skia2/tests/SkRasterPipelineTest.cpp
Jim Van Verth d6245fc4aa Rename GrSwizzle to skgpu::Swizzle
Bug: skia:12845
Change-Id: Ia03293c4efdad4c5381a713c9d7d4857b79530c7
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/509398
Reviewed-by: Robert Phillips <robertphillips@google.com>
Reviewed-by: Greg Daniel <egdaniel@google.com>
Commit-Queue: Jim Van Verth <jvanverth@google.com>
2022-02-16 13:30:14 +00:00

571 lines
18 KiB
C++

/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/private/SkHalf.h"
#include "include/private/SkTo.h"
#include "src/core/SkRasterPipeline.h"
#include "src/gpu/Swizzle.h"
#include "tests/Test.h"
DEF_TEST(SkRasterPipeline, r) {
// Build and run a simple pipeline to exercise SkRasterPipeline,
// drawing 50% transparent blue over opaque red in half-floats.
uint64_t red = 0x3c00000000003c00ull,
blue = 0x3800380000000000ull,
result;
SkRasterPipeline_MemoryCtx load_s_ctx = { &blue, 0 },
load_d_ctx = { &red, 0 },
store_ctx = { &result, 0 };
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_f16, &load_s_ctx);
p.append(SkRasterPipeline::load_f16_dst, &load_d_ctx);
p.append(SkRasterPipeline::srcover);
p.append(SkRasterPipeline::store_f16, &store_ctx);
p.run(0,0,1,1);
// We should see half-intensity magenta.
REPORTER_ASSERT(r, ((result >> 0) & 0xffff) == 0x3800);
REPORTER_ASSERT(r, ((result >> 16) & 0xffff) == 0x0000);
REPORTER_ASSERT(r, ((result >> 32) & 0xffff) == 0x3800);
REPORTER_ASSERT(r, ((result >> 48) & 0xffff) == 0x3c00);
}
DEF_TEST(SkRasterPipeline_empty, r) {
// No asserts... just a test that this is safe to run.
SkRasterPipeline_<256> p;
p.run(0,0,20,1);
}
DEF_TEST(SkRasterPipeline_nonsense, r) {
// No asserts... just a test that this is safe to run and terminates.
// srcover() calls st->next(); this makes sure we've always got something there to call.
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::srcover);
p.run(0,0,20,1);
}
DEF_TEST(SkRasterPipeline_JIT, r) {
// This tests a couple odd corners that a JIT backend can stumble over.
uint32_t buf[72] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
SkRasterPipeline_MemoryCtx src = { buf + 0, 0 },
dst = { buf + 36, 0 };
// Copy buf[x] to buf[x+36] for x in [15,35).
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline:: load_8888, &src);
p.append(SkRasterPipeline::store_8888, &dst);
p.run(15,0, 20,1);
for (int i = 0; i < 36; i++) {
if (i < 15 || i == 35) {
REPORTER_ASSERT(r, buf[i+36] == 0);
} else {
REPORTER_ASSERT(r, buf[i+36] == (uint32_t)(i - 11));
}
}
}
static uint16_t h(float f) {
// Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
uint32_t sem;
memcpy(&sem, &f, sizeof(sem));
uint32_t s = sem & 0x80000000,
em = sem ^ s;
// Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero.
auto denorm = (int32_t)em < 0x38800000; // I32 comparison is often quicker, and always safe
// here.
return denorm ? SkTo<uint16_t>(0)
: SkTo<uint16_t>((s>>16) + (em>>13) - ((127-15)<<10));
}
DEF_TEST(SkRasterPipeline_tail, r) {
{
float data[][4] = {
{00, 01, 02, 03},
{10, 11, 12, 13},
{20, 21, 22, 23},
{30, 31, 32, 33},
};
float buffer[4][4];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_f32, &src);
p.append(SkRasterPipeline::store_f32, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
for (unsigned k = 0; k < 4; k++) {
if (buffer[j][k] != data[j][k]) {
ERRORF(r, "(%u, %u) - a: %g r: %g\n", j, k, data[j][k], buffer[j][k]);
}
}
}
for (int j = i; j < 4; j++) {
for (auto f : buffer[j]) {
REPORTER_ASSERT(r, SkScalarIsNaN(f));
}
}
}
}
{
float data[][2] = {
{00, 01},
{10, 11},
{20, 21},
{30, 31},
};
float buffer[4][4];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_rgf32, &src);
p.append(SkRasterPipeline::store_f32, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
for (unsigned k = 0; k < 2; k++) {
if (buffer[j][k] != data[j][k]) {
ERRORF(r, "(%u, %u) - a: %g r: %g\n", j, k, data[j][k], buffer[j][k]);
}
}
if (buffer[j][2] != 0) {
ERRORF(r, "(%u, 2) - a: 0 r: %g\n", j, buffer[j][2]);
}
if (buffer[j][3] != 1) {
ERRORF(r, "(%u, 3) - a: 1 r: %g\n", j, buffer[j][3]);
}
}
for (int j = i; j < 4; j++) {
for (auto f : buffer[j]) {
REPORTER_ASSERT(r, SkScalarIsNaN(f));
}
}
}
}
{
float data[][4] = {
{00, 01, 02, 03},
{10, 11, 12, 13},
{20, 21, 22, 23},
{30, 31, 32, 33},
};
float buffer[4][2];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_f32, &src);
p.append(SkRasterPipeline::store_rgf32, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
for (unsigned k = 0; k < 2; k++) {
if (buffer[j][k] != data[j][k]) {
ERRORF(r, "(%u, %u) - a: %g r: %g\n", j, k, data[j][k], buffer[j][k]);
}
}
}
for (int j = i; j < 4; j++) {
for (auto f : buffer[j]) {
REPORTER_ASSERT(r, SkScalarIsNaN(f));
}
}
}
}
{
alignas(8) uint16_t data[][4] = {
{h(00), h(01), h(02), h(03)},
{h(10), h(11), h(12), h(13)},
{h(20), h(21), h(22), h(23)},
{h(30), h(31), h(32), h(33)},
};
alignas(8) uint16_t buffer[4][4];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_f16, &src);
p.append(SkRasterPipeline::store_f16, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
for (int k = 0; k < 4; k++) {
REPORTER_ASSERT(r, buffer[j][k] == data[j][k]);
}
}
for (int j = i; j < 4; j++) {
for (auto f : buffer[j]) {
REPORTER_ASSERT(r, f == 0xffff);
}
}
}
}
{
alignas(8) uint16_t data[]= {
h(00),
h(10),
h(20),
h(30),
};
alignas(8) uint16_t buffer[4][4];
SkRasterPipeline_MemoryCtx src = { &data[0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_af16, &src);
p.append(SkRasterPipeline::store_f16, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
uint16_t expected[] = {0, 0, 0, data[j]};
REPORTER_ASSERT(r, !memcmp(expected, &buffer[j][0], sizeof(buffer[j])));
}
for (int j = i; j < 4; j++) {
for (auto f : buffer[j]) {
REPORTER_ASSERT(r, f == 0xffff);
}
}
}
}
{
alignas(8) uint16_t data[][4] = {
{h(00), h(01), h(02), h(03)},
{h(10), h(11), h(12), h(13)},
{h(20), h(21), h(22), h(23)},
{h(30), h(31), h(32), h(33)},
};
alignas(8) uint16_t buffer[4];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_f16, &src);
p.append(SkRasterPipeline::store_af16, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
REPORTER_ASSERT(r, !memcmp(&data[j][3], &buffer[j], sizeof(buffer[j])));
}
for (int j = i; j < 4; j++) {
REPORTER_ASSERT(r, buffer[j] == 0xffff);
}
}
}
{
alignas(8) uint16_t data[][4] = {
{h(00), h(01), h(02), h(03)},
{h(10), h(11), h(12), h(13)},
{h(20), h(21), h(22), h(23)},
{h(30), h(31), h(32), h(33)},
};
alignas(8) uint16_t buffer[4][2];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_f16, &src);
p.append(SkRasterPipeline::store_rgf16, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
REPORTER_ASSERT(r, !memcmp(&buffer[j], &data[j], 2 * sizeof(uint16_t)));
}
for (int j = i; j < 4; j++) {
for (auto h : buffer[j]) {
REPORTER_ASSERT(r, h == 0xffff);
}
}
}
}
{
alignas(8) uint16_t data[][2] = {
{h(00), h(01)},
{h(10), h(11)},
{h(20), h(21)},
{h(30), h(31)},
};
alignas(8) uint16_t buffer[4][4];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_rgf16, &src);
p.append(SkRasterPipeline::store_f16, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
uint16_t expected[] = {data[j][0], data[j][1], h(0), h(1)};
REPORTER_ASSERT(r, !memcmp(&buffer[j], expected, sizeof(expected)));
}
for (int j = i; j < 4; j++) {
for (auto h : buffer[j]) {
REPORTER_ASSERT(r, h == 0xffff);
}
}
}
}
}
DEF_TEST(SkRasterPipeline_u16, r) {
{
alignas(8) uint16_t data[][2] = {
{0x0000, 0x0111},
{0x1010, 0x1111},
{0x2020, 0x2121},
{0x3030, 0x3131},
};
uint8_t buffer[4][4];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xab, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_rg1616, &src);
p.append(SkRasterPipeline::store_8888, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
uint8_t expected[] = {
SkToU8(data[j][0] >> 8),
SkToU8(data[j][1] >> 8),
000,
0xff
};
REPORTER_ASSERT(r, !memcmp(&buffer[j], expected, sizeof(expected)));
}
for (int j = i; j < 4; j++) {
for (auto b : buffer[j]) {
REPORTER_ASSERT(r, b == 0xab);
}
}
}
}
{
alignas(8) uint16_t data[] = {
0x0000,
0x1010,
0x2020,
0x3030,
};
uint8_t buffer[4][4];
SkRasterPipeline_MemoryCtx src = { &data[0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_a16, &src);
p.append(SkRasterPipeline::store_8888, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
uint8_t expected[] = {0x00, 0x00, 0x00, SkToU8(data[j] >> 8)};
REPORTER_ASSERT(r, !memcmp(&buffer[j], expected, sizeof(expected)));
}
for (int j = i; j < 4; j++) {
for (auto b : buffer[j]) {
REPORTER_ASSERT(r, b == 0xff);
}
}
}
}
{
uint8_t data[][4] = {
{0x00, 0x01, 0x02, 0x03},
{0x10, 0x11, 0x12, 0x13},
{0x20, 0x21, 0x22, 0x23},
{0x30, 0x31, 0x32, 0x33},
};
alignas(8) uint16_t buffer[4];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_8888, &src);
p.append(SkRasterPipeline::store_a16, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
uint16_t expected = (data[j][3] << 8) | data[j][3];
REPORTER_ASSERT(r, buffer[j] == expected);
}
for (int j = i; j < 4; j++) {
REPORTER_ASSERT(r, buffer[j] == 0xffff);
}
}
}
{
alignas(8) uint16_t data[][4] = {
{0x0000, 0x1000, 0x2000, 0x3000},
{0x0001, 0x1001, 0x2001, 0x3001},
{0x0002, 0x1002, 0x2002, 0x3002},
{0x0003, 0x1003, 0x2003, 0x3003},
};
alignas(8) uint16_t buffer[4][4];
SkRasterPipeline_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_16161616, &src);
p.append(SkRasterPipeline::swap_rb);
p.append(SkRasterPipeline::store_16161616, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
uint16_t expected[4] = {data[j][2], data[j][1], data[j][0], data[j][3]};
REPORTER_ASSERT(r, !memcmp(&expected[0], &buffer[j], sizeof(expected)));
}
for (int j = i; j < 4; j++) {
for (uint16_t u16 : buffer[j])
REPORTER_ASSERT(r, u16 == 0xffff);
}
}
}
}
DEF_TEST(SkRasterPipeline_lowp, r) {
uint32_t rgba[64];
for (int i = 0; i < 64; i++) {
rgba[i] = (4*i+0) << 0
| (4*i+1) << 8
| (4*i+2) << 16
| (4*i+3) << 24;
}
SkRasterPipeline_MemoryCtx ptr = { rgba, 0 };
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_8888, &ptr);
p.append(SkRasterPipeline::swap_rb);
p.append(SkRasterPipeline::store_8888, &ptr);
p.run(0,0,64,1);
for (int i = 0; i < 64; i++) {
uint32_t want = (4*i+0) << 16
| (4*i+1) << 8
| (4*i+2) << 0
| (4*i+3) << 24;
if (rgba[i] != want) {
ERRORF(r, "got %08x, want %08x\n", rgba[i], want);
}
}
}
DEF_TEST(SkRasterPipeline_swizzle, r) {
// This takes the lowp code path
{
uint16_t rg[64];
for (int i = 0; i < 64; i++) {
rg[i] = (4*i+0) << 0
| (4*i+1) << 8;
}
skgpu::Swizzle swizzle("g1b1");
SkRasterPipeline_MemoryCtx ptr = { rg, 0 };
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_rg88, &ptr);
swizzle.apply(&p);
p.append(SkRasterPipeline::store_rg88, &ptr);
p.run(0,0,64,1);
for (int i = 0; i < 64; i++) {
uint32_t want = 0xff << 8
| (4*i+1) << 0;
if (rg[i] != want) {
ERRORF(r, "got %08x, want %08x\n", rg[i], want);
}
}
}
// This takes the highp code path
{
float rg[64][2];
for (int i = 0; i < 64; i++) {
rg[i][0] = i + 1;
rg[i][1] = 2 * i + 1;
}
skgpu::Swizzle swizzle("0gra");
uint16_t buffer[64][4];
SkRasterPipeline_MemoryCtx src = { rg, 0 },
dst = { buffer, 0};
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_rgf32, &src);
swizzle.apply(&p);
p.append(SkRasterPipeline::store_f16, &dst);
p.run(0,0,64,1);
for (int i = 0; i < 64; i++) {
uint16_t want[4] {
h(0),
h(2 * i + 1),
h(i + 1),
h(1),
};
REPORTER_ASSERT(r, !memcmp(want, buffer[i], sizeof(buffer[i])));
}
}
}
DEF_TEST(SkRasterPipeline_lowp_clamp01, r) {
// This may seem like a funny pipeline to create,
// but it certainly shouldn't crash when you run it.
uint32_t rgba = 0xff00ff00;
SkRasterPipeline_MemoryCtx ptr = { &rgba, 0 };
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_8888, &ptr);
p.append(SkRasterPipeline::swap_rb);
p.append(SkRasterPipeline::clamp_0);
p.append(SkRasterPipeline::clamp_1);
p.append(SkRasterPipeline::store_8888, &ptr);
p.run(0,0,1,1);
}