2a475eae62
Many tests and examples use drawText with a guess of how long the text is in bytes, or a call to strlen(). Add a helper to SkCanvas to simplify these examples. Add another helper for SkString. R=reed@google.com Change-Id: I0204a31e938f065606f08ee7cd9a6b36db791ee2 Reviewed-on: https://skia-review.googlesource.com/13642 Commit-Queue: Cary Clark <caryclark@google.com> Reviewed-by: Cary Clark <caryclark@google.com> Reviewed-by: Mike Reed <reed@google.com> Reviewed-by: Cary Clark <caryclark@skia.org>
406 lines
16 KiB
C++
406 lines
16 KiB
C++
/*
|
|
* Copyright 2016 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "Resources.h"
|
|
|
|
#include "SkBitmap.h"
|
|
#include "SkCanvas.h"
|
|
#include "SkCodec.h"
|
|
#include "SkColorSpace_A2B.h"
|
|
#include "SkColorSpace_XYZ.h"
|
|
#include "SkColorSpacePriv.h"
|
|
#include "SkCommandLineFlags.h"
|
|
#include "SkImageEncoder.h"
|
|
#include "SkMatrix44.h"
|
|
#include "SkOSFile.h"
|
|
|
|
#include "sk_tool_utils.h"
|
|
|
|
DEFINE_string(input, "input.png", "A path to the input image or icc profile.");
|
|
DEFINE_string(gamut_output, "gamut_output.png", "A path to the output gamut image.");
|
|
DEFINE_string(gamma_output, "gamma_output.png", "A path to the output gamma image.");
|
|
DEFINE_bool(sRGB_gamut, false, "Draws the sRGB gamut on the gamut visualization.");
|
|
DEFINE_bool(adobeRGB, false, "Draws the Adobe RGB gamut on the gamut visualization.");
|
|
DEFINE_bool(sRGB_gamma, false, "Draws the sRGB gamma on all gamma output images.");
|
|
DEFINE_string(uncorrected, "", "A path to reencode the uncorrected input image.");
|
|
|
|
static const char* kRGBChannelNames[3] = {
|
|
"Red ", "Green", "Blue "
|
|
};
|
|
|
|
static const SkColor kRGBChannelColors[3] = {
|
|
SkColorSetARGB(164, 255, 32, 32),
|
|
SkColorSetARGB(164, 32, 255, 32),
|
|
SkColorSetARGB(164, 32, 32, 255)
|
|
};
|
|
|
|
static void dump_transfer_fn(SkGammaNamed gammaNamed) {
|
|
switch (gammaNamed) {
|
|
case kSRGB_SkGammaNamed:
|
|
SkDebugf("Transfer Function: sRGB\n");
|
|
return;
|
|
case k2Dot2Curve_SkGammaNamed:
|
|
SkDebugf("Exponential Transfer Function: Exponent 2.2\n");
|
|
return;
|
|
case kLinear_SkGammaNamed:
|
|
SkDebugf("Transfer Function: Linear\n");
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
static void dump_transfer_fn(const SkGammas& gammas) {
|
|
SkASSERT(gammas.channels() == 3);
|
|
for (int i = 0; i < gammas.channels(); i++) {
|
|
if (gammas.isNamed(i)) {
|
|
switch (gammas.data(i).fNamed) {
|
|
case kSRGB_SkGammaNamed:
|
|
SkDebugf("%s Transfer Function: sRGB\n", kRGBChannelNames[i]);
|
|
return;
|
|
case k2Dot2Curve_SkGammaNamed:
|
|
SkDebugf("%s Transfer Function: Exponent 2.2\n", kRGBChannelNames[i]);
|
|
return;
|
|
case kLinear_SkGammaNamed:
|
|
SkDebugf("%s Transfer Function: Linear\n", kRGBChannelNames[i]);
|
|
return;
|
|
default:
|
|
SkASSERT(false);
|
|
continue;
|
|
}
|
|
} else if (gammas.isValue(i)) {
|
|
SkDebugf("%s Transfer Function: Exponent %.3f\n", kRGBChannelNames[i],
|
|
gammas.data(i).fValue);
|
|
} else if (gammas.isParametric(i)) {
|
|
const SkColorSpaceTransferFn& fn = gammas.data(i).params(&gammas);
|
|
SkDebugf("%s Transfer Function: Parametric A = %.3f, B = %.3f, C = %.3f, D = %.3f, "
|
|
"E = %.3f, F = %.3f, G = %.3f\n", kRGBChannelNames[i], fn.fA, fn.fB, fn.fC,
|
|
fn.fD, fn.fE, fn.fF, fn.fG);
|
|
} else {
|
|
SkASSERT(gammas.isTable(i));
|
|
SkDebugf("%s Transfer Function: Table (%d entries)\n", kRGBChannelNames[i],
|
|
gammas.data(i).fTable.fSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline float parametric(const SkColorSpaceTransferFn& fn, float x) {
|
|
return x >= fn.fD ? powf(fn.fA*x + fn.fB, fn.fG) + fn.fE
|
|
: fn.fC*x + fn.fF;
|
|
}
|
|
|
|
static void draw_transfer_fn(SkCanvas* canvas, SkGammaNamed gammaNamed, const SkGammas* gammas,
|
|
SkColor color, int col) {
|
|
SkColorSpaceTransferFn fn[4];
|
|
struct TableInfo {
|
|
const float* fTable;
|
|
int fSize;
|
|
};
|
|
TableInfo table[4];
|
|
bool isTable[4] = {false, false, false, false};
|
|
const int channels = gammas ? gammas->channels() : 1;
|
|
SkASSERT(channels <= 4);
|
|
if (kNonStandard_SkGammaNamed != gammaNamed) {
|
|
dump_transfer_fn(gammaNamed);
|
|
for (int i = 0; i < channels; ++i) {
|
|
named_to_parametric(&fn[i], gammaNamed);
|
|
}
|
|
} else {
|
|
SkASSERT(gammas);
|
|
dump_transfer_fn(*gammas);
|
|
for (int i = 0; i < channels; ++i) {
|
|
if (gammas->isTable(i)) {
|
|
table[i].fTable = gammas->table(i);
|
|
table[i].fSize = gammas->data(i).fTable.fSize;
|
|
isTable[i] = true;
|
|
} else {
|
|
switch (gammas->type(i)) {
|
|
case SkGammas::Type::kNamed_Type:
|
|
named_to_parametric(&fn[i], gammas->data(i).fNamed);
|
|
break;
|
|
case SkGammas::Type::kValue_Type:
|
|
value_to_parametric(&fn[i], gammas->data(i).fValue);
|
|
break;
|
|
case SkGammas::Type::kParam_Type:
|
|
fn[i] = gammas->params(i);
|
|
break;
|
|
default:
|
|
SkASSERT(false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
SkPaint paint;
|
|
paint.setStyle(SkPaint::kStroke_Style);
|
|
paint.setColor(color);
|
|
paint.setStrokeWidth(2.0f);
|
|
// note: gamma has positive values going up in this image so this origin is
|
|
// the bottom left and we must subtract y instead of adding.
|
|
const float gap = 16.0f;
|
|
const float cellWidth = 500.0f;
|
|
const float cellHeight = 500.0f;
|
|
const float gammaWidth = cellWidth - 2 * gap;
|
|
const float gammaHeight = cellHeight - 2 * gap;
|
|
// gamma origin point
|
|
const float ox = gap + cellWidth * col;
|
|
const float oy = gap + gammaHeight;
|
|
for (int i = 0; i < channels; ++i) {
|
|
if (kNonStandard_SkGammaNamed == gammaNamed) {
|
|
paint.setColor(kRGBChannelColors[i]);
|
|
} else {
|
|
paint.setColor(color);
|
|
}
|
|
if (isTable[i]) {
|
|
auto tx = [&table,i](int index) {
|
|
return index / (table[i].fSize - 1.0f);
|
|
};
|
|
for (int ti = 1; ti < table[i].fSize; ++ti) {
|
|
canvas->drawLine(ox + gammaWidth * tx(ti - 1),
|
|
oy - gammaHeight * table[i].fTable[ti - 1],
|
|
ox + gammaWidth * tx(ti),
|
|
oy - gammaHeight * table[i].fTable[ti],
|
|
paint);
|
|
}
|
|
} else {
|
|
const float step = 0.01f;
|
|
float yPrev = parametric(fn[i], 0.0f);
|
|
for (float x = step; x <= 1.0f; x += step) {
|
|
const float y = parametric(fn[i], x);
|
|
canvas->drawLine(ox + gammaWidth * (x - step), oy - gammaHeight * yPrev,
|
|
ox + gammaWidth * x, oy - gammaHeight * y,
|
|
paint);
|
|
yPrev = y;
|
|
}
|
|
}
|
|
}
|
|
paint.setColor(0xFF000000);
|
|
paint.setStrokeWidth(3.0f);
|
|
canvas->drawRect({ ox, oy - gammaHeight, ox + gammaWidth, oy }, paint);
|
|
}
|
|
|
|
/**
|
|
* Loads the triangular gamut as a set of three points.
|
|
*/
|
|
static void load_gamut(SkPoint rgb[], const SkMatrix44& xyz) {
|
|
// rx = rX / (rX + rY + rZ)
|
|
// ry = rX / (rX + rY + rZ)
|
|
// gx, gy, bx, and gy are calulcated similarly.
|
|
float rSum = xyz.get(0, 0) + xyz.get(1, 0) + xyz.get(2, 0);
|
|
float gSum = xyz.get(0, 1) + xyz.get(1, 1) + xyz.get(2, 1);
|
|
float bSum = xyz.get(0, 2) + xyz.get(1, 2) + xyz.get(2, 2);
|
|
rgb[0].fX = xyz.get(0, 0) / rSum;
|
|
rgb[0].fY = xyz.get(1, 0) / rSum;
|
|
rgb[1].fX = xyz.get(0, 1) / gSum;
|
|
rgb[1].fY = xyz.get(1, 1) / gSum;
|
|
rgb[2].fX = xyz.get(0, 2) / bSum;
|
|
rgb[2].fY = xyz.get(1, 2) / bSum;
|
|
}
|
|
|
|
/**
|
|
* Calculates the area of the triangular gamut.
|
|
*/
|
|
static float calculate_area(SkPoint abc[]) {
|
|
SkPoint a = abc[0];
|
|
SkPoint b = abc[1];
|
|
SkPoint c = abc[2];
|
|
return 0.5f * SkTAbs(a.fX*b.fY + b.fX*c.fY - a.fX*c.fY - c.fX*b.fY - b.fX*a.fY);
|
|
}
|
|
|
|
static void draw_gamut(SkCanvas* canvas, const SkMatrix44& xyz, const char* name, SkColor color,
|
|
bool label) {
|
|
// Report the XYZ values.
|
|
SkDebugf("%s\n", name);
|
|
SkDebugf(" R G B\n");
|
|
SkDebugf("X %.3f %.3f %.3f\n", xyz.get(0, 0), xyz.get(0, 1), xyz.get(0, 2));
|
|
SkDebugf("Y %.3f %.3f %.3f\n", xyz.get(1, 0), xyz.get(1, 1), xyz.get(1, 2));
|
|
SkDebugf("Z %.3f %.3f %.3f\n", xyz.get(2, 0), xyz.get(2, 1), xyz.get(2, 2));
|
|
|
|
// Calculate the points in the gamut from the XYZ values.
|
|
SkPoint rgb[4];
|
|
load_gamut(rgb, xyz);
|
|
|
|
// Report the area of the gamut.
|
|
SkDebugf("Area of Gamut: %.3f\n\n", calculate_area(rgb));
|
|
|
|
// Magic constants that help us place the gamut triangles in the appropriate position
|
|
// on the canvas.
|
|
const float xScale = 2071.25f; // Num pixels from 0 to 1 in x
|
|
const float xOffset = 241.0f; // Num pixels until start of x-axis
|
|
const float yScale = 2067.78f; // Num pixels from 0 to 1 in y
|
|
const float yOffset = -144.78f; // Num pixels until start of y-axis
|
|
// (negative because y extends beyond image bounds)
|
|
|
|
// Now transform the points so they can be drawn on our canvas.
|
|
// Note that y increases as we move down the canvas.
|
|
rgb[0].fX = xOffset + xScale * rgb[0].fX;
|
|
rgb[0].fY = yOffset + yScale * (1.0f - rgb[0].fY);
|
|
rgb[1].fX = xOffset + xScale * rgb[1].fX;
|
|
rgb[1].fY = yOffset + yScale * (1.0f - rgb[1].fY);
|
|
rgb[2].fX = xOffset + xScale * rgb[2].fX;
|
|
rgb[2].fY = yOffset + yScale * (1.0f - rgb[2].fY);
|
|
|
|
// Repeat the first point to connect the polygon.
|
|
rgb[3] = rgb[0];
|
|
SkPaint paint;
|
|
paint.setColor(color);
|
|
paint.setStrokeWidth(6.0f);
|
|
paint.setTextSize(75.0f);
|
|
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 4, rgb, paint);
|
|
if (label) {
|
|
canvas->drawString("R", rgb[0].fX + 5.0f, rgb[0].fY + 75.0f, paint);
|
|
canvas->drawString("G", rgb[1].fX + 5.0f, rgb[1].fY - 5.0f, paint);
|
|
canvas->drawString("B", rgb[2].fX - 75.0f, rgb[2].fY - 5.0f, paint);
|
|
}
|
|
}
|
|
|
|
int main(int argc, char** argv) {
|
|
SkCommandLineFlags::SetUsage(
|
|
"Usage: colorspaceinfo --input <path to input image or icc profile> "
|
|
"--gamma_output <path to output gamma image> "
|
|
"--gamut_output <path to output gamut image>"
|
|
"--sRGB <draw canonical sRGB gamut> "
|
|
"--adobeRGB <draw canonical Adobe RGB gamut> "
|
|
"--uncorrected <path to reencoded, uncorrected input image>\n"
|
|
"Description: Writes visualizations of the color space to the output image(s) ."
|
|
"Also, if a path is provided, writes uncorrected bytes to an unmarked "
|
|
"png, for comparison with the input image.\n");
|
|
SkCommandLineFlags::Parse(argc, argv);
|
|
const char* input = FLAGS_input[0];
|
|
const char* gamut_output = FLAGS_gamut_output[0];
|
|
const char* gamma_output = FLAGS_gamma_output[0];
|
|
if (!input || !gamut_output || !gamma_output) {
|
|
SkCommandLineFlags::PrintUsage();
|
|
return -1;
|
|
}
|
|
|
|
sk_sp<SkData> data(SkData::MakeFromFileName(input));
|
|
if (!data) {
|
|
SkDebugf("Cannot find input image.\n");
|
|
return -1;
|
|
}
|
|
std::unique_ptr<SkCodec> codec(SkCodec::NewFromData(data));
|
|
sk_sp<SkColorSpace> colorSpace = nullptr;
|
|
const bool isImage = (codec != nullptr);
|
|
if (isImage) {
|
|
colorSpace = sk_ref_sp(codec->getInfo().colorSpace());
|
|
} else {
|
|
colorSpace = SkColorSpace::MakeICC(data->bytes(), data->size());
|
|
}
|
|
|
|
if (!colorSpace) {
|
|
SkDebugf("Cannot create codec or icc profile from input file.\n");
|
|
return -1;
|
|
}
|
|
|
|
// Load a graph of the CIE XYZ color gamut.
|
|
SkBitmap gamutCanvasBitmap;
|
|
if (!GetResourceAsBitmap("gamut.png", &gamutCanvasBitmap)) {
|
|
SkDebugf("Program failure.\n");
|
|
return -1;
|
|
}
|
|
SkCanvas gamutCanvas(gamutCanvasBitmap);
|
|
|
|
SkBitmap gammaCanvasBitmap;
|
|
gammaCanvasBitmap.allocN32Pixels(500, 500);
|
|
SkCanvas gammaCanvas(gammaCanvasBitmap);
|
|
|
|
// Draw the sRGB gamut if requested.
|
|
if (FLAGS_sRGB_gamut) {
|
|
sk_sp<SkColorSpace> sRGBSpace = SkColorSpace::MakeSRGB();
|
|
const SkMatrix44* mat = as_CSB(sRGBSpace)->toXYZD50();
|
|
SkASSERT(mat);
|
|
draw_gamut(&gamutCanvas, *mat, "sRGB", 0xFFFF9394, false);
|
|
}
|
|
|
|
// Draw the Adobe RGB gamut if requested.
|
|
if (FLAGS_adobeRGB) {
|
|
sk_sp<SkColorSpace> adobeRGBSpace =
|
|
SkColorSpace_Base::MakeNamed(SkColorSpace_Base::kAdobeRGB_Named);
|
|
const SkMatrix44* mat = as_CSB(adobeRGBSpace)->toXYZD50();
|
|
SkASSERT(mat);
|
|
draw_gamut(&gamutCanvas, *mat, "Adobe RGB", 0xFF31a9e1, false);
|
|
}
|
|
|
|
int gammaCol = 0;
|
|
if (SkColorSpace_Base::Type::kXYZ == as_CSB(colorSpace)->type()) {
|
|
const SkMatrix44* mat = as_CSB(colorSpace)->toXYZD50();
|
|
SkASSERT(mat);
|
|
auto xyz = static_cast<SkColorSpace_XYZ*>(colorSpace.get());
|
|
draw_gamut(&gamutCanvas, *mat, input, 0xFF000000, true);
|
|
if (FLAGS_sRGB_gamma) {
|
|
draw_transfer_fn(&gammaCanvas, kSRGB_SkGammaNamed, nullptr, 0xFFFF9394, gammaCol);
|
|
}
|
|
draw_transfer_fn(&gammaCanvas, xyz->gammaNamed(), xyz->gammas(), 0xFF000000, gammaCol++);
|
|
} else {
|
|
SkDebugf("Color space is defined using an A2B tag. It cannot be represented by "
|
|
"a transfer function and to D50 matrix.\n");
|
|
return -1;
|
|
}
|
|
|
|
// marker to tell the web-tool the names of all images output
|
|
SkDebugf("=========\n");
|
|
auto saveCanvasBitmap = [](const SkBitmap& bitmap, const char *fname) {
|
|
// Finally, encode the result to the output file.
|
|
sk_sp<SkData> out = sk_tool_utils::EncodeImageToData(bitmap, SkEncodedImageFormat::kPNG,
|
|
100);
|
|
if (!out) {
|
|
SkDebugf("Failed to encode %s output.\n", fname);
|
|
return false;
|
|
}
|
|
SkFILEWStream stream(fname);
|
|
if (!stream.write(out->data(), out->size())) {
|
|
SkDebugf("Failed to write %s output.\n", fname);
|
|
return false;
|
|
}
|
|
// record name of canvas
|
|
SkDebugf("%s\n", fname);
|
|
return true;
|
|
};
|
|
|
|
// only XYZ images have a gamut visualization since the matrix in A2B is not
|
|
// a gamut adjustment from RGB->XYZ always (or ever)
|
|
if (SkColorSpace_Base::Type::kXYZ == as_CSB(colorSpace)->type() &&
|
|
!saveCanvasBitmap(gamutCanvasBitmap, gamut_output)) {
|
|
return -1;
|
|
}
|
|
if (gammaCol > 0 && !saveCanvasBitmap(gammaCanvasBitmap, gamma_output)) {
|
|
return -1;
|
|
}
|
|
|
|
if (isImage) {
|
|
SkDebugf("%s\n", input);
|
|
}
|
|
// Also, if requested, decode and reencode the uncorrected input image.
|
|
if (!FLAGS_uncorrected.isEmpty() && isImage) {
|
|
SkBitmap bitmap;
|
|
int width = codec->getInfo().width();
|
|
int height = codec->getInfo().height();
|
|
bitmap.allocN32Pixels(width, height, kOpaque_SkAlphaType == codec->getInfo().alphaType());
|
|
SkImageInfo decodeInfo = SkImageInfo::MakeN32(width, height, kUnpremul_SkAlphaType);
|
|
if (SkCodec::kSuccess != codec->getPixels(decodeInfo, bitmap.getPixels(),
|
|
bitmap.rowBytes())) {
|
|
SkDebugf("Could not decode input image.\n");
|
|
return -1;
|
|
}
|
|
sk_sp<SkData> out = sk_tool_utils::EncodeImageToData(bitmap, SkEncodedImageFormat::kPNG,
|
|
100);
|
|
if (!out) {
|
|
SkDebugf("Failed to encode uncorrected image.\n");
|
|
return -1;
|
|
}
|
|
SkFILEWStream bitmapStream(FLAGS_uncorrected[0]);
|
|
if (!bitmapStream.write(out->data(), out->size())) {
|
|
SkDebugf("Failed to write uncorrected image output.\n");
|
|
return -1;
|
|
}
|
|
SkDebugf("%s\n", FLAGS_uncorrected[0]);
|
|
}
|
|
|
|
return 0;
|
|
}
|