skia2/tests/GrMeshTest.cpp
Robert Phillips e94cdd2dbc Use QuadHelper and PatternHelper in more places
Propagating usage of these helpers will, hopefully, improve code reuse and centralize future changes.

This is pulled out of https://skia-review.googlesource.com/c/skia/+/252161/ (Add GrPrimitiveType to GrProgramInfo)

Bug: skia:9455
Change-Id: I9b46e42db8561d98fb724a41a1f7a3bec4bf97b0
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/252484
Reviewed-by: Michael Ludwig <michaelludwig@google.com>
Commit-Queue: Robert Phillips <robertphillips@google.com>
2019-11-04 20:32:36 +00:00

459 lines
19 KiB
C++

/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "tests/Test.h"
#include <array>
#include <vector>
#include "include/core/SkBitmap.h"
#include "include/gpu/GrContext.h"
#include "include/private/GrResourceKey.h"
#include "src/core/SkMakeUnique.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrGeometryProcessor.h"
#include "src/gpu/GrImageInfo.h"
#include "src/gpu/GrMemoryPool.h"
#include "src/gpu/GrOpFlushState.h"
#include "src/gpu/GrOpsRenderPass.h"
#include "src/gpu/GrProgramInfo.h"
#include "src/gpu/GrRenderTargetContext.h"
#include "src/gpu/GrRenderTargetContextPriv.h"
#include "src/gpu/GrResourceProvider.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLGeometryProcessor.h"
#include "src/gpu/glsl/GrGLSLVarying.h"
#include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey);
static constexpr int kBoxSize = 2;
static constexpr int kBoxCountY = 8;
static constexpr int kBoxCountX = 8;
static constexpr int kBoxCount = kBoxCountY * kBoxCountX;
static constexpr int kImageWidth = kBoxCountY * kBoxSize;
static constexpr int kImageHeight = kBoxCountX * kBoxSize;
static constexpr int kIndexPatternRepeatCount = 3;
constexpr uint16_t kIndexPattern[6] = {0, 1, 2, 1, 2, 3};
class DrawMeshHelper {
public:
DrawMeshHelper(GrOpFlushState* state) : fState(state) {}
sk_sp<const GrBuffer> getIndexBuffer();
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const SkTArray<T>& data) {
return this->makeVertexBuffer(data.begin(), data.count());
}
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const std::vector<T>& data) {
return this->makeVertexBuffer(data.data(), data.size());
}
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const T* data, int count);
sk_sp<const GrBuffer> fVertBuffer;
sk_sp<const GrBuffer> fVertBuffer2;
sk_sp<const GrBuffer> fIndexBuffer;
sk_sp<const GrBuffer> fInstBuffer;
void drawMesh(const GrMesh& mesh, GrPrimitiveType);
private:
GrOpFlushState* fState;
};
struct Box {
float fX, fY;
GrColor fColor;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* This is a GPU-backend specific test. It tries to test all possible usecases of GrMesh. The test
* works by drawing checkerboards of colored boxes, reading back the pixels, and comparing with
* expected results. The boxes are drawn on integer boundaries and the (opaque) colors are chosen
* from the set (r,g,b) = (0,255)^3, so the GPU renderings ought to produce exact matches.
*/
static void run_test(GrContext* context, const char* testName, skiatest::Reporter*,
const std::unique_ptr<GrRenderTargetContext>&, const SkBitmap& gold,
std::function<void(DrawMeshHelper*)> prepareFn,
std::function<void(DrawMeshHelper*)> executeFn);
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(GrMeshTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
auto rtc = context->priv().makeDeferredRenderTargetContext(
SkBackingFit::kExact, kImageWidth, kImageHeight, GrColorType::kRGBA_8888, nullptr);
if (!rtc) {
ERRORF(reporter, "could not create render target context.");
return;
}
SkTArray<Box> boxes;
SkTArray<std::array<Box, 4>> vertexData;
SkBitmap gold;
// ---- setup ----------
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
gold.allocN32Pixels(kImageWidth, kImageHeight);
SkCanvas goldCanvas(gold);
for (int y = 0; y < kBoxCountY; ++y) {
for (int x = 0; x < kBoxCountX; ++x) {
int c = y + x;
int rgb[3] = {-(c & 1) & 0xff, -((c >> 1) & 1) & 0xff, -((c >> 2) & 1) & 0xff};
const Box box = boxes.push_back() = {
float(x * kBoxSize),
float(y * kBoxSize),
GrColorPackRGBA(rgb[0], rgb[1], rgb[2], 255)
};
std::array<Box, 4>& boxVertices = vertexData.push_back();
for (int i = 0; i < 4; ++i) {
boxVertices[i] = {
box.fX + (i / 2) * kBoxSize,
box.fY + (i % 2) * kBoxSize,
box.fColor
};
}
paint.setARGB(255, rgb[0], rgb[1], rgb[2]);
goldCanvas.drawRect(SkRect::MakeXYWH(box.fX, box.fY, kBoxSize, kBoxSize), paint);
}
}
// ---- tests ----------
#define VALIDATE(buff) \
do { \
if (!buff) { \
ERRORF(reporter, #buff " is null."); \
return; \
} \
} while (0)
run_test(context, "setNonIndexedNonInstanced", reporter, rtc, gold,
[&](DrawMeshHelper* helper) {
SkTArray<Box> expandedVertexData;
for (int i = 0; i < kBoxCount; ++i) {
for (int j = 0; j < 6; ++j) {
expandedVertexData.push_back(vertexData[i][kIndexPattern[j]]);
}
}
// Draw boxes one line at a time to exercise base vertex.
helper->fVertBuffer = helper->makeVertexBuffer(expandedVertexData);
VALIDATE(helper->fVertBuffer);
},
[&](DrawMeshHelper* helper) {
for (int y = 0; y < kBoxCountY; ++y) {
GrMesh mesh(GrPrimitiveType::kTriangles);
mesh.setNonIndexedNonInstanced(kBoxCountX * 6);
mesh.setVertexData(helper->fVertBuffer, y * kBoxCountX * 6);
helper->drawMesh(mesh, GrPrimitiveType::kTriangles);
}
});
run_test(context, "setIndexed", reporter, rtc, gold,
[&](DrawMeshHelper* helper) {
helper->fIndexBuffer = helper->getIndexBuffer();
VALIDATE(helper->fIndexBuffer);
helper->fVertBuffer = helper->makeVertexBuffer(vertexData);
VALIDATE(helper->fVertBuffer);
},
[&](DrawMeshHelper* helper) {
int baseRepetition = 0;
int i = 0;
// Start at various repetitions within the patterned index buffer to exercise base
// index.
while (i < kBoxCount) {
GR_STATIC_ASSERT(kIndexPatternRepeatCount >= 3);
int repetitionCount = SkTMin(3 - baseRepetition, kBoxCount - i);
GrMesh mesh(GrPrimitiveType::kTriangles);
mesh.setIndexed(helper->fIndexBuffer, repetitionCount * 6, baseRepetition * 6,
baseRepetition * 4, (baseRepetition + repetitionCount) * 4 - 1,
GrPrimitiveRestart::kNo);
mesh.setVertexData(helper->fVertBuffer, (i - baseRepetition) * 4);
helper->drawMesh(mesh, GrPrimitiveType::kTriangles);
baseRepetition = (baseRepetition + 1) % 3;
i += repetitionCount;
}
});
run_test(context, "setIndexedPatterned", reporter, rtc, gold,
[&](DrawMeshHelper* helper) {
helper->fIndexBuffer = helper->getIndexBuffer();
VALIDATE(helper->fIndexBuffer);
helper->fVertBuffer = helper->makeVertexBuffer(vertexData);
VALIDATE(helper->fVertBuffer);
},
[&](DrawMeshHelper* helper) {
// Draw boxes one line at a time to exercise base vertex. setIndexedPatterned does
// not support a base index.
for (int y = 0; y < kBoxCountY; ++y) {
GrMesh mesh(GrPrimitiveType::kTriangles);
mesh.setIndexedPatterned(helper->fIndexBuffer, 6, 4, kBoxCountX,
kIndexPatternRepeatCount);
mesh.setVertexData(helper->fVertBuffer, y * kBoxCountX * 4);
helper->drawMesh(mesh, GrPrimitiveType::kTriangles);
}
});
for (bool indexed : {false, true}) {
if (!context->priv().caps()->instanceAttribSupport()) {
break;
}
run_test(context, indexed ? "setIndexedInstanced" : "setInstanced",
reporter, rtc, gold,
[&](DrawMeshHelper* helper) {
helper->fIndexBuffer = indexed ? helper->getIndexBuffer() : nullptr;
helper->fInstBuffer = helper->makeVertexBuffer(boxes);
VALIDATE(helper->fInstBuffer);
helper->fVertBuffer =
helper->makeVertexBuffer(std::vector<float>{0,0, 0,1, 1,0, 1,1});
VALIDATE(helper->fVertBuffer);
helper->fVertBuffer2 = helper->makeVertexBuffer( // for testing base vertex.
std::vector<float>{-1,-1, -1,-1, 0,0, 0,1, 1,0, 1,1});
VALIDATE(helper->fVertBuffer2);
},
[&](DrawMeshHelper* helper) {
// Draw boxes one line at a time to exercise base instance, base vertex, and
// null vertex buffer. setIndexedInstanced intentionally does not support a
// base index.
for (int y = 0; y < kBoxCountY; ++y) {
GrPrimitiveType primitiveType = indexed ? GrPrimitiveType::kTriangles
: GrPrimitiveType::kTriangleStrip;
GrMesh mesh(primitiveType);
if (indexed) {
VALIDATE(helper->fIndexBuffer);
mesh.setIndexedInstanced(helper->fIndexBuffer, 6, helper->fInstBuffer,
kBoxCountX, y * kBoxCountX,
GrPrimitiveRestart::kNo);
} else {
mesh.setInstanced(helper->fInstBuffer, kBoxCountX, y * kBoxCountX, 4);
}
switch (y % 3) {
case 0:
if (context->priv().caps()->shaderCaps()->vertexIDSupport()) {
if (y % 2) {
// We don't need this call because it's the initial state
// of GrMesh.
mesh.setVertexData(nullptr);
}
break;
}
// Fallthru.
case 1:
mesh.setVertexData(helper->fVertBuffer);
break;
case 2:
mesh.setVertexData(helper->fVertBuffer2, 2);
break;
}
helper->drawMesh(mesh, primitiveType);
}
});
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
class GrMeshTestOp : public GrDrawOp {
public:
DEFINE_OP_CLASS_ID
static std::unique_ptr<GrDrawOp> Make(GrContext* context,
std::function<void(DrawMeshHelper*)> prepareFn,
std::function<void(DrawMeshHelper*)> executeFn) {
GrOpMemoryPool* pool = context->priv().opMemoryPool();
return pool->allocate<GrMeshTestOp>(prepareFn, executeFn);
}
private:
friend class GrOpMemoryPool; // for ctor
GrMeshTestOp(std::function<void(DrawMeshHelper*)> prepareFn,
std::function<void(DrawMeshHelper*)> executeFn)
: INHERITED(ClassID())
, fPrepareFn(prepareFn)
, fExecuteFn(executeFn){
this->setBounds(SkRect::MakeIWH(kImageWidth, kImageHeight),
HasAABloat::kNo, IsHairline::kNo);
}
const char* name() const override { return "GrMeshTestOp"; }
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
GrProcessorSet::Analysis finalize(const GrCaps&, const GrAppliedClip*,
bool hasMixedSampledCoverage, GrClampType) override {
return GrProcessorSet::EmptySetAnalysis();
}
void onPrepare(GrOpFlushState* state) override {
fHelper.reset(new DrawMeshHelper(state));
fPrepareFn(fHelper.get());
}
void onExecute(GrOpFlushState* state, const SkRect& chainBounds) override {
fExecuteFn(fHelper.get());
}
std::unique_ptr<DrawMeshHelper> fHelper;
std::function<void(DrawMeshHelper*)> fPrepareFn;
std::function<void(DrawMeshHelper*)> fExecuteFn;
typedef GrDrawOp INHERITED;
};
class GrMeshTestProcessor : public GrGeometryProcessor {
public:
GrMeshTestProcessor(bool instanced, bool hasVertexBuffer)
: INHERITED(kGrMeshTestProcessor_ClassID) {
if (instanced) {
fInstanceLocation = {"location", kFloat2_GrVertexAttribType, kHalf2_GrSLType};
fInstanceColor = {"color", kUByte4_norm_GrVertexAttribType, kHalf4_GrSLType};
this->setInstanceAttributes(&fInstanceLocation, 2);
if (hasVertexBuffer) {
fVertexPosition = {"vertex", kFloat2_GrVertexAttribType, kHalf2_GrSLType};
this->setVertexAttributes(&fVertexPosition, 1);
}
} else {
fVertexPosition = {"vertex", kFloat2_GrVertexAttribType, kHalf2_GrSLType};
fVertexColor = {"color", kUByte4_norm_GrVertexAttribType, kHalf4_GrSLType};
this->setVertexAttributes(&fVertexPosition, 2);
}
}
const char* name() const override { return "GrMeshTest Processor"; }
const Attribute& inColor() const {
return fVertexColor.isInitialized() ? fVertexColor : fInstanceColor;
}
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const final {
b->add32(fInstanceLocation.isInitialized());
b->add32(fVertexPosition.isInitialized());
}
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const final;
private:
Attribute fVertexPosition;
Attribute fVertexColor;
Attribute fInstanceLocation;
Attribute fInstanceColor;
friend class GLSLMeshTestProcessor;
typedef GrGeometryProcessor INHERITED;
};
class GLSLMeshTestProcessor : public GrGLSLGeometryProcessor {
void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor&,
FPCoordTransformIter&& transformIter) final {}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final {
const GrMeshTestProcessor& mp = args.fGP.cast<GrMeshTestProcessor>();
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
varyingHandler->emitAttributes(mp);
varyingHandler->addPassThroughAttribute(mp.inColor(), args.fOutputColor);
GrGLSLVertexBuilder* v = args.fVertBuilder;
if (!mp.fInstanceLocation.isInitialized()) {
v->codeAppendf("float2 vertex = %s;", mp.fVertexPosition.name());
} else {
if (mp.fVertexPosition.isInitialized()) {
v->codeAppendf("float2 offset = %s;", mp.fVertexPosition.name());
} else {
v->codeAppend ("float2 offset = float2(sk_VertexID / 2, sk_VertexID % 2);");
}
v->codeAppendf("float2 vertex = %s + offset * %i;", mp.fInstanceLocation.name(),
kBoxSize);
}
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex");
GrGLSLFPFragmentBuilder* f = args.fFragBuilder;
f->codeAppendf("%s = half4(1);", args.fOutputCoverage);
}
};
GrGLSLPrimitiveProcessor* GrMeshTestProcessor::createGLSLInstance(const GrShaderCaps&) const {
return new GLSLMeshTestProcessor;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
sk_sp<const GrBuffer> DrawMeshHelper::makeVertexBuffer(const T* data, int count) {
return sk_sp<const GrBuffer>(fState->resourceProvider()->createBuffer(
count * sizeof(T), GrGpuBufferType::kVertex, kDynamic_GrAccessPattern, data));
}
sk_sp<const GrBuffer> DrawMeshHelper::getIndexBuffer() {
GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey);
return fState->resourceProvider()->findOrCreatePatternedIndexBuffer(
kIndexPattern, 6, kIndexPatternRepeatCount, 4, gIndexBufferKey);
}
void DrawMeshHelper::drawMesh(const GrMesh& mesh, GrPrimitiveType primitiveType) {
GrPipeline pipeline(GrScissorTest::kDisabled, SkBlendMode::kSrc, GrSwizzle::RGBA());
GrMeshTestProcessor mtp(mesh.isInstanced(), mesh.hasVertexData());
GrProgramInfo programInfo(fState->drawOpArgs().numSamples(),
fState->drawOpArgs().origin(),
pipeline,
mtp,
nullptr, nullptr, 0);
fState->opsRenderPass()->draw(programInfo, &mesh, 1,
SkRect::MakeIWH(kImageWidth, kImageHeight));
}
static void run_test(GrContext* context, const char* testName, skiatest::Reporter* reporter,
const std::unique_ptr<GrRenderTargetContext>& rtc, const SkBitmap& gold,
std::function<void(DrawMeshHelper*)> prepareFn,
std::function<void(DrawMeshHelper*)> executeFn) {
const int w = gold.width(), h = gold.height(), rowBytes = gold.rowBytes();
const uint32_t* goldPx = reinterpret_cast<const uint32_t*>(gold.getPixels());
if (h != rtc->height() || w != rtc->width()) {
ERRORF(reporter, "[%s] expectation and rtc not compatible (?).", testName);
return;
}
if (sizeof(uint32_t) * kImageWidth != gold.rowBytes()) {
ERRORF(reporter, "unexpected row bytes in gold image.", testName);
return;
}
SkAutoSTMalloc<kImageHeight * kImageWidth, uint32_t> resultPx(h * rowBytes);
rtc->clear(nullptr, SkPMColor4f::FromBytes_RGBA(0xbaaaaaad),
GrRenderTargetContext::CanClearFullscreen::kYes);
rtc->priv().testingOnly_addDrawOp(GrMeshTestOp::Make(context, prepareFn, executeFn));
rtc->readPixels(gold.info(), resultPx, rowBytes, {0, 0});
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
uint32_t expected = goldPx[y * kImageWidth + x];
uint32_t actual = resultPx[y * kImageWidth + x];
if (expected != actual) {
ERRORF(reporter, "[%s] pixel (%i,%i): got 0x%x expected 0x%x",
testName, x, y, actual, expected);
return;
}
}
}
}