skia2/tests/VkHardwareBufferTest.cpp
Brian Osman 05dd660fee Revert "Reland "[includes] Remove SkColorSpace include from SkImageInfo""
This reverts commit 00de8cc000.

Reason for revert: G3 Breakage?

Original change's description:
> Reland "[includes] Remove SkColorSpace include from SkImageInfo"
>
> This is a reland of commit 2151fa37fa
>
> New client fixes:
>  - https://crrev.com/c/3616345
>
> Original change's description:
> > [includes] Remove SkColorSpace include from SkImageInfo
> >
> > See also https://skia-review.googlesource.com/c/skia/+/525639
> >
> > This should be landed when clients have been fixed.
> >  - https://github.com/flutter/engine/pull/32532
> >  - https://github.com/flutter/engine/pull/32382
> >  - http://cl/438808657
> >  - http://cl/438803822
> >  - http://cl/438807456
> >  - http://cl/438808026
> >  - http://cl/438821192
> >  - https://googleplex-android-review.googlesource.com/c/platform/frameworks/base/+/17542295
> >
> > Change-Id: I04beeb2e2b6132c40508c98f4f281981dadbb0d4
> > Bug: skia:13052
> > Reviewed-on: https://skia-review.googlesource.com/c/skia/+/526416
> > Commit-Queue: Kevin Lubick <kjlubick@google.com>
> > Reviewed-by: Brian Salomon <bsalomon@google.com>
>
> Canary-Chromium-CL: 3616345
> Bug: skia:13052
> Change-Id: I670d3d0d0bab2a86559d9a1184cb36ef008196f3
> Reviewed-on: https://skia-review.googlesource.com/c/skia/+/535357
> Reviewed-by: Brian Salomon <bsalomon@google.com>

Bug: skia:13052
Change-Id: Ie2d036f0bfcdb481c4227a6d567e38d527c81168
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/535202
Bot-Commit: Rubber Stamper <rubber-stamper@appspot.gserviceaccount.com>
Auto-Submit: Brian Osman <brianosman@google.com>
Commit-Queue: Rubber Stamper <rubber-stamper@appspot.gserviceaccount.com>
2022-04-29 22:17:12 +00:00

1332 lines
50 KiB
C++

/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
// This is a GPU-backend specific test. It relies on static initializers to work
#include "include/core/SkTypes.h"
#if SK_SUPPORT_GPU && defined(SK_BUILD_FOR_ANDROID) && __ANDROID_API__ >= 26 && defined(SK_VULKAN)
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkImage.h"
#include "include/core/SkSurface.h"
#include "include/gpu/GrBackendSemaphore.h"
#include "include/gpu/GrDirectContext.h"
#include "include/gpu/vk/GrVkBackendContext.h"
#include "include/gpu/vk/GrVkExtensions.h"
#include "src/core/SkAutoMalloc.h"
#include "src/gpu/ganesh/GrDirectContextPriv.h"
#include "src/gpu/ganesh/GrGpu.h"
#include "src/gpu/ganesh/GrProxyProvider.h"
#include "src/gpu/ganesh/SkGr.h"
#include "src/gpu/ganesh/gl/GrGLDefines_impl.h"
#include "src/gpu/ganesh/gl/GrGLUtil.h"
#include "tests/Test.h"
#include "tools/gpu/GrContextFactory.h"
#include "tools/gpu/vk/VkTestUtils.h"
#include <android/hardware_buffer.h>
#include <cinttypes>
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES/gl.h>
#include <GLES/glext.h>
static const int DEV_W = 16, DEV_H = 16;
class BaseTestHelper {
public:
virtual ~BaseTestHelper() {}
virtual bool init(skiatest::Reporter* reporter) = 0;
virtual void cleanup() = 0;
virtual void releaseImage() = 0;
virtual sk_sp<SkImage> importHardwareBufferForRead(skiatest::Reporter* reporter,
AHardwareBuffer* buffer) = 0;
virtual sk_sp<SkSurface> importHardwareBufferForWrite(skiatest::Reporter* reporter,
AHardwareBuffer* buffer) = 0;
virtual void doClientSync() = 0;
virtual bool flushSurfaceAndSignalSemaphore(skiatest::Reporter* reporter, sk_sp<SkSurface>) = 0;
virtual bool importAndWaitOnSemaphore(skiatest::Reporter* reporter, int fdHandle,
sk_sp<SkSurface>) = 0;
virtual void makeCurrent() = 0;
virtual GrDirectContext* directContext() = 0;
int getFdHandle() { return fFdHandle; }
protected:
BaseTestHelper() {}
int fFdHandle = 0;
};
#ifdef SK_GL
class EGLTestHelper : public BaseTestHelper {
public:
EGLTestHelper(const GrContextOptions& options) : fFactory(options) {}
~EGLTestHelper() override {}
void releaseImage() override {
this->makeCurrent();
if (!fGLCtx) {
return;
}
if (EGL_NO_IMAGE_KHR != fImage) {
fGLCtx->destroyEGLImage(fImage);
fImage = EGL_NO_IMAGE_KHR;
}
if (fTexID) {
GR_GL_CALL(fGLCtx->gl(), DeleteTextures(1, &fTexID));
fTexID = 0;
}
}
void cleanup() override {
this->releaseImage();
}
bool init(skiatest::Reporter* reporter) override;
sk_sp<SkImage> importHardwareBufferForRead(skiatest::Reporter* reporter,
AHardwareBuffer* buffer) override;
sk_sp<SkSurface> importHardwareBufferForWrite(skiatest::Reporter* reporter,
AHardwareBuffer* buffer) override;
void doClientSync() override;
bool flushSurfaceAndSignalSemaphore(skiatest::Reporter* reporter, sk_sp<SkSurface>) override;
bool importAndWaitOnSemaphore(skiatest::Reporter* reporter, int fdHandle,
sk_sp<SkSurface>) override;
void makeCurrent() override { fGLCtx->makeCurrent(); }
GrDirectContext* directContext() override { return fDirectContext; }
private:
bool importHardwareBuffer(skiatest::Reporter* reporter, AHardwareBuffer* buffer);
typedef EGLClientBuffer (*EGLGetNativeClientBufferANDROIDProc)(const struct AHardwareBuffer*);
typedef EGLImageKHR (*EGLCreateImageKHRProc)(EGLDisplay, EGLContext, EGLenum, EGLClientBuffer,
const EGLint*);
typedef void (*EGLImageTargetTexture2DOESProc)(EGLenum, void*);
EGLGetNativeClientBufferANDROIDProc fEGLGetNativeClientBufferANDROID;
EGLCreateImageKHRProc fEGLCreateImageKHR;
EGLImageTargetTexture2DOESProc fEGLImageTargetTexture2DOES;
PFNEGLCREATESYNCKHRPROC fEGLCreateSyncKHR;
PFNEGLWAITSYNCKHRPROC fEGLWaitSyncKHR;
PFNEGLGETSYNCATTRIBKHRPROC fEGLGetSyncAttribKHR;
PFNEGLDUPNATIVEFENCEFDANDROIDPROC fEGLDupNativeFenceFDANDROID;
PFNEGLDESTROYSYNCKHRPROC fEGLDestroySyncKHR;
EGLImageKHR fImage = EGL_NO_IMAGE_KHR;
GrGLuint fTexID = 0;
sk_gpu_test::GrContextFactory fFactory;
sk_gpu_test::ContextInfo fGLESContextInfo;
sk_gpu_test::GLTestContext* fGLCtx = nullptr;
GrDirectContext* fDirectContext = nullptr;
};
bool EGLTestHelper::init(skiatest::Reporter* reporter) {
fGLESContextInfo = fFactory.getContextInfo(sk_gpu_test::GrContextFactory::kGLES_ContextType);
fDirectContext = fGLESContextInfo.directContext();
fGLCtx = fGLESContextInfo.glContext();
if (!fDirectContext || !fGLCtx) {
return false;
}
if (kGLES_GrGLStandard != fGLCtx->gl()->fStandard) {
return false;
}
// Confirm we have egl and the needed extensions
if (!fGLCtx->gl()->hasExtension("EGL_KHR_image") ||
!fGLCtx->gl()->hasExtension("EGL_ANDROID_get_native_client_buffer") ||
!fGLCtx->gl()->hasExtension("GL_OES_EGL_image_external") ||
!fGLCtx->gl()->hasExtension("GL_OES_EGL_image") ||
!fGLCtx->gl()->hasExtension("EGL_KHR_fence_sync") ||
!fGLCtx->gl()->hasExtension("EGL_ANDROID_native_fence_sync")) {
return false;
}
fEGLGetNativeClientBufferANDROID =
(EGLGetNativeClientBufferANDROIDProc) eglGetProcAddress("eglGetNativeClientBufferANDROID");
if (!fEGLGetNativeClientBufferANDROID) {
ERRORF(reporter, "Failed to get the eglGetNativeClientBufferAndroid proc");
return false;
}
fEGLCreateImageKHR = (EGLCreateImageKHRProc) eglGetProcAddress("eglCreateImageKHR");
if (!fEGLCreateImageKHR) {
ERRORF(reporter, "Failed to get the proc eglCreateImageKHR");
return false;
}
fEGLImageTargetTexture2DOES =
(EGLImageTargetTexture2DOESProc) eglGetProcAddress("glEGLImageTargetTexture2DOES");
if (!fEGLImageTargetTexture2DOES) {
ERRORF(reporter, "Failed to get the proc EGLImageTargetTexture2DOES");
return false;
}
fEGLCreateSyncKHR = (PFNEGLCREATESYNCKHRPROC) eglGetProcAddress("eglCreateSyncKHR");
if (!fEGLCreateSyncKHR) {
ERRORF(reporter, "Failed to get the proc eglCreateSyncKHR");
return false;
}
fEGLWaitSyncKHR = (PFNEGLWAITSYNCKHRPROC) eglGetProcAddress("eglWaitSyncKHR");
if (!fEGLWaitSyncKHR) {
ERRORF(reporter, "Failed to get the proc eglWaitSyncKHR");
return false;
}
fEGLGetSyncAttribKHR = (PFNEGLGETSYNCATTRIBKHRPROC) eglGetProcAddress("eglGetSyncAttribKHR");
if (!fEGLGetSyncAttribKHR) {
ERRORF(reporter, "Failed to get the proc eglGetSyncAttribKHR");
return false;
}
fEGLDupNativeFenceFDANDROID =
(PFNEGLDUPNATIVEFENCEFDANDROIDPROC) eglGetProcAddress("eglDupNativeFenceFDANDROID");
if (!fEGLDupNativeFenceFDANDROID) {
ERRORF(reporter, "Failed to get the proc eglDupNativeFenceFDANDROID");
return false;
}
fEGLDestroySyncKHR = (PFNEGLDESTROYSYNCKHRPROC) eglGetProcAddress("eglDestroySyncKHR");
if (!fEGLDestroySyncKHR) {
ERRORF(reporter, "Failed to get the proc eglDestroySyncKHR");
return false;
}
return true;
}
bool EGLTestHelper::importHardwareBuffer(skiatest::Reporter* reporter, AHardwareBuffer* buffer) {
while (fGLCtx->gl()->fFunctions.fGetError() != GR_GL_NO_ERROR) {}
EGLClientBuffer eglClientBuffer = fEGLGetNativeClientBufferANDROID(buffer);
EGLint eglAttribs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_TRUE,
EGL_NONE };
EGLDisplay eglDisplay = eglGetCurrentDisplay();
fImage = fEGLCreateImageKHR(eglDisplay, EGL_NO_CONTEXT,
EGL_NATIVE_BUFFER_ANDROID,
eglClientBuffer, eglAttribs);
if (EGL_NO_IMAGE_KHR == fImage) {
SkDebugf("Could not create EGL image, err = (%#x)\n", (int) eglGetError() );
return false;
}
GR_GL_CALL(fGLCtx->gl(), GenTextures(1, &fTexID));
if (!fTexID) {
ERRORF(reporter, "Failed to create GL Texture");
return false;
}
GR_GL_CALL_NOERRCHECK(fGLCtx->gl(), BindTexture(GR_GL_TEXTURE_2D, fTexID));
if (fGLCtx->gl()->fFunctions.fGetError() != GR_GL_NO_ERROR) {
ERRORF(reporter, "Failed to bind GL Texture");
return false;
}
fEGLImageTargetTexture2DOES(GL_TEXTURE_2D, fImage);
if (GrGLenum error = fGLCtx->gl()->fFunctions.fGetError(); error != GR_GL_NO_ERROR) {
ERRORF(reporter, "EGLImageTargetTexture2DOES failed (%#x)", (int) error);
return false;
}
fDirectContext->resetContext(kTextureBinding_GrGLBackendState);
return true;
}
sk_sp<SkImage> EGLTestHelper::importHardwareBufferForRead(skiatest::Reporter* reporter,
AHardwareBuffer* buffer) {
if (!this->importHardwareBuffer(reporter, buffer)) {
return nullptr;
}
GrGLTextureInfo textureInfo;
textureInfo.fTarget = GR_GL_TEXTURE_2D;
textureInfo.fID = fTexID;
textureInfo.fFormat = GR_GL_RGBA8;
GrBackendTexture backendTex(DEV_W, DEV_H, GrMipmapped::kNo, textureInfo);
REPORTER_ASSERT(reporter, backendTex.isValid());
sk_sp<SkImage> image = SkImage::MakeFromTexture(fDirectContext,
backendTex,
kTopLeft_GrSurfaceOrigin,
kRGBA_8888_SkColorType,
kPremul_SkAlphaType,
nullptr);
if (!image) {
ERRORF(reporter, "Failed to make wrapped GL SkImage");
return nullptr;
}
return image;
}
sk_sp<SkSurface> EGLTestHelper::importHardwareBufferForWrite(skiatest::Reporter* reporter,
AHardwareBuffer* buffer) {
if (!this->importHardwareBuffer(reporter, buffer)) {
return nullptr;
}
GrGLTextureInfo textureInfo;
textureInfo.fTarget = GR_GL_TEXTURE_2D;
textureInfo.fID = fTexID;
textureInfo.fFormat = GR_GL_RGBA8;
GrBackendTexture backendTex(DEV_W, DEV_H, GrMipmapped::kNo, textureInfo);
REPORTER_ASSERT(reporter, backendTex.isValid());
sk_sp<SkSurface> surface = SkSurface::MakeFromBackendTexture(fDirectContext,
backendTex,
kTopLeft_GrSurfaceOrigin,
0,
kRGBA_8888_SkColorType,
nullptr, nullptr);
if (!surface) {
ERRORF(reporter, "Failed to make wrapped GL SkSurface");
return nullptr;
}
return surface;
}
bool EGLTestHelper::flushSurfaceAndSignalSemaphore(skiatest::Reporter* reporter,
sk_sp<SkSurface> surface) {
EGLDisplay eglDisplay = eglGetCurrentDisplay();
EGLSyncKHR eglsync = fEGLCreateSyncKHR(eglDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, nullptr);
if (EGL_NO_SYNC_KHR == eglsync) {
ERRORF(reporter, "Failed to create EGLSync for EGL_SYNC_NATIVE_FENCE_ANDROID\n");
return false;
}
surface->flushAndSubmit();
GR_GL_CALL(fGLCtx->gl(), Flush());
fFdHandle = fEGLDupNativeFenceFDANDROID(eglDisplay, eglsync);
EGLint result = fEGLDestroySyncKHR(eglDisplay, eglsync);
if (EGL_TRUE != result) {
ERRORF(reporter, "Failed to delete EGLSync, error: %d\n", result);
return false;
}
return true;
}
bool EGLTestHelper::importAndWaitOnSemaphore(skiatest::Reporter* reporter, int fdHandle,
sk_sp<SkSurface> surface) {
EGLDisplay eglDisplay = eglGetCurrentDisplay();
EGLint attr[] = {
EGL_SYNC_NATIVE_FENCE_FD_ANDROID, fdHandle,
EGL_NONE
};
EGLSyncKHR eglsync = fEGLCreateSyncKHR(eglDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, attr);
if (EGL_NO_SYNC_KHR == eglsync) {
ERRORF(reporter,
"Failed to create EGLSync when importing EGL_SYNC_NATIVE_FENCE_FD_ANDROID\n");
return false;
}
EGLint result = fEGLWaitSyncKHR(eglDisplay, eglsync, 0);
if (EGL_TRUE != result) {
ERRORF(reporter, "Failed called to eglWaitSyncKHR, error: %d\n", result);
// Don't return false yet, try to delete the sync first
}
result = fEGLDestroySyncKHR(eglDisplay, eglsync);
if (EGL_TRUE != result) {
ERRORF(reporter, "Failed to delete EGLSync, error: %d\n", result);
return false;
}
return true;
}
void EGLTestHelper::doClientSync() {
this->directContext()->flush();
this->directContext()->submit(true);
}
#endif // SK_GL
#define DECLARE_VK_PROC(name) PFN_vk##name fVk##name
#define ACQUIRE_INST_VK_PROC(name) \
do { \
fVk##name = reinterpret_cast<PFN_vk##name>(getProc("vk" #name, fBackendContext.fInstance,\
VK_NULL_HANDLE)); \
if (fVk##name == nullptr) { \
ERRORF(reporter, "Function ptr for vk%s could not be acquired\n", #name); \
return false; \
} \
} while(false)
#define ACQUIRE_DEVICE_VK_PROC(name) \
do { \
fVk##name = reinterpret_cast<PFN_vk##name>(getProc("vk" #name, VK_NULL_HANDLE, fDevice)); \
if (fVk##name == nullptr) { \
ERRORF(reporter, "Function ptr for vk%s could not be acquired\n", #name); \
return false; \
} \
} while(false)
class VulkanTestHelper : public BaseTestHelper {
public:
VulkanTestHelper() {}
~VulkanTestHelper() override {}
void releaseImage() override {
if (VK_NULL_HANDLE == fDevice) {
return;
}
if (fImage != VK_NULL_HANDLE) {
fVkDestroyImage(fDevice, fImage, nullptr);
fImage = VK_NULL_HANDLE;
}
if (fMemory != VK_NULL_HANDLE) {
fVkFreeMemory(fDevice, fMemory, nullptr);
fMemory = VK_NULL_HANDLE;
}
}
void cleanup() override {
fDirectContext.reset();
this->releaseImage();
if (fSignalSemaphore != VK_NULL_HANDLE) {
fVkDestroySemaphore(fDevice, fSignalSemaphore, nullptr);
fSignalSemaphore = VK_NULL_HANDLE;
}
fBackendContext.fMemoryAllocator.reset();
if (fDevice != VK_NULL_HANDLE) {
fVkDeviceWaitIdle(fDevice);
fVkDestroyDevice(fDevice, nullptr);
fDevice = VK_NULL_HANDLE;
}
#ifdef SK_ENABLE_VK_LAYERS
if (fDebugCallback != VK_NULL_HANDLE) {
fDestroyDebugCallback(fBackendContext.fInstance, fDebugCallback, nullptr);
}
#endif
if (fBackendContext.fInstance != VK_NULL_HANDLE) {
fVkDestroyInstance(fBackendContext.fInstance, nullptr);
fBackendContext.fInstance = VK_NULL_HANDLE;
}
delete fExtensions;
sk_gpu_test::FreeVulkanFeaturesStructs(fFeatures);
delete fFeatures;
}
bool init(skiatest::Reporter* reporter) override;
void doClientSync() override {
if (!fDirectContext) {
return;
}
fDirectContext->submit(true);
}
bool flushSurfaceAndSignalSemaphore(skiatest::Reporter* reporter, sk_sp<SkSurface>) override;
bool importAndWaitOnSemaphore(skiatest::Reporter* reporter, int fdHandle,
sk_sp<SkSurface>) override;
sk_sp<SkImage> importHardwareBufferForRead(skiatest::Reporter* reporter,
AHardwareBuffer* buffer) override;
sk_sp<SkSurface> importHardwareBufferForWrite(skiatest::Reporter* reporter,
AHardwareBuffer* buffer) override;
void makeCurrent() override {}
GrDirectContext* directContext() override { return fDirectContext.get(); }
private:
bool checkOptimalHardwareBuffer(skiatest::Reporter* reporter);
bool importHardwareBuffer(skiatest::Reporter* reporter, AHardwareBuffer* buffer, bool forWrite,
GrVkImageInfo* outImageInfo);
bool setupSemaphoreForSignaling(skiatest::Reporter* reporter, GrBackendSemaphore*);
bool exportSemaphore(skiatest::Reporter* reporter, const GrBackendSemaphore&);
DECLARE_VK_PROC(DestroyInstance);
DECLARE_VK_PROC(DeviceWaitIdle);
DECLARE_VK_PROC(DestroyDevice);
DECLARE_VK_PROC(GetPhysicalDeviceExternalSemaphoreProperties);
DECLARE_VK_PROC(GetPhysicalDeviceImageFormatProperties2);
DECLARE_VK_PROC(GetPhysicalDeviceMemoryProperties2);
DECLARE_VK_PROC(GetAndroidHardwareBufferPropertiesANDROID);
DECLARE_VK_PROC(CreateImage);
DECLARE_VK_PROC(GetImageMemoryRequirements2);
DECLARE_VK_PROC(DestroyImage);
DECLARE_VK_PROC(AllocateMemory);
DECLARE_VK_PROC(BindImageMemory2);
DECLARE_VK_PROC(FreeMemory);
DECLARE_VK_PROC(CreateSemaphore);
DECLARE_VK_PROC(GetSemaphoreFdKHR);
DECLARE_VK_PROC(ImportSemaphoreFdKHR);
DECLARE_VK_PROC(DestroySemaphore);
VkImage fImage = VK_NULL_HANDLE;
VkDeviceMemory fMemory = VK_NULL_HANDLE;
GrVkExtensions* fExtensions = nullptr;
VkPhysicalDeviceFeatures2* fFeatures = nullptr;
VkDebugReportCallbackEXT fDebugCallback = VK_NULL_HANDLE;
PFN_vkDestroyDebugReportCallbackEXT fDestroyDebugCallback = nullptr;
// We hold on to the semaphore so we can delete once the GPU is done.
VkSemaphore fSignalSemaphore = VK_NULL_HANDLE;
VkDevice fDevice = VK_NULL_HANDLE;
GrVkBackendContext fBackendContext;
sk_sp<GrDirectContext> fDirectContext;
};
bool VulkanTestHelper::init(skiatest::Reporter* reporter) {
PFN_vkGetInstanceProcAddr instProc;
if (!sk_gpu_test::LoadVkLibraryAndGetProcAddrFuncs(&instProc)) {
return false;
}
fExtensions = new GrVkExtensions();
fFeatures = new VkPhysicalDeviceFeatures2;
memset(fFeatures, 0, sizeof(VkPhysicalDeviceFeatures2));
fFeatures->sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
fFeatures->pNext = nullptr;
fBackendContext.fInstance = VK_NULL_HANDLE;
fBackendContext.fDevice = VK_NULL_HANDLE;
if (!sk_gpu_test::CreateVkBackendContext(instProc, &fBackendContext, fExtensions,
fFeatures, &fDebugCallback)) {
return false;
}
fDevice = fBackendContext.fDevice;
auto getProc = fBackendContext.fGetProc;
if (fDebugCallback != VK_NULL_HANDLE) {
fDestroyDebugCallback = (PFN_vkDestroyDebugReportCallbackEXT) instProc(
fBackendContext.fInstance, "vkDestroyDebugReportCallbackEXT");
}
ACQUIRE_INST_VK_PROC(DestroyInstance);
ACQUIRE_INST_VK_PROC(DeviceWaitIdle);
ACQUIRE_INST_VK_PROC(DestroyDevice);
if (!fExtensions->hasExtension(VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME,
2)) {
return false;
}
if (!fExtensions->hasExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, 1)) {
return false;
}
if (!fExtensions->hasExtension(VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME, 1)) {
return false;
}
if (!fExtensions->hasExtension(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, 1)) {
// return false;
}
ACQUIRE_INST_VK_PROC(GetPhysicalDeviceMemoryProperties2);
ACQUIRE_INST_VK_PROC(GetPhysicalDeviceImageFormatProperties2);
ACQUIRE_INST_VK_PROC(GetPhysicalDeviceExternalSemaphoreProperties);
ACQUIRE_DEVICE_VK_PROC(GetAndroidHardwareBufferPropertiesANDROID);
ACQUIRE_DEVICE_VK_PROC(CreateImage);
ACQUIRE_DEVICE_VK_PROC(GetImageMemoryRequirements2);
ACQUIRE_DEVICE_VK_PROC(DestroyImage);
ACQUIRE_DEVICE_VK_PROC(AllocateMemory);
ACQUIRE_DEVICE_VK_PROC(BindImageMemory2);
ACQUIRE_DEVICE_VK_PROC(FreeMemory);
ACQUIRE_DEVICE_VK_PROC(CreateSemaphore);
ACQUIRE_DEVICE_VK_PROC(GetSemaphoreFdKHR);
ACQUIRE_DEVICE_VK_PROC(ImportSemaphoreFdKHR);
ACQUIRE_DEVICE_VK_PROC(DestroySemaphore);
fDirectContext = GrDirectContext::MakeVulkan(fBackendContext);
REPORTER_ASSERT(reporter, fDirectContext.get());
if (!fDirectContext) {
return false;
}
return this->checkOptimalHardwareBuffer(reporter);
}
bool VulkanTestHelper::checkOptimalHardwareBuffer(skiatest::Reporter* reporter) {
VkResult err;
VkPhysicalDeviceExternalImageFormatInfo externalImageFormatInfo;
externalImageFormatInfo.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO;
externalImageFormatInfo.pNext = nullptr;
externalImageFormatInfo.handleType =
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
//externalImageFormatInfo.handType = 0x80;
// We will create the hardware buffer with gpu sampled so these usages should all be valid
VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT;
VkPhysicalDeviceImageFormatInfo2 imageFormatInfo;
imageFormatInfo.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2;
imageFormatInfo.pNext = &externalImageFormatInfo;
imageFormatInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
imageFormatInfo.type = VK_IMAGE_TYPE_2D;
imageFormatInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageFormatInfo.usage = usageFlags;
imageFormatInfo.flags = 0;
VkAndroidHardwareBufferUsageANDROID hwbUsage;
hwbUsage.sType = VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_USAGE_ANDROID;
hwbUsage.pNext = nullptr;
VkExternalImageFormatProperties externalImgFormatProps;
externalImgFormatProps.sType = VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES;
externalImgFormatProps.pNext = &hwbUsage;
VkImageFormatProperties2 imgFormProps;
imgFormProps.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2;
imgFormProps.pNext = &externalImgFormatProps;
err = fVkGetPhysicalDeviceImageFormatProperties2(fBackendContext.fPhysicalDevice,
&imageFormatInfo, &imgFormProps);
if (VK_SUCCESS != err) {
ERRORF(reporter, "vkGetPhysicalDeviceImageFormatProperites failed, err: %d", err);
return false;
}
const VkImageFormatProperties& imageFormatProperties = imgFormProps.imageFormatProperties;
REPORTER_ASSERT(reporter, DEV_W <= imageFormatProperties.maxExtent.width);
REPORTER_ASSERT(reporter, DEV_H <= imageFormatProperties.maxExtent.height);
const VkExternalMemoryProperties& externalImageFormatProps =
externalImgFormatProps.externalMemoryProperties;
REPORTER_ASSERT(reporter, SkToBool(VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT &
externalImageFormatProps.externalMemoryFeatures));
REPORTER_ASSERT(reporter, SkToBool(VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT &
externalImageFormatProps.externalMemoryFeatures));
REPORTER_ASSERT(reporter, SkToBool(AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE &
hwbUsage.androidHardwareBufferUsage));
return true;
}
bool VulkanTestHelper::importHardwareBuffer(skiatest::Reporter* reporter,
AHardwareBuffer* buffer,
bool forWrite,
GrVkImageInfo* outImageInfo) {
VkResult err;
VkAndroidHardwareBufferFormatPropertiesANDROID hwbFormatProps;
hwbFormatProps.sType = VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_ANDROID;
hwbFormatProps.pNext = nullptr;
VkAndroidHardwareBufferPropertiesANDROID hwbProps;
hwbProps.sType = VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_PROPERTIES_ANDROID;
hwbProps.pNext = &hwbFormatProps;
err = fVkGetAndroidHardwareBufferPropertiesANDROID(fDevice, buffer, &hwbProps);
if (VK_SUCCESS != err) {
ERRORF(reporter, "GetAndroidHardwareBufferPropertiesAndroid failed, err: %d", err);
return false;
}
REPORTER_ASSERT(reporter, VK_FORMAT_R8G8B8A8_UNORM == hwbFormatProps.format);
REPORTER_ASSERT(reporter,
SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & hwbFormatProps.formatFeatures) &&
SkToBool(VK_FORMAT_FEATURE_TRANSFER_SRC_BIT & hwbFormatProps.formatFeatures) &&
SkToBool(VK_FORMAT_FEATURE_TRANSFER_DST_BIT & hwbFormatProps.formatFeatures));
if (forWrite) {
REPORTER_ASSERT(reporter,
SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT & hwbFormatProps.formatFeatures));
}
bool useExternalFormat = VK_FORMAT_UNDEFINED == hwbFormatProps.format;
const VkExternalFormatANDROID externalFormatInfo {
VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_ANDROID, // sType
nullptr, // pNext
useExternalFormat ? hwbFormatProps.externalFormat : 0, // externalFormat
};
const VkExternalMemoryImageCreateInfo externalMemoryImageInfo {
VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO, // sType
&externalFormatInfo, // pNext
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID, // handleTypes
};
VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT;
if (forWrite) {
usageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
}
const VkImageCreateInfo imageCreateInfo = {
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType
&externalMemoryImageInfo, // pNext
0, // VkImageCreateFlags
VK_IMAGE_TYPE_2D, // VkImageType
hwbFormatProps.format, // VkFormat
{ DEV_W, DEV_H, 1 }, // VkExtent3D
1, // mipLevels
1, // arrayLayers
VK_SAMPLE_COUNT_1_BIT, // samples
VK_IMAGE_TILING_OPTIMAL, // VkImageTiling
usageFlags, // VkImageUsageFlags
VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode
0, // queueFamilyCount
0, // pQueueFamilyIndices
VK_IMAGE_LAYOUT_UNDEFINED, // initialLayout
};
err = fVkCreateImage(fDevice, &imageCreateInfo, nullptr, &fImage);
if (VK_SUCCESS != err) {
ERRORF(reporter, "Create Image failed, err: %d", err);
return false;
}
VkPhysicalDeviceMemoryProperties2 phyDevMemProps;
phyDevMemProps.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2;
phyDevMemProps.pNext = nullptr;
uint32_t typeIndex = 0;
uint32_t heapIndex = 0;
bool foundHeap = false;
fVkGetPhysicalDeviceMemoryProperties2(fBackendContext.fPhysicalDevice, &phyDevMemProps);
uint32_t memTypeCnt = phyDevMemProps.memoryProperties.memoryTypeCount;
for (uint32_t i = 0; i < memTypeCnt && !foundHeap; ++i) {
if (hwbProps.memoryTypeBits & (1 << i)) {
const VkPhysicalDeviceMemoryProperties& pdmp = phyDevMemProps.memoryProperties;
uint32_t supportedFlags = pdmp.memoryTypes[i].propertyFlags &
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
if (supportedFlags == VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) {
typeIndex = i;
heapIndex = pdmp.memoryTypes[i].heapIndex;
foundHeap = true;
}
}
}
if (!foundHeap) {
ERRORF(reporter, "Failed to find valid heap for imported memory");
return false;
}
VkImportAndroidHardwareBufferInfoANDROID hwbImportInfo;
hwbImportInfo.sType = VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID;
hwbImportInfo.pNext = nullptr;
hwbImportInfo.buffer = buffer;
VkMemoryDedicatedAllocateInfo dedicatedAllocInfo;
dedicatedAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO;
dedicatedAllocInfo.pNext = &hwbImportInfo;
dedicatedAllocInfo.image = fImage;
dedicatedAllocInfo.buffer = VK_NULL_HANDLE;
VkMemoryAllocateInfo allocInfo = {
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // sType
&dedicatedAllocInfo, // pNext
hwbProps.allocationSize, // allocationSize
typeIndex, // memoryTypeIndex
};
err = fVkAllocateMemory(fDevice, &allocInfo, nullptr, &fMemory);
if (VK_SUCCESS != err) {
ERRORF(reporter, "AllocateMemory failed for imported buffer, err: %d", err);
return false;
}
VkBindImageMemoryInfo bindImageInfo;
bindImageInfo.sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO;
bindImageInfo.pNext = nullptr;
bindImageInfo.image = fImage;
bindImageInfo.memory = fMemory;
bindImageInfo.memoryOffset = 0;
err = fVkBindImageMemory2(fDevice, 1, &bindImageInfo);
if (VK_SUCCESS != err) {
ERRORF(reporter, "BindImageMemory failed for imported buffer, err: %d", err);
return false;
}
GrVkAlloc alloc;
alloc.fMemory = fMemory;
alloc.fOffset = 0;
alloc.fSize = hwbProps.allocationSize;
alloc.fFlags = 0;
outImageInfo->fImage = fImage;
outImageInfo->fAlloc = alloc;
outImageInfo->fImageTiling = VK_IMAGE_TILING_OPTIMAL;
outImageInfo->fImageLayout = VK_IMAGE_LAYOUT_UNDEFINED;
outImageInfo->fFormat = VK_FORMAT_R8G8B8A8_UNORM;
outImageInfo->fImageUsageFlags = usageFlags;
outImageInfo->fLevelCount = 1;
outImageInfo->fCurrentQueueFamily = VK_QUEUE_FAMILY_EXTERNAL;
return true;
}
sk_sp<SkImage> VulkanTestHelper::importHardwareBufferForRead(skiatest::Reporter* reporter,
AHardwareBuffer* buffer) {
GrVkImageInfo imageInfo;
if (!this->importHardwareBuffer(reporter, buffer, false, &imageInfo)) {
return nullptr;
}
GrBackendTexture backendTex(DEV_W, DEV_H, imageInfo);
sk_sp<SkImage> wrappedImage = SkImage::MakeFromTexture(fDirectContext.get(),
backendTex,
kTopLeft_GrSurfaceOrigin,
kRGBA_8888_SkColorType,
kPremul_SkAlphaType,
nullptr);
if (!wrappedImage.get()) {
ERRORF(reporter, "Failed to create wrapped Vulkan SkImage");
return nullptr;
}
return wrappedImage;
}
bool VulkanTestHelper::flushSurfaceAndSignalSemaphore(skiatest::Reporter* reporter,
sk_sp<SkSurface> surface) {
surface->flushAndSubmit();
surface.reset();
GrBackendSemaphore semaphore;
if (!this->setupSemaphoreForSignaling(reporter, &semaphore)) {
return false;
}
GrFlushInfo info;
info.fNumSemaphores = 1;
info.fSignalSemaphores = &semaphore;
GrSemaphoresSubmitted submitted = fDirectContext->flush(info);
fDirectContext->submit();
if (GrSemaphoresSubmitted::kNo == submitted) {
ERRORF(reporter, "Failing call to flush on GrDirectContext");
return false;
}
SkASSERT(semaphore.isInitialized());
if (!this->exportSemaphore(reporter, semaphore)) {
return false;
}
return true;
}
bool VulkanTestHelper::setupSemaphoreForSignaling(skiatest::Reporter* reporter,
GrBackendSemaphore* beSemaphore) {
// Query supported info
VkPhysicalDeviceExternalSemaphoreInfo exSemInfo;
exSemInfo.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO;
exSemInfo.pNext = nullptr;
exSemInfo.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
VkExternalSemaphoreProperties exSemProps;
exSemProps.sType = VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES;
exSemProps.pNext = nullptr;
fVkGetPhysicalDeviceExternalSemaphoreProperties(fBackendContext.fPhysicalDevice, &exSemInfo,
&exSemProps);
if (!SkToBool(exSemProps.exportFromImportedHandleTypes &
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT)) {
ERRORF(reporter, "HANDLE_TYPE_SYNC_FD not listed as exportFromImportedHandleTypes");
return false;
}
if (!SkToBool(exSemProps.compatibleHandleTypes &
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT)) {
ERRORF(reporter, "HANDLE_TYPE_SYNC_FD not listed as compatibleHandleTypes");
return false;
}
if (!SkToBool(exSemProps.externalSemaphoreFeatures &
VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT) ||
!SkToBool(exSemProps.externalSemaphoreFeatures &
VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT)) {
ERRORF(reporter, "HANDLE_TYPE_SYNC_FD doesn't support export and import feature");
return false;
}
VkExportSemaphoreCreateInfo exportInfo;
exportInfo.sType = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO;
exportInfo.pNext = nullptr;
exportInfo.handleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
VkSemaphoreCreateInfo semaphoreInfo;
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
semaphoreInfo.pNext = &exportInfo;
semaphoreInfo.flags = 0;
VkSemaphore semaphore;
VkResult err = fVkCreateSemaphore(fDevice, &semaphoreInfo, nullptr, &semaphore);
if (VK_SUCCESS != err) {
ERRORF(reporter, "Failed to create signal semaphore, err: %d", err);
return false;
}
beSemaphore->initVulkan(semaphore);
return true;
}
bool VulkanTestHelper::exportSemaphore(skiatest::Reporter* reporter,
const GrBackendSemaphore& beSemaphore) {
VkSemaphore semaphore = beSemaphore.vkSemaphore();
if (VK_NULL_HANDLE == semaphore) {
ERRORF(reporter, "Invalid vulkan handle in export call");
return false;
}
VkSemaphoreGetFdInfoKHR getFdInfo;
getFdInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR;
getFdInfo.pNext = nullptr;
getFdInfo.semaphore = semaphore;
getFdInfo.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
VkResult err = fVkGetSemaphoreFdKHR(fDevice, &getFdInfo, &fFdHandle);
if (VK_SUCCESS != err) {
ERRORF(reporter, "Failed to export signal semaphore, err: %d", err);
return false;
}
fSignalSemaphore = semaphore;
return true;
}
bool VulkanTestHelper::importAndWaitOnSemaphore(skiatest::Reporter* reporter, int fdHandle,
sk_sp<SkSurface> surface) {
VkSemaphoreCreateInfo semaphoreInfo;
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
semaphoreInfo.pNext = nullptr;
semaphoreInfo.flags = 0;
VkSemaphore semaphore;
VkResult err = fVkCreateSemaphore(fDevice, &semaphoreInfo, nullptr, &semaphore);
if (VK_SUCCESS != err) {
ERRORF(reporter, "Failed to create import semaphore, err: %d", err);
return false;
}
VkImportSemaphoreFdInfoKHR importInfo;
importInfo.sType = VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR;
importInfo.pNext = nullptr;
importInfo.semaphore = semaphore;
importInfo.flags = VK_SEMAPHORE_IMPORT_TEMPORARY_BIT;
importInfo.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
importInfo.fd = fdHandle;
err = fVkImportSemaphoreFdKHR(fDevice, &importInfo);
if (VK_SUCCESS != err) {
ERRORF(reporter, "Failed to import semaphore, err: %d", err);
return false;
}
GrBackendSemaphore beSemaphore;
beSemaphore.initVulkan(semaphore);
if (!surface->wait(1, &beSemaphore)) {
ERRORF(reporter, "Failed to add wait semaphore to surface");
fVkDestroySemaphore(fDevice, semaphore, nullptr);
return false;
}
return true;
}
sk_sp<SkSurface> VulkanTestHelper::importHardwareBufferForWrite(skiatest::Reporter* reporter,
AHardwareBuffer* buffer) {
GrVkImageInfo imageInfo;
if (!this->importHardwareBuffer(reporter, buffer, true, &imageInfo)) {
return nullptr;
}
GrBackendTexture backendTex(DEV_W, DEV_H, imageInfo);
sk_sp<SkSurface> surface = SkSurface::MakeFromBackendTexture(fDirectContext.get(),
backendTex,
kTopLeft_GrSurfaceOrigin,
0,
kRGBA_8888_SkColorType,
nullptr, nullptr);
if (!surface.get()) {
ERRORF(reporter, "Failed to create wrapped Vulkan SkSurface");
return nullptr;
}
return surface;
}
static SkPMColor get_src_color(int x, int y) {
SkASSERT(x >= 0 && x < DEV_W);
SkASSERT(y >= 0 && y < DEV_H);
U8CPU r = x;
U8CPU g = y;
U8CPU b = 0xc;
U8CPU a = 0xff;
switch ((x+y) % 5) {
case 0:
a = 0xff;
break;
case 1:
a = 0x80;
break;
case 2:
a = 0xCC;
break;
case 4:
a = 0x01;
break;
case 3:
a = 0x00;
break;
}
a = 0xff;
return SkPremultiplyARGBInline(a, r, g, b);
}
static SkBitmap make_src_bitmap() {
static SkBitmap bmp;
if (bmp.isNull()) {
bmp.allocN32Pixels(DEV_W, DEV_H);
intptr_t pixels = reinterpret_cast<intptr_t>(bmp.getPixels());
for (int y = 0; y < DEV_H; ++y) {
for (int x = 0; x < DEV_W; ++x) {
SkPMColor* pixel = reinterpret_cast<SkPMColor*>(
pixels + y * bmp.rowBytes() + x * bmp.bytesPerPixel());
*pixel = get_src_color(x, y);
}
}
}
return bmp;
}
static bool check_read(skiatest::Reporter* reporter, const SkBitmap& srcBitmap,
const SkBitmap& dstBitmap) {
bool result = true;
for (int y = 0; y < DEV_H && result; ++y) {
for (int x = 0; x < DEV_W && result; ++x) {
const uint32_t srcPixel = *srcBitmap.getAddr32(x, y);
const uint32_t dstPixel = *dstBitmap.getAddr32(x, y);
if (srcPixel != dstPixel) {
ERRORF(reporter, "Expected readback pixel (%d, %d) value 0x%08x, got 0x%08x.",
x, y, srcPixel, dstPixel);
result = false;
} /*else {
ERRORF(reporter, "Got good readback pixel (%d, %d) value 0x%08x, got 0x%08x.",
x, y, srcPixel, dstPixel);
}*/
}
}
return result;
}
static void cleanup_resources(BaseTestHelper* srcHelper, BaseTestHelper* dstHelper,
AHardwareBuffer* buffer) {
if (srcHelper) {
srcHelper->cleanup();
}
if (dstHelper) {
dstHelper->cleanup();
}
if (buffer) {
AHardwareBuffer_release(buffer);
}
}
enum class SrcType {
kCPU,
kEGL,
kVulkan,
};
enum class DstType {
kEGL,
kVulkan,
};
void run_test(skiatest::Reporter* reporter, const GrContextOptions& options,
SrcType srcType, DstType dstType, bool shareSyncs) {
if (SrcType::kCPU == srcType && shareSyncs) {
// We don't currently test this since we don't do any syncs in this case.
return;
}
std::unique_ptr<BaseTestHelper> srcHelper;
std::unique_ptr<BaseTestHelper> dstHelper;
AHardwareBuffer* buffer = nullptr;
if (SrcType::kVulkan == srcType) {
srcHelper.reset(new VulkanTestHelper());
} else if (SrcType::kEGL == srcType) {
#ifdef SK_GL
srcHelper.reset(new EGLTestHelper(options));
#else
SkASSERT(false, "SrcType::kEGL used without OpenGL support.");
#endif
}
if (srcHelper) {
if (!srcHelper->init(reporter)) {
cleanup_resources(srcHelper.get(), dstHelper.get(), buffer);
return;
}
}
if (DstType::kVulkan == dstType) {
dstHelper.reset(new VulkanTestHelper());
} else {
#ifdef SK_GL
SkASSERT(DstType::kEGL == dstType);
dstHelper.reset(new EGLTestHelper(options));
#else
SkASSERT(false, "DstType::kEGL used without OpenGL support.");
#endif
}
if (dstHelper) {
if (!dstHelper->init(reporter)) {
cleanup_resources(srcHelper.get(), dstHelper.get(), buffer);
return;
}
}
///////////////////////////////////////////////////////////////////////////
// Setup SkBitmaps
///////////////////////////////////////////////////////////////////////////
SkBitmap srcBitmap = make_src_bitmap();
SkBitmap dstBitmapSurface;
dstBitmapSurface.allocN32Pixels(DEV_W, DEV_H);
SkBitmap dstBitmapFinal;
dstBitmapFinal.allocN32Pixels(DEV_W, DEV_H);
///////////////////////////////////////////////////////////////////////////
// Setup AHardwareBuffer
///////////////////////////////////////////////////////////////////////////
AHardwareBuffer_Desc hwbDesc;
hwbDesc.width = DEV_W;
hwbDesc.height = DEV_H;
hwbDesc.layers = 1;
if (SrcType::kCPU == srcType) {
hwbDesc.usage = AHARDWAREBUFFER_USAGE_CPU_READ_NEVER |
AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN |
AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE;
} else {
hwbDesc.usage = AHARDWAREBUFFER_USAGE_CPU_READ_NEVER |
AHARDWAREBUFFER_USAGE_CPU_WRITE_NEVER |
AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE |
AHARDWAREBUFFER_USAGE_GPU_COLOR_OUTPUT;
}
hwbDesc.format = AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM;
// The following three are not used in the allocate
hwbDesc.stride = 0;
hwbDesc.rfu0= 0;
hwbDesc.rfu1= 0;
if (int error = AHardwareBuffer_allocate(&hwbDesc, &buffer)) {
ERRORF(reporter, "Failed to allocated hardware buffer, error: %d", error);
cleanup_resources(srcHelper.get(), dstHelper.get(), buffer);
return;
}
if (SrcType::kCPU == srcType) {
// Get actual desc for allocated buffer so we know the stride for uploading cpu data.
AHardwareBuffer_describe(buffer, &hwbDesc);
uint32_t* bufferAddr;
if (AHardwareBuffer_lock(buffer, AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN, -1, nullptr,
reinterpret_cast<void**>(&bufferAddr))) {
ERRORF(reporter, "Failed to lock hardware buffer");
cleanup_resources(srcHelper.get(), dstHelper.get(), buffer);
return;
}
int bbp = srcBitmap.bytesPerPixel();
uint32_t* src = (uint32_t*)srcBitmap.getPixels();
uint32_t* dst = bufferAddr;
for (int y = 0; y < DEV_H; ++y) {
memcpy(dst, src, DEV_W * bbp);
src += DEV_W;
dst += hwbDesc.stride;
}
for (int y = 0; y < DEV_H; ++y) {
for (int x = 0; x < DEV_W; ++x) {
const uint32_t srcPixel = *srcBitmap.getAddr32(x, y);
uint32_t dstPixel = bufferAddr[y * hwbDesc.stride + x];
if (srcPixel != dstPixel) {
ERRORF(reporter, "CPU HWB Expected readpix (%d, %d) value 0x%08x, got 0x%08x.",
x, y, srcPixel, dstPixel);
}
}
}
AHardwareBuffer_unlock(buffer, nullptr);
} else {
srcHelper->makeCurrent();
sk_sp<SkSurface> surface = srcHelper->importHardwareBufferForWrite(reporter, buffer);
if (!surface) {
cleanup_resources(srcHelper.get(), dstHelper.get(), buffer);
return;
}
sk_sp<SkImage> srcBmpImage = SkImage::MakeFromBitmap(srcBitmap);
surface->getCanvas()->drawImage(srcBmpImage, 0, 0);
// If we are testing sharing of syncs, don't do a read here since it forces sychronization
// to occur.
if (!shareSyncs) {
bool readResult = surface->readPixels(dstBitmapSurface, 0, 0);
if (!readResult) {
ERRORF(reporter, "Read Pixels on surface failed");
surface.reset();
cleanup_resources(srcHelper.get(), dstHelper.get(), buffer);
return;
}
REPORTER_ASSERT(reporter, check_read(reporter, srcBitmap, dstBitmapSurface));
}
///////////////////////////////////////////////////////////////////////////
// Cleanup GL/EGL and add syncs
///////////////////////////////////////////////////////////////////////////
if (shareSyncs) {
if (!srcHelper->flushSurfaceAndSignalSemaphore(reporter, std::move(surface))) {
cleanup_resources(srcHelper.get(), dstHelper.get(), buffer);
return;
}
} else {
surface.reset();
srcHelper->doClientSync();
srcHelper->releaseImage();
}
}
///////////////////////////////////////////////////////////////////////////
// Import the HWB into backend and draw it to a surface
///////////////////////////////////////////////////////////////////////////
dstHelper->makeCurrent();
sk_sp<SkImage> wrappedImage = dstHelper->importHardwareBufferForRead(reporter, buffer);
if (!wrappedImage) {
cleanup_resources(srcHelper.get(), dstHelper.get(), buffer);
return;
}
auto direct = dstHelper->directContext();
// Make SkSurface to render wrapped HWB into.
SkImageInfo imageInfo = SkImageInfo::Make(DEV_W, DEV_H, kRGBA_8888_SkColorType,
kPremul_SkAlphaType, nullptr);
sk_sp<SkSurface> dstSurf = SkSurface::MakeRenderTarget(direct,
SkBudgeted::kNo, imageInfo, 0,
kTopLeft_GrSurfaceOrigin,
nullptr, false);
if (!dstSurf.get()) {
ERRORF(reporter, "Failed to create destination SkSurface");
wrappedImage.reset();
cleanup_resources(srcHelper.get(), dstHelper.get(), buffer);
return;
}
if (shareSyncs) {
if (!dstHelper->importAndWaitOnSemaphore(reporter, srcHelper->getFdHandle(), dstSurf)) {
wrappedImage.reset();
cleanup_resources(srcHelper.get(), dstHelper.get(), buffer);
return;
}
}
dstSurf->getCanvas()->drawImage(wrappedImage, 0, 0);
bool readResult = dstSurf->readPixels(dstBitmapFinal, 0, 0);
if (!readResult) {
ERRORF(reporter, "Read Pixels failed");
wrappedImage.reset();
dstSurf.reset();
dstHelper->doClientSync();
cleanup_resources(srcHelper.get(), dstHelper.get(), buffer);
return;
}
REPORTER_ASSERT(reporter, check_read(reporter, srcBitmap, dstBitmapFinal));
dstSurf.reset();
wrappedImage.reset();
dstHelper->doClientSync();
cleanup_resources(srcHelper.get(), dstHelper.get(), buffer);
}
DEF_GPUTEST(VulkanHardwareBuffer_CPU_Vulkan, reporter, options) {
run_test(reporter, options, SrcType::kCPU, DstType::kVulkan, false);
}
DEF_GPUTEST(VulkanHardwareBuffer_Vulkan_Vulkan, reporter, options) {
run_test(reporter, options, SrcType::kVulkan, DstType::kVulkan, false);
}
DEF_GPUTEST(VulkanHardwareBuffer_Vulkan_Vulkan_Syncs, reporter, options) {
run_test(reporter, options, SrcType::kVulkan, DstType::kVulkan, true);
}
#if defined(SK_GL)
DEF_GPUTEST(VulkanHardwareBuffer_EGL_Vulkan, reporter, options) {
run_test(reporter, options, SrcType::kEGL, DstType::kVulkan, false);
}
DEF_GPUTEST(VulkanHardwareBuffer_CPU_EGL, reporter, options) {
run_test(reporter, options, SrcType::kCPU, DstType::kEGL, false);
}
DEF_GPUTEST(VulkanHardwareBuffer_EGL_EGL, reporter, options) {
run_test(reporter, options, SrcType::kEGL, DstType::kEGL, false);
}
DEF_GPUTEST(VulkanHardwareBuffer_Vulkan_EGL, reporter, options) {
run_test(reporter, options, SrcType::kVulkan, DstType::kEGL, false);
}
DEF_GPUTEST(VulkanHardwareBuffer_EGL_EGL_Syncs, reporter, options) {
run_test(reporter, options, SrcType::kEGL, DstType::kEGL, true);
}
DEF_GPUTEST(VulkanHardwareBuffer_Vulkan_EGL_Syncs, reporter, options) {
run_test(reporter, options, SrcType::kVulkan, DstType::kEGL, true);
}
DEF_GPUTEST(VulkanHardwareBuffer_EGL_Vulkan_Syncs, reporter, options) {
run_test(reporter, options, SrcType::kEGL, DstType::kVulkan, true);
}
#endif
#endif // SK_SUPPORT_GPU && defined(SK_BUILD_FOR_ANDROID) &&
// __ANDROID_API__ >= 26 && defined(SK_VULKAN)