skia2/tests/GLProgramsTest.cpp
cdalton c94cd7cc01 Fix GrCoverageSetOpXP unit test on mixed samples
Updates GrCoverageSetOpXPFactory::TestCreate to not invert coverage
with mixed samples, which is an unsupported configuration.

TBR=bsalomon@google.com

BUG=skia:4556

Review URL: https://codereview.chromium.org/1442763002
2015-11-12 12:11:04 -08:00

455 lines
17 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
// This is a GPU-backend specific test. It relies on static intializers to work
#include "SkTypes.h"
#if SK_SUPPORT_GPU && SK_ALLOW_STATIC_GLOBAL_INITIALIZERS
#include "GrAutoLocaleSetter.h"
#include "GrBatchTest.h"
#include "GrContextFactory.h"
#include "GrDrawingManager.h"
#include "GrInvariantOutput.h"
#include "GrPipeline.h"
#include "GrResourceProvider.h"
#include "GrTest.h"
#include "GrXferProcessor.h"
#include "SkChecksum.h"
#include "SkRandom.h"
#include "Test.h"
#include "batches/GrDrawBatch.h"
#include "effects/GrConfigConversionEffect.h"
#include "effects/GrPorterDuffXferProcessor.h"
#include "effects/GrXfermodeFragmentProcessor.h"
#include "gl/GrGLFragmentProcessor.h"
#include "gl/GrGLGpu.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramBuilder.h"
/*
* A dummy processor which just tries to insert a massive key and verify that it can retrieve the
* whole thing correctly
*/
static const uint32_t kMaxKeySize = 1024;
class GLBigKeyProcessor : public GrGLFragmentProcessor {
public:
GLBigKeyProcessor(const GrProcessor&) {}
virtual void emitCode(EmitArgs& args) override {
// pass through
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
if (args.fInputColor) {
fsBuilder->codeAppendf("%s = %s;\n", args.fOutputColor, args.fInputColor);
} else {
fsBuilder->codeAppendf("%s = vec4(1.0);\n", args.fOutputColor);
}
}
static void GenKey(const GrProcessor& processor, const GrGLSLCaps&, GrProcessorKeyBuilder* b) {
for (uint32_t i = 0; i < kMaxKeySize; i++) {
b->add32(i);
}
}
private:
typedef GrGLFragmentProcessor INHERITED;
};
class BigKeyProcessor : public GrFragmentProcessor {
public:
static GrFragmentProcessor* Create() {
return new BigKeyProcessor;
}
const char* name() const override { return "Big Ole Key"; }
GrGLFragmentProcessor* onCreateGLInstance() const override {
return new GLBigKeyProcessor(*this);
}
private:
BigKeyProcessor() {
this->initClassID<BigKeyProcessor>();
}
virtual void onGetGLProcessorKey(const GrGLSLCaps& caps,
GrProcessorKeyBuilder* b) const override {
GLBigKeyProcessor::GenKey(*this, caps, b);
}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
void onComputeInvariantOutput(GrInvariantOutput* inout) const override { }
GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
typedef GrFragmentProcessor INHERITED;
};
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(BigKeyProcessor);
const GrFragmentProcessor* BigKeyProcessor::TestCreate(GrProcessorTestData*) {
return BigKeyProcessor::Create();
}
//////////////////////////////////////////////////////////////////////////////
class BlockInputFragmentProcessor : public GrFragmentProcessor {
public:
static GrFragmentProcessor* Create(const GrFragmentProcessor* fp) {
return new BlockInputFragmentProcessor(fp);
}
const char* name() const override { return "Block Input"; }
GrGLFragmentProcessor* onCreateGLInstance() const override { return new GLFP; }
private:
class GLFP : public GrGLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
this->emitChild(0, nullptr, args);
}
private:
typedef GrGLFragmentProcessor INHERITED;
};
BlockInputFragmentProcessor(const GrFragmentProcessor* child) {
this->initClassID<BlockInputFragmentProcessor>();
this->registerChildProcessor(child);
}
void onGetGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
inout->setToOther(kRGBA_GrColorComponentFlags, GrColor_WHITE,
GrInvariantOutput::kWillNot_ReadInput);
this->childProcessor(0).computeInvariantOutput(inout);
}
typedef GrFragmentProcessor INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
/*
* Begin test code
*/
static const int kRenderTargetHeight = 1;
static const int kRenderTargetWidth = 1;
static GrRenderTarget* random_render_target(GrTextureProvider* textureProvider, SkRandom* random,
const GrCaps* caps) {
// setup render target
GrTextureParams params;
GrSurfaceDesc texDesc;
texDesc.fWidth = kRenderTargetWidth;
texDesc.fHeight = kRenderTargetHeight;
texDesc.fFlags = kRenderTarget_GrSurfaceFlag;
texDesc.fConfig = kRGBA_8888_GrPixelConfig;
texDesc.fOrigin = random->nextBool() == true ? kTopLeft_GrSurfaceOrigin :
kBottomLeft_GrSurfaceOrigin;
texDesc.fSampleCnt = random->nextBool() == true ? SkTMin(4, caps->maxSampleCount()) : 0;
GrUniqueKey key;
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(&key, kDomain, 2);
builder[0] = texDesc.fOrigin;
builder[1] = texDesc.fSampleCnt;
builder.finish();
GrTexture* texture = textureProvider->findAndRefTextureByUniqueKey(key);
if (!texture) {
texture = textureProvider->createTexture(texDesc, true);
if (texture) {
textureProvider->assignUniqueKeyToTexture(key, texture);
}
}
return texture ? texture->asRenderTarget() : nullptr;
}
static void set_random_xpf(GrPipelineBuilder* pipelineBuilder, GrProcessorTestData* d) {
SkAutoTUnref<const GrXPFactory> xpf(GrProcessorTestFactory<GrXPFactory>::Create(d));
SkASSERT(xpf);
pipelineBuilder->setXPFactory(xpf.get());
}
static const GrFragmentProcessor* create_random_proc_tree(GrProcessorTestData* d,
int minLevels, int maxLevels) {
SkASSERT(1 <= minLevels);
SkASSERT(minLevels <= maxLevels);
// Return a leaf node if maxLevels is 1 or if we randomly chose to terminate.
// If returning a leaf node, make sure that it doesn't have children (e.g. another
// GrComposeEffect)
const float terminateProbability = 0.3f;
if (1 == minLevels) {
bool terminate = (1 == maxLevels) || (d->fRandom->nextF() < terminateProbability);
if (terminate) {
const GrFragmentProcessor* fp;
while (true) {
fp = GrProcessorTestFactory<GrFragmentProcessor>::Create(d);
SkASSERT(fp);
if (0 == fp->numChildProcessors()) {
break;
}
fp->unref();
}
return fp;
}
}
// If we didn't terminate, choose either the left or right subtree to fulfill
// the minLevels requirement of this tree; the other child can have as few levels as it wants.
// Also choose a random xfer mode that's supported by CreateFrom2Procs().
if (minLevels > 1) {
--minLevels;
}
SkAutoTUnref<const GrFragmentProcessor> minLevelsChild(create_random_proc_tree(d, minLevels,
maxLevels - 1));
SkAutoTUnref<const GrFragmentProcessor> otherChild(create_random_proc_tree(d, 1,
maxLevels - 1));
SkXfermode::Mode mode = static_cast<SkXfermode::Mode>(d->fRandom->nextRangeU(0,
SkXfermode::kLastCoeffMode));
const GrFragmentProcessor* fp;
if (d->fRandom->nextF() < 0.5f) {
fp = GrXfermodeFragmentProcessor::CreateFromTwoProcessors(minLevelsChild, otherChild, mode);
SkASSERT(fp);
} else {
fp = GrXfermodeFragmentProcessor::CreateFromTwoProcessors(otherChild, minLevelsChild, mode);
SkASSERT(fp);
}
return fp;
}
static void set_random_color_coverage_stages(GrPipelineBuilder* pipelineBuilder,
GrProcessorTestData* d, int maxStages) {
// Randomly choose to either create a linear pipeline of procs or create one proc tree
const float procTreeProbability = 0.5f;
if (d->fRandom->nextF() < procTreeProbability) {
// A full tree with 5 levels (31 nodes) may exceed the max allowed length of the gl
// processor key; maxTreeLevels should be a number from 1 to 4 inclusive.
const int maxTreeLevels = 4;
SkAutoTUnref<const GrFragmentProcessor> fp(
create_random_proc_tree(d, 2, maxTreeLevels));
pipelineBuilder->addColorFragmentProcessor(fp);
} else {
int numProcs = d->fRandom->nextULessThan(maxStages + 1);
int numColorProcs = d->fRandom->nextULessThan(numProcs + 1);
for (int s = 0; s < numProcs;) {
SkAutoTUnref<const GrFragmentProcessor> fp(
GrProcessorTestFactory<GrFragmentProcessor>::Create(d));
SkASSERT(fp);
// finally add the stage to the correct pipeline in the drawstate
if (s < numColorProcs) {
pipelineBuilder->addColorFragmentProcessor(fp);
} else {
pipelineBuilder->addCoverageFragmentProcessor(fp);
}
++s;
}
}
}
static void set_random_state(GrPipelineBuilder* pipelineBuilder, SkRandom* random) {
int state = 0;
for (int i = 1; i <= GrPipelineBuilder::kLast_Flag; i <<= 1) {
state |= random->nextBool() * i;
}
// If we don't have an MSAA rendertarget then we have to disable useHWAA
if ((state | GrPipelineBuilder::kHWAntialias_Flag) &&
!pipelineBuilder->getRenderTarget()->isUnifiedMultisampled()) {
state &= ~GrPipelineBuilder::kHWAntialias_Flag;
}
pipelineBuilder->enableState(state);
}
// right now, the only thing we seem to care about in drawState's stencil is 'doesWrite()'
static void set_random_stencil(GrPipelineBuilder* pipelineBuilder, SkRandom* random) {
GR_STATIC_CONST_SAME_STENCIL(kDoesWriteStencil,
kReplace_StencilOp,
kReplace_StencilOp,
kAlways_StencilFunc,
0xffff,
0xffff,
0xffff);
GR_STATIC_CONST_SAME_STENCIL(kDoesNotWriteStencil,
kKeep_StencilOp,
kKeep_StencilOp,
kNever_StencilFunc,
0xffff,
0xffff,
0xffff);
if (random->nextBool()) {
pipelineBuilder->setStencil(kDoesWriteStencil);
} else {
pipelineBuilder->setStencil(kDoesNotWriteStencil);
}
}
bool GrDrawingManager::ProgramUnitTest(GrContext* context,
GrDrawTarget* drawTarget,
int maxStages) {
GrDrawingManager* drawingManager = context->drawingManager();
// setup dummy textures
GrSurfaceDesc dummyDesc;
dummyDesc.fFlags = kRenderTarget_GrSurfaceFlag;
dummyDesc.fConfig = kSkia8888_GrPixelConfig;
dummyDesc.fWidth = 34;
dummyDesc.fHeight = 18;
SkAutoTUnref<GrTexture> dummyTexture1(
context->textureProvider()->createTexture(dummyDesc, false, nullptr, 0));
dummyDesc.fFlags = kNone_GrSurfaceFlags;
dummyDesc.fConfig = kAlpha_8_GrPixelConfig;
dummyDesc.fWidth = 16;
dummyDesc.fHeight = 22;
SkAutoTUnref<GrTexture> dummyTexture2(
context->textureProvider()->createTexture(dummyDesc, false, nullptr, 0));
if (!dummyTexture1 || ! dummyTexture2) {
SkDebugf("Could not allocate dummy textures");
return false;
}
GrTexture* dummyTextures[] = {dummyTexture1.get(), dummyTexture2.get()};
// dummy scissor state
GrScissorState scissor;
// wide open clip
GrClip clip;
SkRandom random;
static const int NUM_TESTS = 2048;
for (int t = 0; t < NUM_TESTS; t++) {
// setup random render target(can fail)
SkAutoTUnref<GrRenderTarget> rt(random_render_target(
context->textureProvider(), &random, context->caps()));
if (!rt.get()) {
SkDebugf("Could not allocate render target");
return false;
}
GrPipelineBuilder pipelineBuilder;
pipelineBuilder.setRenderTarget(rt.get());
pipelineBuilder.setClip(clip);
SkAutoTUnref<GrDrawBatch> batch(GrRandomDrawBatch(&random, context));
SkASSERT(batch);
GrProcessorTestData ptd(&random, context, context->caps(), rt, dummyTextures);
set_random_color_coverage_stages(&pipelineBuilder, &ptd, maxStages);
set_random_xpf(&pipelineBuilder, &ptd);
set_random_state(&pipelineBuilder, &random);
set_random_stencil(&pipelineBuilder, &random);
drawTarget->drawBatch(pipelineBuilder, batch);
}
// Flush everything, test passes if flush is successful(ie, no asserts are hit, no crashes)
drawingManager->flush();
// Validate that GrFPs work correctly without an input.
GrSurfaceDesc rtDesc;
rtDesc.fWidth = kRenderTargetWidth;
rtDesc.fHeight = kRenderTargetHeight;
rtDesc.fFlags = kRenderTarget_GrSurfaceFlag;
rtDesc.fConfig = kRGBA_8888_GrPixelConfig;
SkAutoTUnref<GrRenderTarget> rt(
context->textureProvider()->createTexture(rtDesc, false)->asRenderTarget());
int fpFactoryCnt = GrProcessorTestFactory<GrFragmentProcessor>::Count();
for (int i = 0; i < fpFactoryCnt; ++i) {
// Since FP factories internally randomize, call each 10 times.
for (int j = 0; j < 10; ++j) {
SkAutoTUnref<GrDrawBatch> batch(GrRandomDrawBatch(&random, context));
SkASSERT(batch);
GrProcessorTestData ptd(&random, context, context->caps(), rt, dummyTextures);
GrPipelineBuilder builder;
builder.setXPFactory(GrPorterDuffXPFactory::Create(SkXfermode::kSrc_Mode))->unref();
builder.setRenderTarget(rt);
builder.setClip(clip);
SkAutoTUnref<const GrFragmentProcessor> fp(
GrProcessorTestFactory<GrFragmentProcessor>::CreateIdx(i, &ptd));
SkAutoTUnref<const GrFragmentProcessor> blockFP(
BlockInputFragmentProcessor::Create(fp));
builder.addColorFragmentProcessor(blockFP);
drawTarget->drawBatch(builder, batch);
drawingManager->flush();
}
}
return true;
}
DEF_GPUTEST(GLPrograms, reporter, factory) {
// Set a locale that would cause shader compilation to fail because of , as decimal separator.
// skbug 3330
#ifdef SK_BUILD_FOR_WIN
GrAutoLocaleSetter als("sv-SE");
#else
GrAutoLocaleSetter als("sv_SE.UTF-8");
#endif
// We suppress prints to avoid spew
GrContextOptions opts;
opts.fSuppressPrints = true;
GrContextFactory debugFactory(opts);
for (int type = 0; type < GrContextFactory::kLastGLContextType; ++type) {
GrContext* context = debugFactory.get(static_cast<GrContextFactory::GLContextType>(type));
if (context) {
GrGLGpu* gpu = static_cast<GrGLGpu*>(context->getGpu());
/*
* For the time being, we only support the test with desktop GL or for android on
* ARM platforms
* TODO When we run ES 3.00 GLSL in more places, test again
*/
int maxStages;
if (kGL_GrGLStandard == gpu->glStandard() ||
kARM_GrGLVendor == gpu->ctxInfo().vendor()) {
maxStages = 6;
} else if (kTegra3_GrGLRenderer == gpu->ctxInfo().renderer() ||
kOther_GrGLRenderer == gpu->ctxInfo().renderer()) {
maxStages = 1;
} else {
return;
}
#if SK_ANGLE
// Some long shaders run out of temporary registers in the D3D compiler on ANGLE.
if (type == GrContextFactory::kANGLE_GLContextType) {
maxStages = 2;
}
#endif
#if SK_COMMAND_BUFFER
// Some long shaders run out of temporary registers in the D3D compiler on ANGLE.
// TODO(hendrikw): This only needs to happen with the ANGLE comand buffer backend.
if (type == GrContextFactory::kCommandBuffer_GLContextType) {
maxStages = 2;
}
#endif
GrTestTarget testTarget;
context->getTestTarget(&testTarget);
REPORTER_ASSERT(reporter, GrDrawingManager::ProgramUnitTest(
context, testTarget.target(), maxStages));
}
}
}
#endif