skia2/resources/sksl/folding/MatrixFoldingES3.sksl
John Stiles 78eb43826f Fill out matrix-folding ES3 tests.
This mirrors a lot of the existing matrix ES2 tests, but using
non-square matrices. This is still important because a lot of subtle
bugs can slip through the cracks when rows == columns.

Change-Id: I626c4c2b176c8280da64513d16f59e76e726cbe7
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/505218
Auto-Submit: John Stiles <johnstiles@google.com>
Reviewed-by: Brian Osman <brianosman@google.com>
Commit-Queue: Brian Osman <brianosman@google.com>
2022-02-07 19:53:00 +00:00

97 lines
3.6 KiB
Plaintext

uniform half4 colorRed, colorGreen;
bool test_eq_float() {
bool ok = true;
ok = ok && (float3x2(2) == float3x2(float2(2.0, 0.0), float2(0.0, 2.0), float2(0.0)));
ok = ok && (float3x2(1, 2, 3, 4, 5, 6) == float3x2(float4x2(1, 2, 3, 4, 5, 6, 7, 8)));
return ok;
}
bool test_eq_half() {
bool ok = true;
ok = ok && (half3x2(2) == half3x2(half2(2.0, 0.0), half2(0.0, 2.0), half2(0.0)));
ok = ok && (half3x2(1, 2, 3, 4, 5, 6) == half3x2(half4x2(1, 2, 3, 4, 5, 6, 7, 8)));
return ok;
}
bool test_matrix_op_matrix_float() {
bool ok = true;
// Addition, subtraction and division operate componentwise.
{
const float3x2 splat_4 = float3x2(4, 4, 4, 4, 4, 4);
ok = ok && ((float3x2(2) + splat_4) == float3x2(6, 4, 4, 6, 4, 4));
ok = ok && ((float3x2(2) - splat_4) == float3x2(-2, -4, -4, -2, -4, -4));
ok = ok && ((float3x2(2) / splat_4) == float3x2(0.5));
}
{
const float2x3 splat_4 = float2x3(4, 4, 4, 4, 4, 4);
ok = ok && (splat_4 + (float2x3(2)) == float2x3(6, 4, 4, 4, 6, 4));
ok = ok && (splat_4 - (float2x3(2)) == float2x3(2, 4, 4, 4, 2, 4));
ok = ok && (splat_4 / (float2x3(2, 2, 2, 2, 2, 2)) == float2x3(2, 2, 2, 2, 2, 2));
}
ok = ok && (float4x3(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) +
float4x3(16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5) ==
float4x3(17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17));
ok = ok && (float4x2(10, 20, 30, 40, 50, 60, 70, 80) -
float4x2(1, 2, 3, 4, 5, 6, 7, 8) ==
float4x2(9, 18, 27, 36, 45, 54, 63, 72));
ok = ok && (float2x4(10, 20, 30, 40, 10, 20, 30, 40) /
float2x4(10, 10, 10, 10, 5, 5, 5, 5) ==
float2x4(1, 2, 3, 4, 2, 4, 6, 8));
// Multiplication performs a proper matrix multiply.
ok = ok && (float3x2(1, 4, 2, 5, 3, 6) *
float2x3(7, 9, 11, 8, 10, 12) ==
float2x2(58, 139, 64, 154));
return ok;
}
bool test_matrix_op_matrix_half() {
bool ok = true;
// Addition, subtraction and division operate componentwise.
{
const half3x2 splat_4 = half3x2(4, 4, 4, 4, 4, 4);
ok = ok && ((half3x2(2) + splat_4) == half3x2(6, 4, 4, 6, 4, 4));
ok = ok && ((half3x2(2) - splat_4) == half3x2(-2, -4, -4, -2, -4, -4));
ok = ok && ((half3x2(2) / splat_4) == half3x2(0.5));
}
{
const half2x3 splat_4 = half2x3(4, 4, 4, 4, 4, 4);
ok = ok && (splat_4 + (half2x3(2)) == half2x3(6, 4, 4, 4, 6, 4));
ok = ok && (splat_4 - (half2x3(2)) == half2x3(2, 4, 4, 4, 2, 4));
ok = ok && (splat_4 / (half2x3(2, 2, 2, 2, 2, 2)) == half2x3(2, 2, 2, 2, 2, 2));
}
ok = ok && (half4x3(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) +
half4x3(16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5) ==
half4x3(17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17));
ok = ok && (half4x2(10, 20, 30, 40, 50, 60, 70, 80) -
half4x2(1, 2, 3, 4, 5, 6, 7, 8) ==
half4x2(9, 18, 27, 36, 45, 54, 63, 72));
ok = ok && (half2x4(10, 20, 30, 40, 10, 20, 30, 40) /
half2x4(10, 10, 10, 10, 5, 5, 5, 5) ==
half2x4(1, 2, 3, 4, 2, 4, 6, 8));
// Multiplication performs a proper matrix multiply.
ok = ok && (half3x2(1, 4, 2, 5, 3, 6) *
half2x3(7, 9, 11, 8, 10, 12) ==
half2x2(58, 139, 64, 154));
return ok;
}
half4 main(float2 coords) {
return (test_eq_float() &&
test_eq_half() &&
test_matrix_op_matrix_float() &&
test_matrix_op_matrix_half()) ? colorGreen : colorRed;
}