c682590538
git-svn-id: http://skia.googlecode.com/svn/trunk@3141 2bbb7eff-a529-9590-31e7-b0007b416f81
499 lines
15 KiB
C++
499 lines
15 KiB
C++
|
|
/*
|
|
* Copyright 2012 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "LineIntersection.h"
|
|
#include "SkPath.h"
|
|
#include "SkRect.h"
|
|
#include "SkTArray.h"
|
|
#include "SkTDArray.h"
|
|
#include "TSearch.h"
|
|
|
|
static int lineIntersect(const SkPoint a[2], const SkPoint b[2],
|
|
double aRange[2], double bRange[2]) {
|
|
_Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
|
|
_Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
|
|
return intersect(aLine, bLine, aRange, bRange);
|
|
}
|
|
|
|
static int lineIntersect(const SkPoint a[2], SkScalar y, double aRange[2]) {
|
|
_Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
|
|
return horizontalIntersect(aLine, y, aRange);
|
|
}
|
|
|
|
// functions
|
|
void contourBounds(const SkPath& path, SkTDArray<SkRect>& boundsArray);
|
|
void simplify(const SkPath& path, bool asFill, SkPath& simple);
|
|
/*
|
|
list of edges
|
|
bounds for edge
|
|
sort
|
|
active T
|
|
|
|
if a contour's bounds is outside of the active area, no need to create edges
|
|
*/
|
|
|
|
/* given one or more paths,
|
|
find the bounds of each contour, select the active contours
|
|
for each active contour, compute a set of edges
|
|
each edge corresponds to one or more lines and curves
|
|
leave edges unbroken as long as possible
|
|
when breaking edges, compute the t at the break but leave the control points alone
|
|
|
|
*/
|
|
|
|
void contourBounds(const SkPath& path, SkTDArray<SkRect>& boundsArray) {
|
|
SkPath::Iter iter(path, false);
|
|
SkPoint pts[4];
|
|
SkPath::Verb verb;
|
|
SkRect bounds;
|
|
bounds.setEmpty();
|
|
int count = 0;
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
switch (verb) {
|
|
case SkPath::kMove_Verb:
|
|
if (!bounds.isEmpty()) {
|
|
*boundsArray.append() = bounds;
|
|
}
|
|
bounds.set(pts[0].fX, pts[0].fY, pts[0].fX, pts[0].fY);
|
|
count = 0;
|
|
break;
|
|
case SkPath::kLine_Verb:
|
|
count = 1;
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
count = 2;
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
count = 3;
|
|
break;
|
|
case SkPath::kClose_Verb:
|
|
count = 0;
|
|
break;
|
|
default:
|
|
SkDEBUGFAIL("bad verb");
|
|
return;
|
|
}
|
|
for (int i = 1; i <= count; ++i) {
|
|
bounds.growToInclude(pts[i].fX, pts[i].fY);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Bounds, unlike Rect, does not consider a vertical line to be empty.
|
|
struct Bounds : public SkRect {
|
|
static bool Intersects(const Bounds& a, const Bounds& b) {
|
|
return a.fLeft <= b.fRight && b.fLeft <= a.fRight &&
|
|
a.fTop <= b.fBottom && b.fTop <= a.fBottom;
|
|
}
|
|
};
|
|
|
|
struct Edge;
|
|
|
|
struct Intercepts {
|
|
SkTDArray<double> fTs;
|
|
};
|
|
|
|
struct Edge {
|
|
bool operator<(const Edge& rh) const {
|
|
return fBounds.fTop == rh.fBounds.fTop
|
|
? fBounds.fLeft < rh.fBounds.fLeft
|
|
: fBounds.fTop < rh.fBounds.fTop;
|
|
}
|
|
|
|
void add(double* ts, size_t count, int verbIndex) {
|
|
Intercepts& intercepts = fIntercepts[verbIndex];
|
|
// FIXME: in the pathological case where there is a ton of intercepts, binary search?
|
|
for (size_t index = 0; index < count; ++index) {
|
|
double t = ts[index];
|
|
size_t tCount = intercepts.fTs.count();
|
|
for (size_t idx2 = 0; idx2 < tCount; ++idx2) {
|
|
if (t <= intercepts.fTs[idx2]) {
|
|
if (t < intercepts.fTs[idx2]) {
|
|
*intercepts.fTs.insert(idx2) = t;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (tCount == 0 || t > intercepts.fTs[tCount - 1]) {
|
|
*intercepts.fTs.append() = t;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool cached(const Edge* edge) {
|
|
// FIXME: in the pathological case where there is a ton of edges, binary search?
|
|
size_t count = fCached.count();
|
|
for (size_t index = 0; index < count; ++index) {
|
|
if (edge == fCached[index]) {
|
|
return true;
|
|
}
|
|
if (edge < fCached[index]) {
|
|
*fCached.insert(index) = edge;
|
|
return false;
|
|
}
|
|
}
|
|
*fCached.append() = edge;
|
|
return false;
|
|
}
|
|
|
|
void complete(signed char winding) {
|
|
SkPoint* ptPtr = fPts.begin();
|
|
SkPoint* ptLast = fPts.end();
|
|
if (ptPtr == ptLast) {
|
|
SkDebugf("empty edge\n");
|
|
SkASSERT(0);
|
|
// FIXME: delete empty edge?
|
|
return;
|
|
}
|
|
fBounds.set(ptPtr->fX, ptPtr->fY, ptPtr->fX, ptPtr->fY);
|
|
++ptPtr;
|
|
while (ptPtr != ptLast) {
|
|
fBounds.growToInclude(ptPtr->fX, ptPtr->fY);
|
|
++ptPtr;
|
|
}
|
|
fIntercepts.push_back_n(1);
|
|
fWinding = winding;
|
|
}
|
|
|
|
// temporary data : move this to a separate struct?
|
|
SkTDArray<const Edge*> fCached; // list of edges already intercepted
|
|
SkTArray<Intercepts> fIntercepts; // one per verb
|
|
|
|
|
|
// persistent data
|
|
SkTDArray<SkPoint> fPts;
|
|
SkTDArray<uint8_t> fVerbs;
|
|
Bounds fBounds;
|
|
signed char fWinding;
|
|
};
|
|
|
|
class EdgeBuilder {
|
|
public:
|
|
|
|
EdgeBuilder(const SkPath& path, bool ignoreHorizontal, SkTArray<Edge>& edges)
|
|
: fPath(path)
|
|
, fCurrentEdge(NULL)
|
|
, fEdges(edges)
|
|
, fIgnoreHorizontal(ignoreHorizontal)
|
|
{
|
|
walk();
|
|
}
|
|
|
|
protected:
|
|
|
|
void addEdge() {
|
|
fCurrentEdge->fPts.append(fPtCount - fPtOffset, &fPts[fPtOffset]);
|
|
fPtOffset = 1;
|
|
*fCurrentEdge->fVerbs.append() = fVerb;
|
|
}
|
|
|
|
int direction(int count) {
|
|
fPtCount = count;
|
|
fIgnorableHorizontal = fIgnoreHorizontal && isHorizontal();
|
|
if (fIgnorableHorizontal) {
|
|
return 0;
|
|
}
|
|
int last = count - 1;
|
|
return fPts[0].fY == fPts[last].fY
|
|
? fPts[0].fX == fPts[last].fX ? 0 : fPts[0].fX > fPts[last].fX
|
|
? 1 : -1 : fPts[0].fY > fPts[last].fY ? 1 : -1;
|
|
}
|
|
|
|
bool isHorizontal() {
|
|
SkScalar y = fPts[0].fY;
|
|
for (int i = 1; i < fPtCount; ++i) {
|
|
if (fPts[i].fY != y) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void startEdge() {
|
|
fCurrentEdge = fEdges.push_back_n(1);
|
|
fWinding = 0;
|
|
fPtOffset = 0;
|
|
}
|
|
|
|
void walk() {
|
|
SkPath::Iter iter(fPath, true);
|
|
int winding = 0;
|
|
while ((fVerb = iter.next(fPts)) != SkPath::kDone_Verb) {
|
|
switch (fVerb) {
|
|
case SkPath::kMove_Verb:
|
|
winding = 0;
|
|
startEdge();
|
|
continue;
|
|
case SkPath::kLine_Verb:
|
|
winding = direction(2);
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
winding = direction(3);
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
winding = direction(4);
|
|
break;
|
|
case SkPath::kClose_Verb:
|
|
if (fCurrentEdge->fVerbs.count()) {
|
|
fCurrentEdge->complete(fWinding);
|
|
}
|
|
continue;
|
|
default:
|
|
SkDEBUGFAIL("bad verb");
|
|
return;
|
|
}
|
|
if (fIgnorableHorizontal) {
|
|
continue;
|
|
}
|
|
if (fWinding + winding == 0) {
|
|
// FIXME: if prior verb or this verb is a horizontal line, reverse
|
|
// it instead of starting a new edge
|
|
fCurrentEdge->complete(fWinding);
|
|
startEdge();
|
|
}
|
|
fWinding = winding;
|
|
addEdge();
|
|
}
|
|
fCurrentEdge->complete(fWinding);
|
|
}
|
|
|
|
private:
|
|
const SkPath& fPath;
|
|
Edge* fCurrentEdge;
|
|
SkTArray<Edge>& fEdges;
|
|
SkPoint fPts[4];
|
|
SkPath::Verb fVerb;
|
|
int fPtCount;
|
|
int fPtOffset;
|
|
int8_t fWinding;
|
|
bool fIgnorableHorizontal;
|
|
bool fIgnoreHorizontal;
|
|
};
|
|
|
|
class WorkEdge {
|
|
public:
|
|
WorkEdge(const Edge* edge) {
|
|
fVerbStart = edge->fVerbs.begin();
|
|
if ((fWinding = edge->fWinding) > 0) {
|
|
fPts = edge->fPts.begin();
|
|
fVerb = fVerbStart;
|
|
fVerbEnd = edge->fVerbs.end();
|
|
} else {
|
|
fPts = edge->fPts.end();
|
|
fVerb = edge->fVerbs.end();
|
|
fVerbEnd = fVerbStart;
|
|
next();
|
|
}
|
|
}
|
|
|
|
SkScalar bottom() const {
|
|
return fPts[fWinding > 0 ? verb() : 0].fY;
|
|
}
|
|
|
|
bool next() {
|
|
if (fWinding > 0) {
|
|
fPts += *fVerb;
|
|
return ++fVerb != fVerbEnd;
|
|
} else {
|
|
if (fVerb == fVerbEnd) {
|
|
return false;
|
|
}
|
|
fPts -= *--fVerb;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
const SkPoint* points() const {
|
|
return fPts;
|
|
}
|
|
|
|
SkPath::Verb verb() const {
|
|
return (SkPath::Verb) *fVerb;
|
|
}
|
|
|
|
int verbIndex() const {
|
|
return fVerb - fVerbStart;
|
|
}
|
|
|
|
protected:
|
|
const SkPoint* fPts;
|
|
const uint8_t* fVerb;
|
|
const uint8_t* fVerbEnd;
|
|
const uint8_t* fVerbStart;
|
|
int8_t fWinding;
|
|
};
|
|
|
|
struct ActiveEdge {
|
|
void init(const Edge* test) {
|
|
fEdge = test;
|
|
if (!fEdge->fIntercepts.count()) {
|
|
fBounds = test->fBounds;
|
|
fPtStart = 0;
|
|
fPtEnd = test->fPts.count();
|
|
fVerbStart = 0;
|
|
fVerbEnd = test->fVerbs.count();
|
|
fTStart = 0;
|
|
fTEnd = SK_Scalar1;
|
|
} else {
|
|
// FIXME: initialize from intercepts
|
|
|
|
}
|
|
}
|
|
|
|
const Edge* fEdge;
|
|
SkRect fBounds;
|
|
int fPtStart;
|
|
int fPtEnd;
|
|
int fVerbStart;
|
|
int fVerbEnd;
|
|
SkScalar fTStart;
|
|
SkScalar fTEnd;
|
|
};
|
|
|
|
void simplify(const SkPath& path, bool asFill, SkPath& simple) {
|
|
// turn path into list of edges increasing in y
|
|
// if an edge is a quad or a cubic with a y extrema, note it, but leave it unbroken
|
|
// once we have a list, sort it, then walk the list (walk edges twice that have y extrema's on top)
|
|
// and detect crossings -- look for raw bounds that cross over, then tight bounds that cross
|
|
SkTArray<Edge> edges;
|
|
EdgeBuilder builder(path, asFill, edges);
|
|
size_t edgeCount = edges.count();
|
|
simple.reset();
|
|
if (edgeCount == 0) {
|
|
return;
|
|
}
|
|
// returns 1 for evenodd, -1 for winding, regardless of inverse-ness
|
|
int windingMask = (path.getFillType() & 1) ? 1 : -1;
|
|
SkTDArray<Edge*> edgeList;
|
|
for (size_t index = 0; index < edgeCount; ++index) {
|
|
*edgeList.append() = &edges[index];
|
|
}
|
|
Edge edgeSentinel;
|
|
edgeSentinel.fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
|
|
*edgeList.append() = &edgeSentinel;
|
|
++edgeCount;
|
|
QSort<Edge>(edgeList.begin(), edgeCount);
|
|
Edge** currentPtr = edgeList.begin();
|
|
Edge* current = *currentPtr;
|
|
SkScalar y = current->fBounds.fTop;
|
|
SkScalar bottom = current->fBounds.fBottom;
|
|
// walk the sorted edges from top to bottom, computing accumulated winding
|
|
do {
|
|
// find the list of edges that cross y
|
|
Edge** lastPtr = currentPtr; // find the edge below the bottom of the first set
|
|
Edge* last = *lastPtr;
|
|
while (lastPtr != edgeList.end()) {
|
|
if (bottom <= last->fBounds.fTop) {
|
|
break;
|
|
}
|
|
SkScalar lastTop = last->fBounds.fTop;
|
|
// OPTIMIZATION: Shortening the bottom is only interesting when filling
|
|
// and when the edge is to the left of a longer edge. If it's a framing
|
|
// edge, or part of the right, it won't effect the longer edges.
|
|
if (lastTop > y) {
|
|
if (bottom > lastTop) {
|
|
bottom = lastTop;
|
|
break;
|
|
}
|
|
} else if (bottom > last->fBounds.fBottom) {
|
|
bottom = last->fBounds.fBottom;
|
|
}
|
|
last = *++lastPtr;
|
|
}
|
|
if (asFill && lastPtr - currentPtr <= 1) {
|
|
SkDebugf("expect 2 or more edges\n");
|
|
SkASSERT(0);
|
|
return;
|
|
}
|
|
// find any intersections in the range of active edges
|
|
Edge** testPtr = currentPtr;
|
|
Edge* test = *testPtr;
|
|
while (testPtr != lastPtr) {
|
|
if (test->fBounds.fBottom > bottom) {
|
|
WorkEdge wt(test);
|
|
do {
|
|
// FIXME: add all combinations of curve types
|
|
if (wt.verb() == SkPath::kLine_Verb) {
|
|
double wtTs[2];
|
|
int pts = lineIntersect(wt.points(), bottom, wtTs);
|
|
if (pts) {
|
|
test->add(wtTs, pts, wt.verbIndex());
|
|
}
|
|
}
|
|
} while (wt.next());
|
|
}
|
|
test = *++testPtr;
|
|
}
|
|
testPtr = currentPtr;
|
|
test = *testPtr;
|
|
while (testPtr != lastPtr - 1) {
|
|
Edge* next = *++testPtr;
|
|
// OPTIMIZATION: if test and next is inside the winding of outer
|
|
// edges such that intersecting them is irrelevent, skip them.
|
|
if (!test->cached(next)
|
|
&& Bounds::Intersects(test->fBounds, next->fBounds)) {
|
|
WorkEdge wt(test);
|
|
WorkEdge wn(next);
|
|
do {
|
|
// FIXME: add all combinations of curve types
|
|
if (wt.verb() == SkPath::kLine_Verb && wn.verb() == SkPath::kLine_Verb) {
|
|
double wtTs[2], wnTs[2];
|
|
int pts = lineIntersect(wt.points(), wn.points(), wtTs, wnTs);
|
|
if (pts) {
|
|
test->add(wtTs, pts, wt.verbIndex());
|
|
next->add(wnTs, pts, wn.verbIndex());
|
|
}
|
|
}
|
|
} while (wt.bottom() <= wn.bottom() ? wt.next() : wn.next());
|
|
}
|
|
test = next;
|
|
}
|
|
// stitch edge and t range that satisfies operation
|
|
int winding = 0;
|
|
testPtr = currentPtr;
|
|
test = *testPtr;
|
|
while (testPtr != lastPtr - 1) {
|
|
int lastWinding = winding;
|
|
winding += test->fWinding;
|
|
if ((lastWinding & windingMask) == 0 || (winding & windingMask) == 0) {
|
|
// append pts, verbs, in front of or behind output
|
|
// a verb may have one or more inter-T value, but only break
|
|
// curve if curve at t changes winding inclusion
|
|
;
|
|
}
|
|
test = *++testPtr;
|
|
}
|
|
y = bottom;
|
|
while ((*currentPtr)->fBounds.fBottom >= y) {
|
|
++currentPtr;
|
|
}
|
|
} while (*currentPtr != &edgeSentinel);
|
|
// assemble output path from string of pts, verbs
|
|
;
|
|
}
|
|
|
|
void testSimplify();
|
|
|
|
void testSimplify() {
|
|
SkPath path, out;
|
|
path.setFillType(SkPath::kWinding_FillType);
|
|
path.addRect(10, 10, 30, 30);
|
|
path.addRect(20, 20, 40, 40);
|
|
simplify(path, true, out);
|
|
path = out;
|
|
path.addRect(30, 10, 40, 20);
|
|
path.addRect(10, 30, 20, 40);
|
|
simplify(path, true, out);
|
|
path = out;
|
|
path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction);
|
|
simplify(path, true, out);
|
|
if (!out.isEmpty()) {
|
|
SkDebugf("expected empty\n");
|
|
}
|
|
}
|