9 * dy);
|
|
cusp[2].fY = (float)(0 + .9 * dy);
|
|
REPORTER_ASSERT(r, FindCubicConvex180Chops(cusp, T, &areCusps) == 1);
|
|
REPORTER_ASSERT(r, areCusps == true);
|
|
}
|
|
|
|
} // namespace skgpu::tess
|